
Manufacturing Technology Today, Vol. 22, No. 2, February 2023 17

Technical Paper

Recovering cutting tool modal parameters from randomly sampled 
signals using compressed sensing

Harsh Singh Rajput, Mohit Law*

Indian Institute of Technology Kanpur, Kanpur, India 

A change in the modal parameters of cutting tools could signal tool wear, tool  
breakage, or other instabilities. The cutting process must be continuously monitored 
using vibration signals to detect such changes. Since tools vibrate with frequencies of 
up to a few kHz, continuous monitoring requires sampling at rates of tens of kHz to 
respect the Nyquist limit. Processing and storing such large data for decision making 
is cumbersome. To address this issue, this paper discusses the use of a compressed 
sensing framework that enables non-uniform random sampling at rates below the 
Nyquist limit. For cutting tools, we show for the first time using synthesized data that 
it is possible to reconstruct original signals from as few as 1% of the original data. 
We numerically test the method to characterize the influence of damping, noise, and 
multiple modes. Recovered modal parameters from the reconstructed signal agree 
with signals sampled properly. 
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1. Introduction

A change in the modal parameters, i.e., a change 
in the natural frequencies, damping ratios, and 
shapes of vibrations of cutting tools could signal 
tool wear, tool breakage, or cutting process 
instabilities (Iglesias et al., 2022). Since wear, 
breakage, and/or instabilities are detrimental, the 
cutting process must be continuously monitored 
using vibration signals to detect such changes. 
Since tools vibrate with frequencies of up to a few 
kHz, continuous monitoring requires sampling at 
rates of tens of kHz to respect the Nyquist limit. 
Processing and storing such large data for decision 
making is cumbersome. It is the aim of this paper 
to discuss solutions targeted at recovery of modal 
parameters from potentially temporally aliased 
signals, i.e., signals sampled below the Nyquist 
limit. Such recovery will make it possible to  
monitor the process without the problem of 
processing and storing large data.

Prior work from our research group has shown 
that it is possible to recover modal parameters 
from temporally aliased signals (Law et al., 2022; 
Lambora et al., 2022). However, the approach 

therein required signals to be sampled at least 
at two rates that were fractionally uncorrelated. 
Such an approach would not be easy to leverage 
for continuous monitoring applications. To address  
this issue, this paper discusses the use of a 
compressed sensing (CS) framework that enables 
non-uniform random sampling at rates below 
the Nyquist limit (Donoho, 2006; Candes et al., 
2006). By exploiting the sparse nature of vibration 
signals and the incoherence of randomly sampled 
measurements, CS helps reconstruction of proper 
signals using fewer samples. 

CS has been used successfully in structural 
monitoring of civil infrastructure (Yang & 
Nagarajaiah, 2015). Other related work discussed 
the use of CS techniques with video of vibrating 
structures (Martinez et al., 2020). They showed 
recovery of mode shapes even after removing 
up to 90% of frames from a uniformly sampled 
video. Related work (Candes & Wankin, 2008) 
discussed the minimum number of measurements 
required to successfully reconstruct a signal using 
CS. Though useful, they did not account for how 
damping and noise in the signals can potentially 
influence recovery. 

Since CS offers advantages, this paper discusses its 
use to recover modal parameters of cutting tools 
from temporally aliased signals. We demonstrate 
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the method on systems with one or more modes. 
We also test the method to characterize the  
degree of compression being influenced by  
damping and noise, respectively. Analysis  
presented herein is new, can be considered our 
main new technical contribution to the state-of-
the-art in condition monitoring of cutting tool 
systems.

Since the use of CS is still in its infancy, there 
exist no commercial hardware samplers that can 
do non-uniform random sampling. Though there 
exist some reports of prototypes of CS hardware 
samplers (Yazicigil et al., 2019), those too are 
not commercially available. As such, like others 
before us (Yang & Nagarajaiah, 2015; Martinez 
et al., 2020), we too will demonstrate the use of 
CS by randomly down-sampling data originally 
sampled at uniform rates. However, instead of 
down-sampling real measured signals, we will 
demonstrate the methods with synthesized  
signals that are representative of real cutting  
tool signals.

The remainder of the paper is organized as  
follows. Section 2 briefly outlines the theoretical 
framework for CS. We then discuss five different 
numerical case studies in Section 3 to characterize 
the degree of compression possible. This is 
followed by the main conclusions.  

2. Overview of the Compressed Sensing 
Method

This section provides an overview of the 
compressed sensing (CS) technique to reconstruct 
proper signals using very few measured samples. 
Methods presented herein are distilled from 
(Donoho, 2006; Candes et al., 2006). 

Consider a N×1 time series signal vector (f), which 
is properly sampled according to the Nyquist-
Shannon Sampling theorem. A N×N Fourier  
basis matrix (ψ) decomposes the time series  
signal into a N×1 frequency domain signal vector 
(c), also known as loading vector or coefficients  
of basis:

fN×1= ψN×N.cN×1       ..........(1)

The Fourier basis (ψ) in the form of a matrix 
can be obtained from a Fourier transform. The 
nature of loadings (c) is sparse in nature, which  
means that (f) can be characterized by few  
non-zero coefficients in the vector (c), as is evident 
from Fig. 1.

A few ‘M’ random values are chosen from the 
vector f, and stored in a measurement vector 
(b), such that M≪N. The indices of the random 
measurements chosen in b are stored in the form  
of a M×N dimension dictionary matrix (ϕ). 
Therefore, f, b and ϕ can be related as:

bM×1= ϕM×N.fN×1     ...........(2)

From Eq. (1) and (2), f can be eliminated to give the 
relation between b and c:

bM×1=[ϕM×N.ψN×N] cN×1    ...........(3)

Let AM×N= [ϕM×NψN×N], then the above equation 
can be treated as the following linear system of 
equations:

bM×1=[AM×N] cN×1     ...........(4)

Our aim is to reconstruct the time series vector 
f from a known measurement matrix (b), a 
known Fourier basis (ψ), and a known dictionary 
matrix (ϕ). Hence, in Eq. (4), b and A are known 
quantities and c is to be determined. As M≪N, this 
is an underdetermined linear system of equations.  
Eq. (4) will have infinitely many solutions for c, 
until we introduce another constraint for c. To get 
a unique solution for c, an additional constraint is 
introduced, to minimize the L1 norm of c. This is 
done to get a sparse solution of c, out of the infinite 
solutions possible by solving only Eq. (4).

Furthermore, there can be finite amount of 
noise in the real experimental signals, for which  
Eq. (4) along with the minimum L1 norm constraint 
for c, can be posed as the following basis pursuit 
denoising (BPDN) problem (Gill et al., 2011): 

min‖c‖1 , subject to ‖b-Ac‖2
2≤ δ,    ...........(5)

wherein δ controls the level of denoising which  
can be tuned. δ = 0, would mean no denoising. 

Fig. 1. The time series signal (f) can be decomposed 
into the sparse signal (c) in the frequency  

domain using a fourier transform. Most of the 
information in (c) has near zero values,  

while a few non-zero coefficients are present, 
characterised by a peak.
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We will keep δ = 0 for the entirety of this paper 
for the sake of generality. Hence, with δ=0,  
Eq. (5) becomes the basis pursuit problem  
(Yang & Nagarajaiah, 2015; Chen & Donoho, 1994): 

min‖c‖1 , subject to b=Ac   ...........(6)

Eq. (6) is a convex optimization problem. We solve 
it using the CVX module (Grant & Boyd, 2013) in 
MATLAB. Once c is obtained, f can be restored 
using Eq. (1).

Having provided an overview of the CS method,  
we next discuss its use in recovering modal 
parameters from synthesized data.  

3. Numerical Experiments

This section discusses five different numerical 
experiments to demonstrate recovery of modal 
parameters from signals randomly sampled  
below the Nyquist limit. In all cases, we use 
synthesized data which is representative of real 
cutting process signals. 

At first, we consider recovery for a signal 
characterized by one frequency component. This 
may be considered akin to forced undamped 
vibration response of a cutting tool at its natural 
frequency. The purpose of this analysis is to 
characterize the minimum data required to 
properly recover the natural frequency. This 
case is discussed in Section 3.1. Following this, 
in Section 3.2, we introduce varying levels of 
damping in the same signal (as in Section 3.1) to 
check the influence of damping on the maximum 
degree of compression possible for the signal. 
In the third case, discussed in Section 3.3, we 
characterize recovery for a cutting tool system 
with two modes, each with different damping. 
In the fourth experiment discussed in Section 
3.4, we demonstrate recovery and compression 
in the presence of noisy signals that are likely  
to occur during condition monitoring of real  
cutting processes. In the final case, discussed 
in Section 3.5, we perturb parameters from the 
system discussed in Section 3.3 to demonstrate 
that recovery works even when there is a change 
in system parameters. This case is representative 
of condition monitoring of cutting processes. 
Response signals discussed in Sections 3.2 – 3.5 
are typical of cutting tool signals when excited 
by inertial movements of structural members of  
the machine tool superposed with forced  
vibration response due to cutting process induced 
vibrations.     

For all cases, we investigate the degree of 
compression possible, which is defined herein as 
the ratio of original samples to random samples 
required for proper modal parameter recovery. 
To evaluate the degree of compression, a Monte-
Carlo approach is used (Metropolis & Ulam, 1949). 
Since, the sampling is random, the indices of 
random samples are generated using a random 
number stream in MATLAB. For every compression 
ratio of interest, the CS technique is run 200 times 
to generate 200 different random streams which 
are used for recovery. For any run within these 
200 runs, if the reconstructed signal is not able 
to recover the modal parameters obtained from 
the original uniformly sampled signal within a 
2% pre-set tolerance, the percentage of random 
measurements is increased with the least count of 
increment set to 1%. 

To extract modal parameters from all response 
signals, be it down-sampled data, or original 
properly sampled data, we use the Eigensystem 
Realization Algorithm (ERA) (Juang & Pappa, 1985). 
For additional details about the implementation 
of ERA, please see (Law et al., 2020; Gupta et 
al., 2020). All results are benchmarked against 
parameters extracted from uniformly sampled  
data that was originally sampled at rates respecting 
the Nyquist limit. 

3.1. Signal with a single mode without damping

Consider a non-decaying sinusoidal function 
oscillating with natural frequency ωn = 100 Hz, 
and that is sampled properly, with the sampling 
frequency being ωs = 1000 Hz. This signal is 
compressed, and the randomly sampled data is 
overlaid over the original signal in Fig. 2. And as 
is evident from the spectra in Fig. 2, even with 
random sampling at the rate of 1% of the original 

Fig. 2. (a) 1% random samples are taken from 
original time series signal and reconstructed using 
CS technique. (b) FFT spectra of the original and 

reconstructed signal (with only 1% of the  
original data) are shown.



Manufacturing Technology Today, Vol. 22, No. 2, February 202320

Technical Paper

data, the CS technique can recover the original 
frequency content. 

3.2. Signal with a damped single mode

Consider an underdamped single frequency signal 
with natural frequency ωn = 100 Hz and with 
damping (ζ) that could take on values between 0 
and 3%. When properly sampled, ωs = 1000 Hz. 
We run the CS algorithm for different values of 
damping and find the optimal compression ratio  
for each that results in proper recovery. An  
example of the original signal with ζ=0.16% is  
shown in Fig. 3. Also shown in the figure is the 
randomly sampled data at 6% of original rate. 
Recovery with this ratio results in a natural 
frequency estimate of ωn = 99.91Hz, and a damping 
ratio of ζ = 0.15%, i.e., a very good match with the 
original parameters. 

Since Fig. 3 only shows recovery for a signal with 
one damping ratio, we summarize recovery as it 
changes for different damping ratios in Fig. 4. And 
as is evident, the degree of compression reduces 
with increasing damping ratios. For the degree 
of compression of 5 or less, the number of data 
points in the randomly sampled data are greater 
than those required by the Nyquist limit. This 
suggests that when damping increases to > 1%, CS 
is not very effective. 

3.3. Signal with two damped modes

Consider an underdamped multimodal signal 
with natural frequencies of ωn1 = 100 Hz and ωn2 
= 250 Hz. Damping ratios for these are ζ1 = 0.16% 
and ζ2 = 0.32% respectively. When originally 
sampled, ωs = 1000 Hz. The amplitudes of both 
modes are assumed equal. For this system, we 
run the CS technique, and find that recovery is 
exact with 28% of the original signal. The original 
signal, the randomly sampled data, and their 
respective spectra are shown in Fig. 5. The natural 
frequencies and corresponding damping ratios 
of the reconstructed signal are ωn1 = 99.99 Hz, 
ζ1 = 0.14%; ωn2 = 249.69 Hz, ζ2 = 0.25%. We also 
checked for different degrees of compression, and 
in general observe that the error in recovering 
modal parameters increases with an increase in 
the degree of compression.   

3.4. Noisy signal with two damped modes

To investigate the influence of noise in the signal, 
we add Gaussian noise with different signal to 
noise (SNR) ratios to the same signal properties  

as in Section 3.3. Results with a SNR of 5 are  
shown in Fig. 6. With this noise level, using CS, 
we can recover modal parameters with 35% of 
the original data. The degree of compression for 
a signal with this level of noise is lower than a  
signal without noise, for which it was 28% - see 
section 3.3. 

Since Fig. 6 shows results for only one level of  
SNR, a summary for the possible degrees of 
compression changing with different levels of SNR 
is shown in Fig. 7. And as is evident, for lower SNR 

Fig. 3. (a) 6% random samples are taken from 
original time series signal and reconstructed using 
CS technique. (b) FFT spectra of the original and 

reconstructed signal are shown.

Fig. 4. Parametric study to show the influence of 
damping ratio on degree of compression of single 

mode signal. Original signals of 1s duration are 
considered to generate this plot.

Fig. 5. (a) 28% random samples are taken from 
original time series signal and reconstructed using 
CS technique. (b) FFT spectra of the original and 

reconstructed signal are shown.
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ratios, there is less compression possible than 
there is for higher SNR. However, beyond a SNR 
of 10, there appears to be no significant effect of 
white Gaussian noise on the maximum degree of 
compression possible for a typical signal. 

3.5. Signals with changing parameters

To investigate if CS can detect a change in system 
parameters during continuous monitoring of 
cutting tool vibration signals, i.e., a case for 
which the use of CS is intended, we assume that 

the system vibrates initially with parameters as 
discussed in Section 3.3, i.e., the signal has two 
modes with ωn1 = 100 Hz and ωn2 = 250 Hz, with 
their respective damping being ζ1 = 0.16% and ζ2 

= 0.32%. And during continuous operation, we 
assume that each of these parameters increase  
by 10% each, as shown in Fig. 8. We apply CS to  
this changed signal and find that we are able to 
recover the changed parameters with the same 
degree of compression with which we recovered 
the initial unperturbed system.

4. Conclusion

This paper demonstrated for the first time that 
it is possible to reconstruct original cutting tool 
vibration signals from as few as 1% of the original 
data using a compressed sensing framework. 
Modal parameters recovered from reconstructed 
signals were found to agree with those extracted 
from signals sampled properly. We presented 
systematic analysis to characterize how the degree 
of compression changes with damping levels, 
with multiple modes, and with noisy signals. We 
observed that for increasing levels of damping, the 
degree of compression reduces. We also observed 
that high levels of noise reduce the degree of 
compression possible. We further showed that 
recovery works even when there is a change in 
system parameters. 

Since compressed sensing was shown to work 
effectively, the framework hence extends itself 
nicely to condition monitoring applications in 
machine and cutting tool systems which can be 
done with far lesser data, making data processing, 
and storing easy. Further work is necessary to 
evaluate how compressed sensing can be applied 
to real signals for classifying them. 
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