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Machining instabilities are detrimental. model predicted stability charts help identify 
cutting parameters for stability. Since models disregard speed-varying cutting  
force characteristics and dynamics, charts fail to guide stable cutting in industrial 
praxis. This study shows how supervised neural networks can learn stability charts 
from data. The learning capacity of this machine learning model depends on the size  
of the training dataset, its train-test split, the learning rate, the activation function,  
the number of hidden layers, and the number of neurons in each layer. This is the 
first study to examine how hyperparameters influence learning machining stability  
diagrams. Learnings from a linear stability dataset are transferrable to nonlinear 
datasets, demonstrating the prediction model is physics-agnostic. Predictions  
accuracies of up to 97.2% were obtained. Since the data used to train the model 
includes all the vagaries and uncertainties of the cutting process, the results can inform 
self-optimizing and autonomous machining systems.
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1. Introduction

Machines vibrate under the action of cutting  
forces. Sometimes these vibrations grow to result 
in chatter instabilities that can damage the part, 
the tool, and elements of the machine. Instabilities 
must hence be avoided. Analytical model-
predicted stability charts can guide selection of 
cutting parameters to ensure stable processes 
(Altintas et al., 2020). Inputs to these models 
are the measured dynamics of the machine, the 
cutting force coefficients, and cutting strategies. 
Though these model-predicted stability charts 
have proved useful, since models seldom account 
for how coefficients change with speed and/or  
for how dynamics change with speed and position 
of the tool in the machine’s work volume, 
and since models make several linearizing  
assumptions, charts often fail to guide stable 
cutting in industrial praxis (Munoa et al., 2016). 
Since instabilities are detrimental, this paper will 
demonstrate learning the stability chart from 
experimental data using supervised machine 
learning (ML) models. Data that the model will 
use to learn stability will be cutting conditions at 
which instabilities are detected during machining. 
Since monitoring the machine’s states to detect 

chatter is possible with modern transducers and 
data acquisition systems, and since measured data 
includes in it all the vagaries and uncertainties 
associated with the cutting process, the learnt 
stability is expected to be more accurate, and 
hence more useful in guiding selection of stable 
cutting processes. 

Use of ML in the context of machine tools is not 
new. Research has successfully demonstrated 
the utility of learning from data to monitor the 
condition of tools and machines (Möhring et al., 
2020; Aggogeri et al., 2021), to identify trends in 
process forces (Vaishnav et al., 2020), to monitor 
and compensate thermal errors (Reddy et al.,  
2020; Liu & Du, 2021), to identify dynamics (Postel 
et al., 2020b; Liu & Altintas, 2021), to detect chatter 
(Tarng & Chen, 1994; Shi & Cao et al., 2020; Yesilli et 
al., 2020; Shi, Cao, Zhang & Chen, 2020; Kvinevskiy 
et al., 2020; Rahimi et al., 2021; Cornelius et al., 
2021; Unver & Sener, 2021; Wang et al., 2021),  
and in the context of the topic of interest of this 
paper, i.e., to learn the stability chart (Friedrich et 
al., 2017; Friedrich et al., 2018; Saadallah et al., 
2018; Denkana et al., 2020; Postel et al., 2020a, 
2020b; Cherukuri et al., 2019; Karandikar et al., 
2020; Chen et al., 2021; Bergmann & Reimer, 2021). 

Prior research on learning stability using ML 
models has discussed the use of artificial neural 



Manufacturing Technology Today, Vol. 22, No. 2, February 202330

Technical Paper

networks (ANN) (Friedrich et al., 2017; Friedrich 
et al., 2018; Saadallah et al., 2018; Denkana et al., 
2020; Postel et al., 2020a, 2020b; Cherukuri et al., 
2019), support vector machines (SVM) (Friedrich 
et al., 2017; Friedrich et al., 2018; Denkana et al., 
2020), k-nearest neighborhood (kNN) (Denkana  
et al., 2020), and Bayesian methods (Karandikar 
et al., 2020; Chen et al., 2021). Of these, some  
ML models can work with less data and hence can 
be trained fast, whereas others are data hungry, 
and hence are slower to train. Since most ML 
models become better at prediction with more 
and better-quality data, even if speed is traded for 
accuracy, since chatter has destructive potential, 
models that are accurate should be preferred  
even if they are slower. Since ANN models predict 
with good accuracy even though they generally 
require larger amounts of data, they have been 
preferred to learn stability (Friedrich et al., 2017; 
Friedrich et al., 2018; Saadallah et al., 2018; 
Denkana et al., 2020; Postel et al., 2020a, 2020b; 
Cherukuri et al., 2019), to detect chatter (Kvinevskiy 
et al., 2020; Rahimi et al., 2021), to monitor process 
forces (Vaishnav et al., 2020), and to monitor tool 
condition (Aggogeri et al., 2021). Seeing that most 
prior research on learning machining stability 
and using ML in the context of machine tools has 
preferred to use ANN models, this research too 
focuses its attention on ANN. 

In an ANN, there are inputs, which in this case are 
combinations of cutting conditions which result in 
chatter and not, and there are outputs, which in 
this case is a prediction about which of the inputs 
result in chatter or not. In that sense, it becomes 
a classification problem. Between the input and 
output layers, there are hidden layers. Each of those 
has neurons in them. Neurons in one hidden layer 
are connected to the ones in the next layer and 
the information flows forward through neurons in 
layers. Whether or not a particular neuron should 
be activated or not is decided by calculating a 
weighted sum and further adding bias with it. 
In neural networks, these weights and biases 
are updated by back propagation in an iterative 
manner. The rate at which weight’s update is 
called the learning rate. There can be many hidden 
layers, with many neurons in each. There can also 
be different ways to activate those neurons. There 
can also be different learning rates and different 
number of iterations. Some prior work (Cherukuri 
et al., 2019) has limitedly addressed how some 
of these hyperparameters influence prediction 
accuracy in learning a stability diagram. However, 
there is no report that systematically characterizes 
how all hyperparameters influence prediction. 

Furthermore, there is also report on how the size 
of input data, its train-test split, and distribution 
of different data classes influence prediction. It is 
the aim of this paper to present such systematic 
analysis with ANN to discuss its suitability for 
learning machining stability. Since the use of ANN 
and ML is growing, we believe our systematic 
analysis can further contribute to understanding 
the limitations and potential of ANN for learning 
machining stability.
       
Since the experimental pathway to gather large 
amounts of data that is needed to properly train 
an ANN is costly due to the destructive potential 
of chatter, most prior research on the use of 
ANN to learn stability has preferred to learn from 
data generated from analytical model-based 
simulations (Friedrich et al., 2017; Friedrich et 
al., 2018; Saadallah et al., 2018; Cherukuri et al., 
2019). Though some research used experimental 
data to train the ANN (Denkana et al., 2020; Postel 
et al., 2020a, 2020b) those studies did not report 
on the influence of hyperparameters and/or about 
the size, train-test split, or about the influence of 
data classification. To make learning as realistic as 
possible, this paper trains and tests the ANN using 
data obtained from emulations on an in-house 
developed hardware-in-the-loop (HiL) simulator 
that was built to study chatter (Sahu et al., 2020; 
Sahu & Law, 2022). Since the HiL simulator  
emulates cutting, data gathered from experiments 
on it can be used to train/test the ML model 
without having to resort to destructive chatter 
experiments The HiL simulator has a hardware layer 
approximating the machine and a software layer  
in which the cutting process is simulated. The 
closed-loop interaction between these layers 
emulates cutting processes, even those with 
nonlinearities in them. As such, we will also 
train the ANN to learn stability of processes with 
nonlinear force characteristics that result in  
regions of conditional stabilities (Sahu et al.,  
2021a) and for processes exhibiting the  
interesting process damping phenomena that 
results in an increase in stability in the low-speed 
region (Sahu et al., 2021b). 

Since measured/emulated data makes no 
assumption about the underlying physical 
mechanism responsible for chatter, the ML 
models to be developed herein will be shown 
to be agnostic to the process or to any potential 
nonlinearities in it. The aim is to fit a model to 
data to show that stability can be learnt for linear 
and nonlinear cutting processes, and that the 
ML model architecture for both cases can be the 
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same. We believe that this paper will be the first 
to demonstrate the use of ANN to learn stability  
of machining processes with potential 
nonlinearities. This is also our modest contribution 
to the literature. The aim of this work is to also 
present solutions that will help the community 
move closer towards self-optimizing and 
autonomous machining systems in which cutting 
parameter selection can be adapted autonomously 
and in real-time based on predictions from a ML 
model that trains itself on data that is gathered 
from continuously monitoring the process.  

The remainder of the paper is organized as 
follows. At first, in the Section titled ‘Gathering 
data for the ML model’, we briefly outline the 
data gathering phase of the study by describing 
emulations on the HiL simulator and discussing 
the resulting stability behavior for linear and 
nonlinear processes. This data is fed to an ANN, 
whose architecture is briefly overviewed in the 
Section titled ‘Overview of ANN’. For the case of 
linear stability, in the Section titled ‘Influence 
of hyperparameters on learning linear stability’ 
we present systematic analysis to characterize 
the influence of different hyperparameters and 
data on the prediction accuracy. Knowledge from 
that analysis is then deployed to learn stability 
for processes with nonlinear characteristics and 
for those with process damping. Those cases are 
discussed in the Section titled ‘Linear stability with 
nonlinear characteristics’. The main ‘Conclusions 
and outlook’ follow.  

2. Gathering Data for the ML Model

Experimental data necessary to train/test the  
ML model for it to learn the machining stability 
diagram were obtained from emulations on 
a hardware-in-the-loop (HiL) simulator. The 
hardware had a flexure that approximated a  
flexible workpiece, a shaker with its power  
amplifier that supplied a calculated cutting 
force, a force sensor that measured the force, an 
accelerometer that measured the response of 
the flexure, a Compact RIO controller with analog 
input and output modules, and a computer that 
connected the hardware and software layer via  
a LAN connection. The software layer ran on  
LabVIEW. It included data acquisition, filtering, 
regenerative cutting force calculation, real-
time plotting of time-series and frequency data, 
data logging for further post-processing, and a 
graphical user interface to perform controlled  
experiments. Details about the HiL simulator are 
available in (Sahu et al., 2020; Sahu & Law, 2022). 

Experiments on the HiL simulator to classify which 
of the combinations of depths of cuts and spindle 
speeds that resulted in chatter and not were 
carried out as follows. The flexure was perturbed 
by applying a static force on it. The depth of cut (b) 
was then increased in steps at a specified spindle 
speed (N) and the response was monitored to 
detect if the system was stable or not. This is much 
like the process of identifying the stability boundary 
during real cutting experiments. To distinguish 
between which combinations of depths of cuts  
and speeds result in chatter, force and response 
were monitored. When stable, the flexure was 
seen to respond to perturbation, with its transients 
slowly dying out. However, for the case of an 
unstable depth of cut, due to regenerative effects 
after the initial perturbation, the response x(t) 
was observed to grow with time and saturate at 
finite amplitudes of displacements and forces. The 
critical depth of cut for that case was recorded. 
These stability conditions correspond to the 
global unstable limits for the case of cutting with a  
process that has linear characteristics. For 
emulated cutting of steel with assumed linear  
force characteristics, the resulting data 
corresponding to the border of stability is shown 
in Fig. 1(a). Data shown in Fig. 1(a) was obtained as 
detailed in (Sahu et al., 2020). 

When the process has nonlinear force 
characteristics, there exist regions of conditional 
stabilities that are are characterized by the process 
being stable for small perturbations and unstable 
for larger ones for cutting at parameters within 
the conditionally stable regions. The procedure 
to find the global unstable limits in this case is 
the same as for the case of cutting with linear 
force characteristics. And, to find the global 
stable limits, i.e., to find the lower limits of the 
bistable regions, for every speed of interest, the 
depths of cuts were decreased in the same step 
size as they were increased. And the last but 
one depth of cut at which the finite amplitude 
instabilities disappear, was recorded as the 
lower limit of the bistable region. For emulated 
cutting of steel with assumed exponential force 
characteristics, the resulting data corresponding 
to the borders of the globally stable and unstable 
limits is shown in Fig. 1(b). Data shown in Fig. 1(b) 
was obtained as detailed in (Sahu et al., 2021a).

When the cutting process exhibits process  
damping due to interference of a worn tool’s flank 
face with a previously cut surface, the critical  
chatter-free depths of cuts at low-speeds are 
observed to be higher than those at high-
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speeds. This gain in stability was also successfully 
emulated on the HiL simulator (Sahu et al., 
2021b). Experimental data characterizing the 
stability boundaries for cutting with a process 
having linear force characteristics and exhibiting  
process damping is shown in Fig. 1(c). Data  
shown in Fig. 1(c) was obtained as detailed in  
(Sahu et al., 2021b).

As is evident from Fig. 1, stability behavior for all 
three cases is different. Differences arise due to 
the underlying cutting process mechanics and 
dynamics being different. The data size is also 
not the same for all three cases, with the case 
the linear force characteristics (Fig. 1(a)) having 
a total of 30 data points which is more than the  
case of the nonlinear force characteristics that 
has a total of 32 (16 each for global stable and 
global unstable case) data points (Fig. 1(b)) and/
or for the case of the process exhibiting process 
damping that has a total of 22 data points  
(Fig. 1(c)). Since the main idea of fitting a model 
to data is for the model to be agnostic to the 
data type, a comparison between the cases is not 
intended and/or recommended. What is however 
clear is that for the case with the nonlinear force 
characteristics there exists a clear bistable region 
with there being a globally stable boundary as 
well as a globally unstable boundary. This case will 
evidently need a ternary type of classification of 
the data with some data being stable, some being 
conditionally stable, and some being unstable. The 
other two cases, i.e., the case of the linear force 
characteristics and the case exhibiting process 
damping, the classification will be binary with 
some data being stable and some being unstable. 

Since training an ANN model may need more  
data than we have obtained from emulations on 
the HiL simulator, we synthesize the emulated 
data with more data. Since the region below the 
boundary is stable and above unstable, we add 
data points at depth of cut intervals of choice 
to pad the emulated data. In this manner, even 
though our emulated data has data points ranging 
from 9 to 42, we can generate data ranging from 
60 - 6000 to train/test our ANN. This allows us to 
systematically investigate the influence of data 
size on the prediction accuracy. More on how the 
synthesized data looks along with its train-test 
split is discussed in the Section titled ‘Influence of 
hyperparameters on learning linear stability’. 

3. Overview of ANN 

ANNs are learning algorithms inspired by the 
human nervous system (Gurney, 1997). It 
comprises of nodes, or neurons, constructed in 
layers and interconnected to replicate the human 
brain's learning capacity - see Fig. 2. These nodes 
perform simple mathematical calculations to 
imitate neuron activity - Fig. 3. 

This research employs this learning algorithm 
to predict chatter occurrence for a given pair of 

Fig. 1. Experimental data corresponding to unstable 
cutting conditions obtained from emulations  
on the HiL simulator. (a) data for the case of a  

process with linear force characteristics, (b) data for 
the case of a process with nonlinear characteristics,  

(c) data for the case of a process with linear 
characteristics exhibiting process damping.
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spindle speed and depth of cut denoted as 𝑥i⃗ .  
We follow a supervised learning model, i.e., 
the model leverages known input-output 
pairs for training. Training uses a two-stage 
iterative technique with forward and backward  
propagation to update parameters. During  
forward propagation, each neuron in each layer 
performs a simple linear mathematical operation 
on the inputs Oi⃗k-1 to get α, which is a function 
of weighted inputs and biases. This in turn is  
operated upon by an activation function to  
result in an output, Oj

k ,  which is the input for 
succeeding layers. The activation function  
activates neurons based on its relevance 
to model predictions. The neurons 
interact, and the output layer predicts  
the probability of a stable data point or not at  
the end of forward-propagation.

Since the learning is supervised, we compare 
the known result with the predicted results and 
compute the error using a loss function. We use 
categorical cross entropy function that is amongst 
the commonly used loss functions for multi class 
classification problems:

   ....(1)

wherein X= {(x⃗1,y1 ),….,(x⃗n,yn)} denotes training 
data with yi being the known class for an input 
vector x⃗i, θ denotes the parameters of the  
neural network, ŷi is the computed output 
of the neural network, and N represents the 
training batch size. Since the weights and biases  
influence the prediction made by the network,  
the error is also a function of weights and biases. 

To minimize the error, we use the gradient  
descent method and update parameters in a 
backward propagation sense:

                                       .............(2)

wherein θt represents the parameters of the  
neural network at tth iteration (epoch), and α 
denotes the user-defined learning rate. 

There are seven hyperparameters that affect 
the ANN's learning capacity. These include the 
number of layers, the number of neurons in each 
layer, the activation function, the learning rate, 
the data size, the test-train split, and the number 
of epochs. Weights and biases are estimated  
during training and are internal model parameters. 
These do not hence count as hyperparameters 
that are external to the model. The number of 
epochs are decided upon in a closed-loop feedback 
manner by comparing the model's performance 
improvement in every epoch to a pre-defined 
tolerance. Since the number of epochs is not fixed 
a priori, but the tolerance level is, epochs are  
counted as a hyperparameter. Systematic  
parametric analysis discussing the influence of  
each of these parameters on the learning capacity  
is discussed next.

4. Influence of Hyperparameters on Learning   
Linear Stability

This section discusses the influence of 
hyperparameters on learning linear stability. 
For the data size, we test with data sets of three  
orders: a set that has 60 data points, a second 
set that has 600 data points, and a third set that 
has 6000 data points. For each data set, we have 
two train-test splits in the ratio of 75-25, and 
60-40, respectively. These data sets with their  
respective splits are shown in Fig. 4. Though the 
experimentally emulated stability data was used 
to synthesize data for learning purposes, the 
experimental data is not used to train and/or  
test, and only the synthesized data is. The 
synthesized data was generated by adding data  
at uniform intervals of speeds and depths of cut, 
with the intervals being different for different 
sized data sets. Even though data was uniformly 
distributed, the distribution of data within a  
split is taken randomly to avoid clustering. The 
different classes of data, i.e., the boundary 
between stable and unstable data points that is to 
be learnt becomes starker with larger data.
 

Fig. 2. Basic structure of ANN.

Fig. 3. Mathematical operations within a  
neuron 'j' in layer 'k'.
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For each data set and split, we study the influence 
of three different activation functions. These 
include the often-used ReLU, sigmoid, and tanH 
functions. And, for each data set, its split, and 
activation function, we also investigate the 
influence of four different orders of learning 
rates, namely, 0.01, 0.001, 0.0001, and 0.00001. 
Furthermore, for every combination of data set 
and its split, and activation function and learning 
rate we investigate the influence of number of 

hidden layers and neurons in every layer. We vary 
the number of layers from 2 to 20 in steps of 1, and 
number of neurons in every layer from 32 to 512 
in steps of 64. Our choice of different levels/types 
of hyperparameters is informed by established 
practices in the use of ANN. 

Though we have conducted a detailed parametric 
and sensitivity analysis to characterize the 
influence of each hyperparameter, the analysis 

Fig. 4. Different data sets with different train-test splits. (a) 60 data points with a 75-25 split,  
(b) 60 data points with a 60-40 split, (c) 600 data points with a 75-25 split,  

(d) 600 data points with a 60-40 split, (e) 6000 data points with a 75-25 split,  
(f) 6000 data points with a 60-40 split.
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presented in the subsequent subsections discusses 
the hyperparameters in order of their influence 
on the learning capacity. As such, we first present 
results for how different activation functions 
influence learning, followed by the role that 
the learning rate plays. That analysis is followed  
by the role of the split in the data. For each case we 
treat the number of layers and number of neurons 
in each layer as dynamic parameters, i.e., we 
always show results with these parameters varying 
within their range of study. All analysis presented 
herein was conducted in TensorFlow (Abadi  
et al., 2015). All data used herein is posted on the 
open science framework (Shanavas, 2022) along 
with all source codes.

4.1. Accuracy changing with epochs

Prior to investigating the role of different 
hyperparameters influencing the learning capacity, 
we discuss herein a representative case for 
how the loss and accuracy change with epochs 
(iterations). To optimize the loss function given 
in Eq. (1), we use the stochastic gradient descent 
method. Weights and biases are updated in each 
epoch using a pre-defined tolerance level of a 
0.1% improvement as a stopping criterion over 
the previous 20 epochs. For a representative case 
of using the ReLU activation function for a dataset 
size of 600, with a train-test split of 75-25, and  
with a learning rate of 0.001, loss and accuracy 
changing with epochs are shown in Fig. 5. As is 
evident, there is an inverse relationship between 
the loss function and the accuracy. As the loss 
reduces over epochs – see Fig. 5(a), the accuracy 
improves – see Fig. 5(b). Fig. 5 shows results 
for the training and the testing data, and as is  
evident, results are consistent. Such analysis 
forms the basis of parametric analysis of other 
hyperparameters. 

4.2. Influence of the activation function

To characterize the influence of the three  
different activation functions on the learning 
capacity, we show representative results in Fig. 6  
for the data size being 600 and for the 75-25  
split, and with the learning rate being fixed at 
0.001. We vary the number of hidden layers and 
the number of neurons in them and report on  
the accuracy of the predictions. We fit a surface 
to the results and that fitted surface is shown 
in Fig. 6 for all three activation functions. As is 
amply evident, the ReLU activation function is 
more accurate than the sigmoid and/or the tanH 
function, reaching a peak accuracy of 95.45% 

as opposed to peak accuracies of 70.13% and 
72.73% for the sigmoid and the tanH functions,  
respectively. We also see that the number of 
layers and the neurons per layer both influence 
the accuracy. Similar observations were made  
for the different learning rates and with the  
data size and splits also being different, and  
since results were consistently better for the 
ReLU function than with the sigmoid and/or  
tanH functions, those results are not shown  
herein. For all further analysis on the influence  
of other hyperparameters, the activation function 
was taken to be ReLU.  

 Fig. 5. Variation of (a) Loss and  
(b) Accuracy with epochs.

Fig. 6. Fitted accuracy surface plot for different 
activation functions. Dataset size: 600,  

Learning rate: 0.001, and train-test split: 75-25.
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4.3. Influence of the learning rates and data  
   size

To characterize the influence of learning rates  
(LR) and data size on the learning capacity for 
varying levels of layers and number of neurons  
per layer, we show representative fitted surface 
results in Fig. 7 for a fixed activation function 
of the ReLU type and for the train-test split to  
be 75-25. Similar observations for were made of 
the 60-40 split, and hence those results are not 
shown herein. Results suggest that better accuracy 
is achieved with larger learning rates for when  

the data size is larger, and that for smaller sized 
data, a smaller learning rate results in better 
accuracy. We also observe that as the learning 
rates increase, the fitted surface's convex nature 
slowly becomes concave, and that the accuracy 
improves for when the number of layers is small, 
with the neurons per layer having a negligible 
effect. We also observe that larger data in  
general results in higher accuracies. Peak  
accuracy for the case of the large data set with a 
learning rate of 0.01 for the case of 2 layers and  
160 neurons in each was observed to be 97.20%. 
For the case of the medium sized data with a 
learning rate of 0.001 and with 5 layers and 
224 neurons in each, the peak accuracy was  
95.45%. And for the small sized data with a  
learning rate of 0.0001 and for the case of 2  
layers and 96 neurons in each, the peak accuracy 
was observed to be 77.78%. 

Our results suggest that analysis as is presented 
herein is necessary to make prescriptions about 
what combination of learning rate, data size,  
layers, and number of neurons in each will result 
in the best accuracy. Such systematic analysis for 
learning machining stability was missing from the 
literature. 

4.4. Influence of the train-test split within data 

To characterize the influence of the train-test split 
within data on the learning capacity for varying 
levels of layers and number of neurons per layer, 
we show fitted surface results in Fig. 8 for a  
fixed activation function of the ReLU type and for 
the learning rates that resulted in the best 
accuracies for different data sets. As is evident 
from Fig. 8, for the case of the data size being 60, 
it is difficult to infer which of the splits results in 
better accuracies since there is no clear trend 
of the accuracies for changing number of layers  
and number of neuros in each. This is likely due 
there being too little data to train the model 
properly. For the data size of 60, the peak accuracy 
for the 60-40 split is 79.31%, and for the 75-25 
split, it is 77.78%. Both these are low and not 
acceptable for a data learning model that seeks  
to predict machining stability behavior. The 
accuracy is higher for the larger data of 600 
and 6000, becoming 95.45% for the data set of  
600 for the split being 75-25, and 97.20% for the 
data set of 6000 for the split being 75-25. For 
these larger data sets there also appears to be a 
consistent trend which suggests that prediction 
accuracy degrades with an increase in the number 
of hidden layers. For the data set of 6000, it is 

Fig. 7. Fitted accuracy plots for different learning rates 
(a) dataset sized 60, (b) dataset sized 600, and  

(c) dataset sized 6000.  
All results are for the 75-25 train-test split.
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furthermore evident that since there is enough 
data to train the model with both levels of splits. 

Having systematically characterized the influence 
of different hyperparameters on the learning 
capacity for linear machining stability, we can draw 
the following inferences:

• The ReLU activation function results in better 
prediction accuracy than the sigmoid and/or 
the tanH functions.

• The choice of the learning rate depends on the 
data set under consideration, with larger data 
sets faring better with larger learning rates. 

• No significant improvement in prediction 
accuracy was observed for higher number of 
hidden layers. However, the number of neurons 
in the layers were sometimes observed to play 
a role, see Fig. 8 for example. 

• The train-test split of the data was found to be 
less important for when large data sets were 
used for training. 

• Prediction accuracy improves with increasing 
size of data, improving from a max accuracy 
of 95.45% for the case of 600 data points to 
97.20% accuracy for 6000 data points. This 
improvement may seem incremental, but 
small changes are meaningful if mistakes 
are costly, since getting the stability diagram  
wrong may result in incorrect selection 
of cutting parameters that may result in 
instabilities that can damage parts of the 
machine tool system. 

To check the generalizability of these inferences, 
we extend learnings from here to learn stability 
with nonlinear characteristics. 

5. Learning  Stability  With  Nonlinear 
Characteristics 

This section first discusses learning stability for a 
machining process exhibiting process damping 
followed by a discussion on learning stability  
for a process exhibiting bistable behavior. For 
analysis herein the data sets obtained from 
experiments on the HiL simulator is synthesized  
to be of the order of hundreds of data points, with  
the data size being 530 for the case of process 
damping and 434 for the process with bistabilities.  
We use a learning rate of 0.001 for both  
cases. The activation function is taken to be of  
the ReLU type. The train-test split is taken to be  
75-25. The choice of these hyperparameters is 
informed by our linear stability analysis for a  
data set that had a similar order (600 data points). 
For both cases we investigate the influence of 
changing number of hidden layers and number of 
neurons in each. 

5.1. Learning stability with process damping

The train-test split for this case is shown in Fig. 9(a) 
and the fitted surface of the prediction accuracy 
is shown in Fig. 9(b). And, as is evident, the peak 
prediction accuracy is observed to be 96.29%  
for the number of layers being 2 with 160 
neurons in each. We also observe the prediction  
accuracy to degrade with increasing number of 
layers. 

Fig. 8. Fitted accuracy plots for different  
train-test splits (a) dataset sized 60,  

(b) dataset sized 600, and (c) dataset sized 6000.
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Since process damping is an interesting 
phenomenon in which the absolute minimum 
stability limit improves for lower speeds while 
remaining unchanged for higher speeds – as is 
evident from Fig. 9(a), and since improvements 
are usually observed as the tool wear  
progresses, and since modelling the tool wear’s 
influence on stability is non-trivial, learning 
the stability diagram from data as has been 
demonstrated herein is useful to guide selection 
of cutting parameters to stabilize a process and to 
improve the productivity potential. 

5.2. Learning stability for a process exhibiting  
    bistable behavior

Processes exhibiting bistable behaviour are 
characterized by data points that are stable, 
conditionally stable, and unstable. The ANN 
model is accordingly updated to have ternary 
type of classifications. The train-test split for this 
case for all classes of data is shown in Fig. 10(a) 
and the fitted surface of the prediction accuracy 
is shown in Fig. 10(b). And, as is evident, the 
peak prediction accuracy is observed to be 
94.50% for the number of layers being 2 with 160  
neurons in each. Interestingly, in this case do not 

see as strong a trend of the accuracy degrading 
with increasing number of hidden layers as we 
did for the case of learning process damping,  
especially so when the number of neurons in one 
layer are low. However, in this case too we can 
conclude that there is no real benefit in increasing 
the number of hidden layers and neurons  
in those layers.  

Since bistabilities are characterized by the process 
being stable for small perturbations and unstable 
for larger ones, learning this behaviour from data 
can guide selection of cutting parameters to lie 
outside these zones of conditional instabilities. 
Moreover, since bistabilities occur due to 
nonlinearities in cutting force characteristics,  
which can be difficult to identify and/or model, 
and since the data learning model used herein is 
shown to be agnostic to the underlying causes of 
the observed bistable behavior, and since it is still 
able to learn that bistable behavior, these results 
are also useful. 

Results discussed in this section show that data 
learning models can learn stability for cutting 
processes exhibiting process damping and can  
also learn bistable behaviour for cutting processes 
with nonlinear force characteristics. These  

Fig. 9. (a) Data used to learn stability with process 
damping, (b) Fitted surface showing prediction 

accuracy of the ANN model. 

Fig. 10. (a) Data used to learn bistable behavior,  
(b) Fitted surface showing prediction accuracy  

of the ANN model. 
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reports are our modest contribution to the state-
of-the-art on using data learning models to learn 
machining stability behavior.  

6. Conclusions and Outlook 

Since machining instabilities should be avoided,  
and since analytical model-predicted stability 
diagrams often fail to guide stable cutting 
parameter selection in praxis due to the 
assumptions the models make and due to the 
vagaries and uncertainties in the inputs to the 
model, this paper demonstrated successfully 
that the stability diagram can instead by learnt 
from experimental data using a supervised  
neural network. Systematic analysis was conducted 
to test for the learning capacity of the model is 
influenced by its hyperparameters. Though our 
investigations suggest that hyperparameters 
must be separately tuned for each data set type, 
we observed in general that the ReLU activation 
function results in better prediction accuracy than 
the sigmoid and/or the tanH functions that for all 
data set types. We also found that the choice of 
the learning rate depends on the data set under 
consideration, with larger data sets faring better 
with higher learning rates. We also observed 
that there was no significant improvement in  
prediction accuracy for higher number of hidden 
layers. However, the number of neurons in the 
layers were sometimes observed to play a role.  
We also found that for larger data sets the train-
test split did not play much of a role. And, though 
we found the prediction accuracy to improve 
marginally with increasing the size of data, we  
argue that small changes are meaningful since 
mistakenly guiding wrong cutting parameter 
selection can be costly due to the destructive 
nature of chatter.

Our observations were found to be consistent 
across three different types of datasets gathered 
from emulated experiments, suggesting that 
the learning model is agnostic to the underlying 
process physics. This is the first such report 
in the literature of a machine learning model 
being blind to potential nonlinearities in the 
cutting process. This is also the strength of the 
learning model. Such analysis can inform future  
research to help the community move closer 
towards self-optimizing and autonomous 
machining systems in which cutting parameter 
selection can be adapted autonomously and 
in real-time based on predictions from a ML  
model that trains itself on data that is gathered 
from continuously monitoring the process.
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