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Abstract. Instabilities in machining are detrimental. Usually analytical model-
predicted stability charts guide selection of cutting parameters to ensure stable
processes. However, since models often fail to account for how inputs to them
such as the cutting force coefficients and dynamics change with speed and/or
time, and because models make several linearizing assumptions, charts often fail
to guide stable cutting in industrial praxis. As an alternate way to guide stable
cutting, this paper demonstrates how stability charts can be learnt from experi-
mental data using a supervised Bayes’ learning approach. We build on prior work
related to learning stability for processes with linear characteristics and demon-
strate herein that the model can be trained and tested on datasets for processes
exhibiting nonlinear characteristics, thus showing how the prediction model is
agnostic to the process or to any potential nonlinearities in it. Factors affecting the
training capacity of Bayesian model like the likelihood probability distributions
and the thresholds of probability necessary to decide on a stability contour, are
tuned to give maximum accuracy possible. Predictions to learn the stability were
accurate up to 96.5%. Since data that is used to train the model includes in it all the
vagaries and uncertainties associated with the cutting process, results herein can
inform further development towards self-optimizing and autonomous machining
systems.
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1 Introduction

Selection of stable cutting parameters for high performancemachining is often guided by
knowledge of stability diagrams. These diagrams chart the boundaries between cutting
parameters that might result in stable and unstable cutting and further guide selection
that will likely result in higher material removal rates. Analytical models usually predict
these diagrams. Quality of prediction is governed by inputs to the models. These include
measured cutting force coefficients and measured dynamics. However, since inputs sel-
dom account for the speed-dependent behaviour of the cutting process or the dynamics,
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and sincemodels make several linearizing assumptions, models, though useful, often fail
to guide stable cutting parameter selection in real industrial settings. Since instabilities
are detrimental to the part, the tool, and to elements of the machine, there is need for
better quality predictions. To address this need, this paper discusses the use of a super-
vised machine learning (ML) technique that can ‘learn’ the stability diagram from real
experimentally classified stable and unstable data points without relying on an analytical
model. Since the real data is expected to better capture the vagaries and uncertainties
in the cutting processes and/or in the dynamics, the ‘learnt’ stability is expected to be
accurate.

Use of ML models in the domain of machine tools and machining process related
research has gained traction over the recent years, as is nicely and succinctly summarized
in the review paper [1]. Since learning from real and/or simulated data has value, ML has
been shown to be useful for tool wear analysis, thermal error compensation, monitoring
and classifying states ofmachining as being stable and/or unstable, identifying dynamics,
and to learn the stability diagram – which is of direct relevance to this research.

Prior research on learning stability using ML models has discussed the use of arti-
ficial neural networks (ANN) [2], support vector machines (SVM) [2, 3], the k-nearest
neighbourhood (kNN) method [4], and Bayesian methods [5–8]. Given that training
models requires that experiments be done to obtain unstable data points, and since those
experiments can be destructive due to the nature of instabilities, an accurate model that
can be trained with less data, and one that extends itself to a continual learning scheme
should be preferred. The Bayes’ method fits these criteria. It is hence our preferred
method for implementation.

TheBayes’method to learn stabilitywas in its original form intended to be agnostic to
the process physics [5]. However, in other related work, physics-informed modifications
have been reported to work well [6, 7]. Since it is desirable to develop a generalized ML
model that is agnostic to the process physics and that can work with many different data
sets, this study follows the approach reported in [5, 8] that was blind to the physics of
the process.

For given data that is pre-classified as stable/unstable, the goal with the Bayesian
approach is to calculate the posterior probability of stability at each grid point on the
stability map. Though this was done in prior work [5–7], that work did not systematically
characterize the influence of changingGaussian likelihoods, or the influence of changing
threshold of the stability contour on the learning accuracy. Moreover, there was no
discussion on how to characterize and quantify the learning accuracy of the prediction. In
our concurrent research [8], we report on the influence of changingGaussian likelihoods,
on the influence of changing threshold of the stability contour, and on the influence of
data size in a continuous learning scenario.

Although, in [5–8], theBayes’method is clearly agnostic to the physics of the system,
that research was limited to learning stability for processes with linear characteristics.
The use of theBayes’method for learning stabilitywith nonlinear characteristics remains
previously unexplored and forms the focus of this paper. We train and test the Bayes’
method for a process exhibiting non-linear force characteristics resulting in bistabilities
and for a process exhibiting the interesting process damping phenomena. In doing so,
we further show the strength of the Bayes’ method for learning the machining stability
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behavior directly from the data, even when the data embeds nonlinearities within it. This
is the main new technical contribution of this paper to the state-of-the-art in the use of
ML methods for learning stability.

The remainder of the paper is organized as follows. At first, in Sect. 2, we discuss how
we gather data that we feed to our learning model. We then briefly overview the Bayes’
method in Sect. 3. In Sect. 4, we demonstrate the results obtained from the model which
learn stability for processes with nonlinear characteristics and for those with process
damping. This is followed by the main conclusions.

2 Gathering Data for the ML Model

Since the experimental pathway to gather data that is needed to train a Bayesian model
is costly due to the destructive nature of unstable experiments, this paper trains and
tests the ML model using data obtained from emulations on an in-house developed
hardware-in-the-loop (HiL) simulator that was built to study machining instabilities [9–
12]. Experiments on theHiL simulator are used to classify combinations of depths of cuts
and spindle speeds that result in unstable conditions. The process is akin to procedures
in real cutting experiments. When the process has nonlinear force characteristics, there
exist regions of conditional stabilities that are characterized by the process being stable
for small perturbations and unstable for larger ones for cutting at parameters within the
conditionally stable regions. The procedure to find the global unstable limits in this case
is the same as for the case of cutting with linear force characteristics. And, to find the
find the global stable limits, i.e., to find the lower limits of the bistable regions, for every
speed of interest, the depths of cuts were decreased in the same step size as they were
increased. And the last but one depth of cut at which the finite amplitude instabilities
disappear, was recorded as the lower limit of the bistable region. Experimental data
characterizing the stability boundaries for cutting with a process having non-linear force
characteristics is shown in Fig. 1(a) and is obtained as detailed in [11].

Fig. 1. (a) Experimental data corresponding to unstable cutting conditions obtained from emu-
lations on a HiL simulator for the case of a process with nonlinear characteristics i.e., bistability,
(b) synthesized data used for testing the model.
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When the cutting process exhibits process damping due to interference of a worn
tool’s flank face with a previously cut surface, the critical chatter-free depths of cuts
at low-speeds are observed to be higher than those at high-speeds. Experimental data
characterizing the stability boundaries for cutting with a process having linear force
characteristics and exhibiting process damping is shown in Fig. 2(a). Data shown in
Fig. 2(a) is obtained as detailed in [12].

Fig. 2. (a) Experimental data corresponding to unstable cutting conditions obtained from emu-
lations on a HiL simulator for the case of a process exhibiting process damping, (b) synthesized
data used for testing the model.

Since themain idea of fitting amodel to data is for themodel to be agnostic to the data
type, a comparison between the above two cases is not intended and/or recommended.
What is however clear is that for the case with the nonlinear force characteristics there
exists a clear bistable region with there being a globally stable boundary as well as a
globally unstable boundary. This case will evidently need to be addressed differently
due to the ternary types of classification of the data with some data being stable, some
being conditionally stable, and some being unstable. Previous studies [5–8] using the
Bayesian approach were limited to cases with linear force characteristics in which the
classificationwas of the binary typewith somedata being stable and somebeing unstable.

The case of the nonlinear force characteristics has a total of 32 (16 each for global
stable and global unstable case) data points (Fig. 1(a)). And the case of the process
exhibiting process damping has a total of 20 data points (Fig. 2(a)). Though the Bayesian
model can be adequately trained with this data, testing themodel for its learning capacity
needs more data than we have obtained. As such, we synthesize the emulated data
with more data. Since the region below the boundary is stable and that above unstable,
we add data points at depth of cut intervals of choice to pad the emulated data. In
this manner, we generate additional 1227 and 434 data for the case of a process with
nonlinear characteristics (Fig. 1(b)) and a process with linear characteristics exhibiting
process damping (Fig. 2(b)), respectively. Synthesized data allows us to systematically
quantify the learning capacity of the model, something that was missing from previous
investigations [5–7]. More on how we quantify the learning accuracy is discussed in the
next section.
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3 Bayesian Learning for Machining Stability

This section outlines the Bayes’ procedure to learn machining stability diagrams. We
only provide anoverviewanddirect the reader to the original source [5] for details.Bayes’
rule updates probabilities when new information is made available. Mathematically, it
can be stated as:

p(A|B) = p(B|A).p(A)
p(B)

(1)

wherein A and B are separate events. p(A|B) is the probability of event A occurring given
that B is true. This is also known as the posterior probability of A given B. p(B|A) is the
probability of event B occurring given that A is true. This is also known as the likelihood
of A given a fixed B. p(A) and p(B) are probabilities of A and B occurring and are known
as the prior probabilities. In the context of machining stability, the Bayes’ rule becomes:

p(stability | experimental data) = p(experimental data | stability).p(stability)
p(experimental data)

(2)

wherein p(stability) is an assumed prior probability of stability, p(experimentaldata) is
the known probability of a data point being stable or not, p(experimentaldata|stability)
is the likelihood probability of a stable result at the given experimental data point, and
p(stability|experimentaldata) is the evaluated posterior probability of a stable data point
for the given experimental condition. Likewise, it is also possible to evaluate the posterior
probability of an unstable data point for the given experimental condition and given an
assumed prior probability of instability, p(instability).

For the given data points on the stability diagram (in Figs. 1 and 2) the goal with the
Bayesian approach is to calculate the posterior probability of stability at each grid point
on the axial depth of cut – spindle speed map. The procedure to do so is outlined in a
flowchart in Fig. 3.

For every data point, we first evaluate the prior probability. This is done by assuming
that as the depths of cut increase at any spindle speed, the likelihood of encountering
instabilities increases. A linear distribution for the prior probability is assumed as shown
in an inset in the flowchart in Fig. 3. This prior probability remains the same for all
spindle speeds.

The influence of a test result along spindle speeds at the depth of cut of interest,
bT is defined as σNbT

with the mean being the test spindle speed of interest, and the
influence of the test result being restricted to 3 σNbT

. The subscript T refers to the test
result under consideration. The likelihood probability of a stable result at T (p(+T)NT,bT )
given G, another test result on the depth of cut – spindle map that is stable, is one, i.e.,
p(+T|sG)NT,bT = 1. For the same depth of cut, bT, the likelihood probability of a stable
result at T given G is stable reduces for other spindle speeds Nj following a Gaussian
distribution, as shown in the schematic and in the equation in the insets in the flowchart
in Fig. 3.
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Fig. 3. An overview of our implementation of the Bayes’ rule to learn stability diagrams.
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For a changing depth of cut at the same spindle speed, NT, for example, when
bi < bT, and the data point bT, NT is stable, the likelihood probability will remain
one since for the case of the binary type of classification, every point below bT will
remain stable. However, the probability of a data point remaining stable reduces as
bi > bT, and is assumed to have no influence beyond bT + 3σb, wherein σb is the
standard deviation along the axial depth of cut, and bT + 3σb is the mean for a non-
normalized Gaussian probability density. Since the influence of stable results will be
higher at lower axial depths of cut, σNbT

is different for the cases of bi < bT and for
bi > bT. This is shown in the equations within the flowchart in Fig. 3. Procedures
to obtain the likelihood probability of instabilities follows the same logic as for the
case of obtaining the likelihood probability of a stable result. The Gaussian distribution
however is inverted for the case of the unstable result. For the bistable cases of interest in
this paper, since bistable data lies within the stable and unstable regions, the likelihood
probability for bistable data is calculated as the average of the likelihoods for the stable
and unstable cases.

Using procedures outlined above, a posterior probability is computed using the
Bayes’ conditional probability theorem using the equations shown in the insets in Fig. 3.
To do so, the likelihood and prior probabilities are both used. For a representative test
result T, the posterior probability is overlaid on the prior assumption within the inset in
Fig. 3, and it clearly shows that probabilities change using the Bayes’ rule. This new
probability becomes the prior probability for the subsequent experimental data point,
and the process is repeated until all grid points on the spindle speed – axial depth of cut
map are evaluated.

After probabilities are updated using all test results, a stability lobe prediction from
the Bayes’ approach can be made at axial depths of cut when the probability of stability
is equal to a user-defined threshold. In prior work [5], that threshold was fixed at 0.5.
However, since the threshold could influence the accuracy of the decision boundary, as
was shown in our concurrent work [8], it is tuned for giving the best decision boundary.

Learning capacity of the Bayesian model is governed not only by the assumed prior
distribution of probabilities, and the assumed Gaussian distributions for the likelihood
probabilities, but also the choice of σN and σb within those distributions. σN and σb will
both determine the influence of a test point and the posterior probabilities, which in turn,
influences the width and amplitude of the stability boundaries after each update. In prior
work on the use of the Bayes’ approach [5], σN and σb and were selected as 3% of the
spindle speed range and as 10% of the axial depth of cut range, respectively. Though
these values resulted in good prediction accuracies, we have tuned the values of σN and
σb for this work, based on the quality of prediction. Moreover, the attempt to take σN as
a linearly increasing function within the spindle speed range is made by us in [8], which
was found to enhance the accuracy. Hence, following from there, we have chosen σN
as a linearly increasing function within the spindle speed range, rather than a constant
value, as was done in [5].

Though the above outlined above procedures can be used to predict/learn a stability
boundary, there need to be procedures to quantify the goodness of that prediction. Prior
work [5] quantified the learning accuracy by benchmarking against a ‘true’ stability
boundary that was presumably obtained from an analytical model. Instead of relying
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on a model, we train using the available experimental data, and test the goodness of
our predictions against the whole data set that includes the synthesized data and some
experimental data using a confusion matrix. From the confusion matrix, we evaluate
accuracies and F1 scores to quantify the goodness of fit.

4 Learning Stability with Non-linear Characteristics

This section first discusses learning stability for a for a process exhibiting bistable
behaviour, followed by a discussion on learning stability for a machining process
exhibiting process damping.

4.1 Learning Stability for a Process Exhibiting Bistable Behaviour

Processes exhibiting bistable behaviour are characterized by data points that are stable,
conditionally stable, and unstable. As such, themodelmust be trainedwith representative
data from each of these different classes. We hence train using nine stable, four unstable
and 27 bistable data points. For testing, we use 242 stable, 106 unstable and 86 bistable
data points. Training and testing data is shown in Fig. 4(a). In this case σN was linearly
increased from 3% to 10% of spindle speed range, and σb was taken to be fixed at
4% of the axial depth of cut range. And, since bistable behaviour is characterized by a
globally stable and a globally unstable boundary, two thresholds were used to evaluate
these contours. For the globally stable contour, we used a threshold of 0.05, and for the
globally unstable contour, we used a threshold of 0.95. These parameters were tuned
for this data set. The predicted stability contour is shown in Fig. 4(b). The color map in
Fig. 4(b) depicts the probability of stability, with blue representing a very low probability
of stability and yellow indicating a high probability of stability. Although the stability
boundary is determined by the threshold value, the color map gives an overview of
the distribution of the evaluated posterior probabilities. And as is evident, the Bayesian
approach can learn stability behaviour even with processes exhibiting bistabilities. The
F1-score evaluated for correctly predicting the globally stable and unstable regions is
>90%. However, for the bistable data, the F1-score falls to ~75%. This suggests that
there is still room for improvement of the algorithm.

Since bistabilities are characterized by the process being stable for small perturba-
tions and unstable for larger ones, learning this behaviour from data can guide selection
of cutting parameters to lie outside these zones of conditional instabilities. Moreover,
since bistabilities occur due to nonlinearities in cutting force characteristics, which can
be difficult to identify and/or model, and since the data learning model used herein is
shown to be agnostic to the underlying causes of the observed bistable behaviour, and
since it is still able to learn that bistable behaviour, these results are useful.

Furthermore, the computational time required to train and test the model is only
~1.6 s and ~0.0433 s, respectively. These times were for calculations performed on a
laptop with a i5-8250U processor running at a base speed 1.8 GHz and with 8 GB or
RAM. This makes this method suitable for an in-situ real-time implementation with real
data on real machines.
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Fig. 4. (a) Data for training and testing the process with nonlinear force characteristics, (b)
stability charts capturing bistable behaviour with unstable, bistable, and stable data used for
training.

4.2 Learning Stability with Process Damping

Training and testing data for process damping is shown in Fig. 5(a). The model is trained
with 20 unstable data points and is subsequently tested on 972 stable and 255 unstable
data points. Themodel hyperparameters for this data set are again tuned to givemaximum
F1-score. σN was linearly increased from 1% to 2% of the spindle speed range. σb was
taken to be fixed at 1% of the axial depth of cut range. The threshold to evaluate stability
contours was taken to be 0.05. The predicted stability contour is shown in Fig. 5(b),
and as is evident, the process damping phenomena is well-captured with the Bayesian
approach that has no knowledge about the underlying process mechanics. The accuracy
and F1-score were found to be 96.58% and 97.80%, respectively.

Fig. 5. (a) Data for training and testing the process with linear force characteristics exhibiting
process damping, (b) stability chart capturing process dampingwith unstable data used for training.

Since process damping is an interesting phenomenon inwhich the absoluteminimum
stability limit improves for lower speeds while remaining unchanged for higher speeds –
as is evident from Fig. 5(b), and since improvements are usually observed as the tool
wear progresses, and since modelling the tool wear’s influence on stability is non-trivial,
the hereby demonstration of learning the stability diagram from data will aid selection
of cutting parameters to stabilize a process and improve the productivity potential.
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The computational cost for the case of learning process damping behavior is lower
still than for the case of bistable behavior, taking ~0.48 s for training and ~0.05 s for
testing, respectively.

5 Conclusion

Analyticalmodel-predicted stability diagrams often fail to guide stable cutting parameter
selection in praxis due to the assumptions the models make and due to the vagaries and
uncertainties in the inputs to the model. Since machining instabilities should be avoided,
this paper demonstrated successfully that the stability diagram can instead be learnt
from experimental data using a supervised Bayesian learning model. We successfully
quantified the learning accuracy of Bayesianmodel and tuned the two hyperparameters –
standard deviation of Gaussian likelihood distributions, and threshold of probability
indicating the stability contour. The tuned model has been shown to be consistent across
two different types of datasets gathered from emulated experiments in which the cutting
mechanics and dynamics involved non-linear behaviour and were different for both
datasets. This suggests that the learning model is agnostic to the underlying process
physics. This is the first such report in the literature of a machine learning model being
blind to potential nonlinearities in the cutting process. This is also the strength of the
learning model.

Since the very nature of the Bayes’ rule is that the posterior probability updates with
every new data point that is provided to the model, the analysis done in this paper can
inform future research to help the community move closer towards self-optimizing and
autonomous machining systems in which cutting parameter selection can be adapted
autonomously and in real-time based on predictions from a ML model that trains itself
directly from data, and captures all possible vagaries of its dynamics.
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