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Modal analysis of machine tools involves estimating natural frequencies, damping ratios, and mode 
shapes from the vibratory response of the machine tool. Usually, modal hammers and shakers are used 
to excite, and accelerometers or laser vibrometers are used to measure the response. Though these 
procedures have become routine, sometimes the use of accelerometers can result in mass-loading that 
distorts the response, and though laser vibrometers are non-contact, their use is precluded by their 
high costs. To counter these issues, vision-based modal analysis methods have emerged as a viable 
and promising alternative. The spatiotemporal response is estimated by treating every pixel in every 
frame in the video of the vibrating machine as a motion sensor. Image processing schemes leveraged 
from developments in allied fields are then used to register motion from video. The method is non-
contact, full field, and only needs a camera and post-processing on a computer, and as such, it offers 
advantages over the traditional measurement methods. Since vision-based methods are potentially 
paradigm-shifting, this paper reviews the recent progress to contextualize the prospects of the method. 
The review includes discussions on selection considerations of cameras and acquisition parameters, on 
using markers and the machine’s own features to register motion, on the efficacy of different motion 
registration schemes, and workarounds for when motion is spatiotemporally aliased. The paper con-
cludes by discussing challenges and prospects related to motion synchronization, measuring speed and 
time-varying dynamics, and technological trends that may aid the adoption of the method.
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1. INTRODUCTION

The cutting process excites the machine tool and makes it vibrate. Since vibrations can 
damage elements of the machine tool, it is important to characterize how the machine 
vibrates prior to cutting. Modal analysis helps characterize machine tool vibrations by 
estimating natural frequencies, damping ratios, and mode shapes from the vibratory 
response of the machine tool system. Usually, modal hammers and shakers are used 
to excite, and accelerometers or laser vibrometers are used to measure the response. 
These procedures have become routine (Okubo et al., 1982; Brown and Allemang, 
2007; Iglesias et al., 2022). However, the use of accelerometers can sometimes result 
in mass-loading, which distorts the response, and though laser vibrometers are non-
contact, their use is precluded by their high costs. Shape analysis also requires that 
the actuator or the response transducer(s) be moved around a measurement grid. This 
takes time and requires sophisticated multi-channel data acquisition hardware. To ad-
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dress these issues, vision-based modal analysis methods have emerged as a viable and 
promising alternative.

In vision-based measurements, the spatiotemporal response is estimated by treat-
ing every pixel in every frame in the video of the vibrating machine as a motion sensor. 
Image processing schemes leveraged from developments in allied fields are then used 
to register motion from video. The method is non-contact, full field, and only needs a 
camera and post-processing on a computer, and as such, it offers advantages over the 
traditional measurement methods. Since vision-based machine tool vibration measure-
ment methods are potentially paradigm shifting, this paper reviews the recent progress 
to contextualize the prospects of the method.

The use of image processing and computer vision techniques are not new to machine 
tools. Prior uses range from monitoring tool wear and inspecting workpiece quality 
(Kurada and Bradley, 1997; Dutta et al., 2013; Singh et al., 2023), to in situ monitoring 
of machining processes (Guo et al., 2015; Raizada et al., 2024), to monitoring thermal 
growth (Vogl et al., 2023), to vision-based machine tool metrology (Mori et al., 2023; 
Verma et al., 2024). There are excellent papers reviewing the progress in some of these 
areas, though there exists no review of vision-based machine tool vibration measure-
ments. Additionally, there are some seminal review papers on vision-based vibration 
measurements and modal analysis of civil infrastructure (Feng and Feng, 2018; Spen-
cer et al., 2019; Beberniss and Ehrhardt, 2017; Baqersad et al., 2017), but since civil 
infrastructure vibrates with lower frequencies and larger amplitudes than elements of 
machine tools, those methods and their findings are not of direct relevance to machine 
tools, which can vibrate in frequencies ranging from a few Hz to a few kHz and with 
small and micrometer level motion.

Vision-based modal analysis of machine tool systems is still in its nascency, with 
only a few research groups reporting their findings on the topic. Since the method holds 
much promise, this paper aims to: (i) review the significant progress, and (ii) outline 
challenges and discuss prospects of the method.

To keep the review focused, only literature in which vision-based methods have 
been used to estimate machine tool vibratory motion are reviewed. In perusing the 
related literature, 16 such papers were identified. These date back to 2018, i.e., most 
are fairly recent. Of these, 11 are authored by the author himself (Law et al., 2020, 
2022; Gupta et al., 2021; Gupta and Law, 2021; Lambora et al., 2022; Nuhman et al., 
2022; Raizada and Law, 2023; Singh and Law, 2023; Rajput et al., 2023; Rajput and 
Law, 2024; Raizada et al., 2024). The others are authored by groups working in Hun-
gary (Berezvai et al., 2018), Sweden (Yanamadala and Muralidharan, 2021), Japan 
(Hunag et al., 2022), Poland (Czyzycki et al., 2021), and China (Zheng et al., 2023). 
Though broadly concerned with estimating vibratory motion, different groups have 
estimated the motion of different elements of the machine tool system. There are also 
differences in the hardware used, in acquisition parameters, in using markers and 
features of the vibrating artifact itself to track motion, and in the choice of the image 
processing scheme used to register motion. Since each of these influences registered 
motion and modal parameters extracted from that motion, and since vision-based 
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methods are fast evolving, a review of the progress made thus far is thought to be 
timely and necessary.

The remainder of the paper is structured as follows. First, in Section 2, a general 
overview of vision-based modal analysis is provided. Section 2 also discusses the dif-
ferences between different approaches. Section 3 details the different methodologies to 
acquire and register motion. Section 4 discusses representative results. Section 5 out-
lines some of the challenges that are yet to be addressed and discusses prospects of 
vision-based modal analysis, including technological trends in hardware. The paper is 
concluded in Section 6.

2. OVERVIEW OF VISION-BASED MODAL ANALYSIS

This section overviews the general procedure for registering motion and extracting 
modal parameters from that motion. Figure 1 shows this overview. First, considerations 
for cameras, illumination, background, and markers are discussed. This is followed by 

FIG. 1: Overview of the procedure for vision-based modal analysis
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discussions on typical experimental setups, including how to excite, how to synchronize 
motion with inputs, and hot to register motion using image processing schemes. Finally, 
the extraction of modal parameters is discussed.

2.1 Selection Considerations for Cameras

Assuming that the range of natural frequencies of the elements of the machine tool to 
be measured are known a priori along with their expected vibration amplitudes, suit-
able cameras can be selected. This selection must ensure that the frame rate satisfies the 
Nyquist criterion, i.e., the camera speed is at least twice the highest natural frequency 
of interest to be measured. Likewise, the selection of the camera and the lens must also 
ensure that motion is spatially resolved, i.e., the resolution is sufficient enough such 
that the motion magnitude spans two or more pixels (Reu et al., 2015). However, since 
it may not always be possible to select cameras with sufficient speeds and resolutions 
to ensure motion is spatiotemporally well resolved, methods to register motion in such 
cases are discussed separately in Section 3.

Different cameras and acquisition parameters used by different groups are listed in 
Table 1. The table also lists the pixel pitch in µm. As is evident from the table, cameras 
used include everyday use smartphone cameras recording motion at 30 frames per sec-
ond (fps), 480 fps, and 960 fps at resolutions ranging from 720 × 1280 to 1080 × 1920 
pixels (Gupta and Law, 2021; Yanamadala and Muralidharan, 2021; Singh and Law, 
2023), medium speed cameras recording motion ranging from 1000 Hz to 5000 Hz with 
resolutions ranging from 600 × 800 to 720 × 1280 (Law et al., 2020, 2022; Huang et 
al., 2022), respectively, and high-speed cameras recording motion up to 16000 Hz with 
resolutions in the range of 288 × 3840 (Berezvai et al., 2018; Czyzycki et al., 2021). The 
pixel pitch varies from 1.3 µm to 197 µm. These differences are due to the measured 
artifact in each case being different and vibrating at different frequencies and with differ-
ent amplitudes, and the camera acquisition parameters (frame rate and resolution) also 
being different.

2.2 Illumination and Background Considerations

Since most image processing-based motion registration schemes use pixel intensities 
and their gradients to track if the artifact being recorded is moving, it is important to 
appropriately illuminate the vibrating element. Ideally, to avoid flickering of alternating 
current powered lights at supply frequency or its harmonics, such as the case when using 
fluorescent lamps that use core-coil magnetic ballasts, experiments must be conducted 
under natural conditions. However, since equipment is almost always housed indoors, 
DC lights are recommended. If and when possible, these should be with adjustable lu-
minance and gains. A summary of different illumination methods is also presented in 
Table 1. Furthermore, to minimize the influence of background noise and to increase 
the contrast of the artifacts being recorded, it is recommended to use whiteboards in the 
background of the element being recorded.
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2.3 Tracking Markers or the Machine’s Own Features

Markers placed on the object whose motion is being tracked help in sharper intensity 
gradients that make motion registration with image processing schemes easier. Hence, 
some studies have used markers (Yanamadala and Muralidharan, 2021; Huang et al., 
2022). However, since the artifact being tracked is at times too small to place markers 
on, such as when tracking the cutting edge of a vibrating tool or the edge of a thin wall, 
then the features of the objects themselves are tracked to register motion (Law et al., 
2020, 2022; Gupta et al., 2021; Gupta and Law, 2021; Lambora et al., 2022; Nuhman et 
al., 2022; Raizada and Law, 2023; Rajput et al., 2023; Rajput and Law, 2024; Raizada et 
al., 2024; Berezvai et al., 2018; Zheng et al., 2023). A summary of different studies using 
different features and/or markers is listed in Table 1.

2.4 Typical Experimental Setups

Five representative experimental setups used by different research groups are shown 
in Fig. 2. The setups show the use of different cameras and light sources. The setup 
shown in Fig. 2(a) is to record the motion of a vibrating end mill. The setup shown 
in Fig. 2(b) is to record motion of a slender boring bar. The setup shown in Fig. 
2(c) is to record the motion of a thin workpiece wall. The setup shown in Fig. 2(d) 
is to record the motion of a wire. The setup shown in Fig. 2(e) is to record the mo-
tion of a grooving blade using a smartphone. In all of these setups, the camera can 
only record in-plane motion of the vibrating object. Since these artifacts can also 
vibrate out-of-plane, the setups are changed and indexed as necessary to also record 
out-of-plane motion. There are no reports of using stereo vision with two or more 
cameras to simultaneously record in- and out-of-plane motion. More on this aspect 
is discussed in Section 5, which outlines the challenges and prospects of vision-
based methods.

2.5 Excitation and Synchronizing Response with Input Force

In general, like most modal analyses of machine tool systems (Iglesias et al., 2022), 
for vision-based modal analysis, the preferred method of exciting the system is to 
use modal hammers. The transient response is then recorded using cameras. How-
ever, some researchers have preferred piezoelectric-based forced excitation (Huang 
et al., 2022). There is also one report of exciting the system using the cutting pro-
cess itself and recording the motion of the vibrating tool to detect if the tool vibra-
tions grow to result in large amplitude chatter vibrations (Berezvai et al., 2018). A 
summary of different excitation methods used by different groups is summarized in 
Table 1.

In addition to the identification of modal parameters, another aim of modal analy-
sis is to construct frequency response functions (FRF) in terms of their receptances, 
i.e., the frequency-dependent ratio of displacements to forces. This FRF requires 
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that the input excitation force be measured and synchronized with the response. This 
is routine enough with traditional modal analysis procedures that use hammers and 
accelerometers in which the acceleration measurement is triggered when the input 
force (voltage) reaches a triggering threshold. However, since vision-based modal 
analysis is new, and since not all cameras can be triggered to start recording when 
the input force (voltage) reaches some threshold, the measured response is usually 
not synchronized with the input. As such, the construction of FRFs becomes dif-
ficult. Workarounds for this have been attempted by some groups using output-only 
modal analysis methods with structural modifications (Law et al., 2020). Table 1 
summarizes which of the research groups attempted synchronization and the method 
of doing so.

FIG. 2: Four representative experimental setups to record video of machine tool systems. (a) 
Setup to record video of an end mill (reprinted from Gupta et al. with permission from Elsevier, 
copyright 2021). (b) Setup to record video of a slender boring bar (reprinted from Gupta et al. 
with permission from Elsevier, copyright 2021). (c) Setup to record video of a thin wall (re-
printed from Czyzycki et al. that was published as open access under the Creative Commons CC 
BY 4.0 license). (d) Setup to record video of a wire (reprinted from Zheng et al. with permission 
from Elsevier, copyright 2023). (e) Setup to record video of a grooving blade (reprinted from 
Gupta et al. with permission from Elsevier, copyright 2021).
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2.6 Image Processing to Register Motion

Once the video of the vibrating artifact has been recorded, to register motion from 
that video, first the video is decomposed to its individual frames and converted to 
greyscale. Then, since the field of view is usually larger than the edges of the ob-
ject whose motion must be tracked, all frames are cropped to retain only the region 
of interest. These pre-processing steps remain the same for all motion registration 
schemes used by different research groups. However, the method of motion extrac-
tion can differ. The 16 papers reviewed report 20 different image processing schemes 
to extract motion. These vary from a binary method (Berezvai et al., 2018), to the 
use of commercial motion capture software (Czyzycki et al., 2021), to the use of one 
of the many edge detection and tracking schemes (Law et al., 2020, 2022; Gupta et 
al., 2021; Gupta and Law, 2021; Lambora et al., 2022; Nuhman et al., 2022; Raizada 
et al., 2024; Hunag et al., 2022; Zheng et al., 2023), optical flow-based schemes 
(Gupta and Law, 2021; Nuhman et al., 2022; Raizada and Law, 2023; Raizada et al., 
2024), the use of digital image correlation (DIC) (Gupta and Law, 2021; Raizada et 
al., 2024), the use of particle image velocimetry (PIV) (Raizada et al., 2024), object 
tracking using OpenCV’s machine learning algorithms (Yanamadala and Muralid-
haran, 2021), and the use of deep learning based on convolution neural networks 
(Raizada and Law, 2023; Rajput et al., 2023; Raizada et al., 2024). Each scheme has 
its merits and demerits, with some being able to register small and subpixel level mo-
tion, some being robust to noise and illuminations, while others are more sensitive 
to acquisition parameters. A detailed review of each of these methods is discussed in 
Section 3. A summary, however, of which research group preferred which scheme is 
presented in Table 1.

2.7 Extracting Modal Parameters and Benchmarking

Modal parameters can be extracted from the registered motion using any of the stan-
dard system identification techniques. In some cases, since the response is dominated 
by a single mode, some research groups simply performed a fast Fourier transform 
(FFT) of the response to obtain the natural frequency of vibration and used the loga-
rithmic decrement method to obtain an estimate of damping (Gupta and Law, 2021; 
Yanamadala and Muralidharan, 2021; Huang et al., 2023; Zheng et al., 2023). In other 
cases, when there were multiple modes in the system, researchers preferred the use 
of the eigensystem realization algorithm (ERA) (Law et al., 2020, 2022; Gupta et al., 
2021; Gupta and Law, 2021; Lambora et al., 2022; Nuhman et al., 2022; Raizada et al., 
2024). The ERA is an established and robust time-domain method of modal parameter 
extraction. A summary of different preferred modal parameter extraction methods is 
presented in Table 1.

In all cases, motion and/or modal parameters extracted from that motion were 
benchmarked with results obtained from using accelerometers (Law et al., 2020, 
2022; Gupta et al., 2021; Gupta and Law, 2021; Lambora et al., 2022; Nuhman et al., 
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2022; Raizada et al., 2024; Zheng et al., 2023), capacitance sensors (Huang et al., 
2022), laser sensors (Czyzycki et al., 2021), or laser vibrometers (Yanamadala and 
Muralidharan, 2021). A summary of different methods to benchmark is included in 
Table 1.

3. METHODOLOGIES FOR VISION-BASED MODAL ANALYSIS

Having provided an overview of the procedures for vision-based modal analysis, and 
having discussed the considerations for the selection of hardware, acquisition param-
eters, motion registration schemes, and modal parameters extraction methods, this sec-
tion details the key methods to address motion that are potentially spatiotemporal aliased 
followed by a detailed discussion on the workings and (de)merits of the different image 
processing schemes.

3.1 Spatiotemporal Aliasing

Natural frequencies of vibration of different elements of the machine tool system range 
from the tens of Hz to a few kHz. Amplitudes of vibrations at each of these natural 
frequencies range from a few µm to tens of µm, with further spatial variation of ampli-
tudes for every mode shape. To correctly estimate frequencies and amplitudes, there is 
a need to use high-speed cameras with high resolutions. Such cameras are expensive. 
As such, some research groups have used medium- and low-speed cameras (Gupta and 
Law, 2021; Law et al., 2022; Lambora et al., 2022; Nuhman et al., 2022; Raizada et al., 
2024). Regardless of the type of camera, since all cameras trade speed for resolution, 
it is likely that motion can become temporally aliased, spatially aliased, or worse still, 
both. Hence, methods to address the potential temporal aliasing problem are first dis-
cussed, followed by methods to measure small and subpixel motion that can address the 
potential spatial aliasing problem.

3.1.1 Addressing Temporal Aliasing

There are three different reported methods to address the temporal aliasing problem. All 
assume that the video was recorded with the per-pixel resolution being small enough 
such that the motion was spatially well-resolved. The first method used the folding prop-
erties of aliased signals (Law et al., 2022; Lambora et al., 2022). The second used the 
compressed sensing technique (Rajput and Law, 2024), and the third method used deep 
learning to up-sample aliased video to rates that respect the Nyquist criterion (Rajput et 
al., 2023).

The method that used the folding properties of aliased signals found the actual 
natural frequencies by sampling at two different and fractionally uncorrelated sub-
Nyquist rates and using notions of set theory to find intersections between different 
folded signals. The method was tested for its robustness to noise and was found sat-
isfactory when the signal-to-noise ratio was at least 10. The method was found suit-
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able to identify multiple modes. The method also addressed the issue of observations 
within folds not being unique by recommending additional sampling at rates that were 
further fractionally uncorrelated to the first two sets. Extensive numerical experiments 
were performed, and those were used to instruct video recordings of end mills to find 
true natural frequencies of the end mill from the aliased video. Though the method 
works, since it requires additional measurements and/or requires down-sampling of 
the original video at fractionally uncorrelated rates to the original signal, the method 
is cumbersome.

The second method leveraged developments in the compressed sensing technique 
(Donoho, 2006; Candes et al., 2006). Compressed sensing enables non-uniform random 
sampling at sub-Nyquist rates and leverages sparse structures of signals to allow for 
exact recovery of signals that are not aliased. Since compressed sensing required video 
to be randomly sampled at the time of acquisition, and since existing camera hardware 
does not allow for this yet, the method demonstrated modal parameter recovery from 
motion registered from video that was randomly down-sampled at non-uniform rates 
from video that was originally properly and uniformly sampled (Rajput and Law, 2024). 
It was shown that for a machine tool system characterized by a single mode, recovery 
was exact with as few as ~ 11% randomly sampled frames of the originally sized video, 
and that for a system with two modes, ~ 40% randomly sampled frames of the original 
video were necessary.

The third method that used deep learning works by generating an arbitrary num-
ber of intermediate frames between two consecutively recorded frames from video 
that may be spatiotemporally aliased to form spatially and temporally coherent video 
sequences, which estimates motion from that interpolated video. The method was 
based on the Super SloMo scheme, which is based on a convolution neural network 
(CNN) architecture (Jiang et al., 2018; Paliwal, 2018) to learn optical flow from 
a pair of images. Generating intermediate frames between two frames is premised 
on the assumption that if a pixel in the frame being generated at any time instant is 
visible, it is most likely also visible in at least one of the two input image pairs that 
were used to generate the intermediate frame. And since all pixels in every frame of 
a video sequence are virtual sensors, the notion of a change in light intensity of one 
pixel from one frame to the next was used to estimate the motion of the artifact be-
ing recorded. And, since it is likely that motion from up-sampled video may contain 
frequency content other than the natural frequencies of vibration, new and simple 
ways to deduce the real modes from observations from several up-sampled videos 
were also presented. The method was illustrated with aliased video of end mills and 
was found to work satisfactorily.

3.1.2 Addressing Spatial Aliasing

Several fixes exist to avoid spatial aliasing when registering small, subpixel-level mo-
tion of vibrating cutting tools. These include software-based image processing schemes 
as well as hardware-based ones.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

JFV-52199.indd               109                                           Manila Typesetting Company                                           04/15/2024          07:01AM



Journal of Flow Visualization & Image Processing

Law110

Within the family of software-based schemes, the simplest is to use intensity- and 
phase-based optical flow schemes (Nuhman et al., 2022) that are inherently capable 
of registering subpixel motion. The per-pixel resolution of these methods is governed 
by the camera’s intensity depth in bits (Javh et al., 2017). For example, with an 8-bit 
intensity depth camera, the pixel intensity can take any value between 0 and 255 
( )2 2568 =  to result in ≈ 0 004 1 255. ( / ) pixel-displacement resolution. Likewise, with a 
12-bit intensity depth camera, the pixel intensity can take any value between 0 and 
4095 ( )2 4096612 =  to result in � � �2 4 10 4.  pixel-displacement resolution. And, since 
the pixel size is typically of the order of tens of µm, the pixel resolution becomes 
sub-µm.

Aside from the optical flow-based schemes, small and subpixel-level motion has 
also been reported to be estimated using the simple edge detection and tracking scheme. 
Even though the edge method is not strictly a subpixel-level motion registration method, 
since the method averages the spatial location of the edge over several pixels within the 
region of interest, it can sometimes register motion smaller than the pixel size (Gupta et 
al., 2021).

In addition to classical image processing schemes, though the DIC- and PIV-based 
schemes are capable of estimating small and subpixel-level motion, these schemes fare 
better when there are markers that can be correlated. Also, since most research on vi-
sion-based modal analysis has not used markers, those schemes did not fare well (Gupta 
et al., 2021; Raizada et al., 2024).

Recent work has also shown that deep learning based on the use of CNNs is ca-
pable of estimating motion that may potentially be spatially aliased (Rajput et al., 2023; 
Raizada et al., 2024). Interestingly, small subpixel-level motion was estimated more 
easily when the CNN was trained on a publicly available dataset of flying inanimate 
objects (Raizada et al., 2024), as opposed to training the CNN on videos of tools with 
small subpixel-level motion (Raizada and Law, 2023).

Other than software-based methods, the other method to avoid the issue of spatial 
aliasing is to use proper lenses and camera accessories to increase magnification to make 
the per-pixel size smaller than the expected amplitude of motion, as has been done and 
reported in Nuhman et al. (2022). In this hardware-based method, clever combinations 
of extension tubes and spacers between the camera and a reverse-mounted lens help re-
duce the pixel size. By moving the lens away from the body, the extension tube adjusts 
the focal point and allows focusing on subjects closer to the camera, thus magnifying 
the image. Also, since these tubes contain no optical elements, they do not distort the 
image. Further magnification was achieved by simply reversing the lens, which reverses 
the optics and results in a change in focal length. Though there is a loss of depth of field 
with these setups, and though less light falls on the image sensor, the hardware fixes 
were shown capable of bringing the pixel size down from 83 µm. obtained with a simple 
18–55 mm lens. to 1.3 µm with the use of three extension tubes placed in between the 
camera and the same reverse-mounted lens. A summary of the magnification potential 
with different combinations of tubes and lenses is reproduced from Nuhman et al. (2022) 
in Fig. 3.
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3.2 Detailed Overview of Image Processing Schemes

This section reviews the different image processing schemes used to register the motion 
of machine tool systems. Discussions include procedures for each, as well as comments 
on the (de)merits of each scheme.

FIG. 3: Summary of different experimental configurations using extension tubes and a reverse 
mounted lens (reprinted from Nuhman et al. with permission from Elsevier, copyright 2022)
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3.2.1 Edge Detection and Tracking

Of the 16 papers reviewed on vision-based vibration monitoring, 10 are preferred 
edge detection and tracking schemes. This is likely due to this being amongst the 
simplest techniques to estimate motion from video. Though this is the preferred 
method, different groups have used different methods to register edges. Methods can 
be broadly classified into two types based on the order of derivative used to obtain 
the gradient. In the search-based types, a first-order derivative is used to compute 
gradients, and in the zero-crossing method, a second-order derivative is used to 
compute gradients.

Search-based methods use kernels convolved with the pixel intensities to esti-
mate intensity gradient magnitudes and directions to signal the presence of edges. 
These are signaled when predefined thresholds for intensities are reached. Usually 
used kernels are of the Roberts’ type, the Sobel type, or the Prewitt type (Gupta et 
al., 2021). Differences between these are due to their different sizes and the different 
weights assigned to every element with the kernel. Due to these differences, differ-
ent kernels fare differently in correctly estimating edges. The choice of appropriate 
thresholds also changes with different kernels. Since lower thresholds detect more 
edges and are susceptible to noise, whereas higher thresholds may miss subtle edges, 
the choice of a single threshold is non-trivial. As such, the preferred edge detection 
scheme has become the Canny edge detector (Law et al., 2020, 2022; Gupta et al., 
2021; Gupta and Law, 2021; Lambora et al., 2022; Raizada et al., 2024; Huang et al., 
2022) in which thresholds are used to bind the magnitude of detected edges between 
upper and lower bounds. The Canny edge detection algorithm also smoothens the 
image by convolving with a Gaussian filter, thus minimizing the influence of noise 
on the registered motion.

Different from the search-based methods, the zero-crossing method, on the other 
hand, involves evaluating the second-order derivative of the image intensity to find re-
gions of zero-crossings that are deemed to be the edges of interest. Within the family of 
these zero-crossing methods, the only method used is the Laplacian of Gaussian (LoG) 
method (Gupta et al., 2021; Huang et al., 2022).

Once the edge in every frame is detected, since the edges of interest span several 
pixels, these are averaged in every frame to result in a scalar value for that frame. That 
value is stored in an array. The process is repeated for all frames to result in pixel-
displacement time series data. This pixel-displacement time series data is then easily 
converted to response in physical coordinates with the knowledge of the size of the pixel 
in µm.

An overview of the implementation of the edge detection schemes is shown in Fig. 
4, which is borrowed from Gupta et al. (2021). Since that research registered the mo-
tion of three different cutting tools, Fig. 4 naturally includes those details. The figure 
shows the five key steps in registering motion, which include: (1) cropping images to 
retain regions of interest; (2) detecting the edge in every frame; (3) mapping the pixels 
to displacements; (4) averaging pixels in every frame; (5) resulting response from video.
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FIG. 4: Overview of edge detection and tracking schemes (reprinted from Gupta et al. with per-
mission from Elsevier, copyright 2021)
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The edge detection and tracking scheme remains amongst the simpler techniques for 
registering tool motion from video. The method, however, is sensitive to thresholds to 
the size of the Gaussian blur and is also not always a sub-pixel scheme.

3.2.2 Optical Flow: Intensity and Phase-Based

The reported use of optical flow for motion registration of machine tool systems has 
been less than that of edge-based methods. Only three of the 16 relevant research works 
have reported using optical flow-based methods (Gupta et al., 2021; Nuhman et al., 
2022; Raizada et al., 2024). This is despite the fact that optical flow-based methods 
are inherently subpixel motion registration capable. Within the family of optical flow 
methods, the use of intensity-based optical flow and phase-based optical flow have both 
been reported.

The intensity-based optical flow method is premised on the assumption that there is 
small motion of the system in a short time interval. As such, the method assumes bright-
ness constancy for every point and pixel within the frame, i.e., the intensity of light for a 
point on the tool that moves slightly in a short time to another location within the frame 
is assumed to remain constant. With this assumption, and the use of a Sobel kernel to 
compute gradients, the method estimates a motion matrix from which a scalar displace-
ment can be computed by averaging the motion matrix. Since the gradient-based optical 
flow scheme is sensitive to image noise, in its implementation for the estimation motion 
of machine tool systems (Gupta et al., 2021; Nuhman et al., 2022; Raizada et al., 2024), 
researchers applied Gaussian blurs like in the case of the Canny edge detector. More-
over, since cutting tool motion was also observed to be sensitive to the regions of inter-
est being evaluated, an expanded implementation was included using an edge detector in 
combination with optical flow to evaluate the motion of the vibrating tool (Gupta et al., 
2021). An overview of the method to estimate motion using the intensity-based optical 
flow scheme is shown in Fig. 5.

The figure shows the four key steps in registering motion, which include: (1) crop-
ping images to retain regions of interest; (2) convolving a Sobel kernel with the pair of 
frames of interest; (3) estimating motion by either averaging the motion matrix or by 
averaging after convolving the motion matrix with an edge detector; (4) repeating steps 
1–3 for all frames to obtain response from video. Though this method is more robust 
than the edge detection and tracking scheme, it is sensitive to the size of the Gaussian 
blur, the choice of the kernel used to compute image intensity gradients, and the method 
of averaging full-field motion.

In the phase-based approach, the contour of the local phase is assumed to be con-
stant, and its motion through time corresponds to the displacement signal. No brightness 
constancy is assumed and neither is the method confined to assuming small motion in 
small time intervals. The key step in the method involves convolving the image with a 
complex kernel to obtain local phase and amplitude information to decipher changes 
in the local phase to track motion over consecutive frames. The complex kernel is an 
oriented Gabor filter that can be thought of as a sinusoidal signal of a particular fre-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

JFV-52199.indd               114                                           Manila Typesetting Company                                           04/15/2024          07:01AM



Volume 31, Issue 2, 2024

Vision-Based Modal Analysis of Machine Tool Systems 115

quency and orientation, modulated by a Gaussian wave. The parameters that control its 
shape, size, and performance are its orientation, its wavelength, and its bandwidth. For 
the Gabor filter to work effectively, it must be tuned for the image sequence of interest. 
Velocities of the local phase contours thus obtained are integrated to obtain displace-
ments. Since only displacements in regions with sufficient contrast are treated as reli-
able, implementation also includes thresholding. Also, since the phase-based optical 
flow is more robust and more accurate, implementation for use in machine tool systems 
(Nuhman et al., 2022) has preferred filtering every image with a Gaussian blur prior 
to minimizing the influence of noise. This is done prior to convolving frames with the 
Gabor filter.

FIG. 5: Overview of the intensity-based optical flow scheme (reprinted from Nuhman et al. with 
permission from Elsevier, copyright 2022)
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An overview of the five key steps to register machine tool motion using the phase-
based scheme is shown in Fig. 6, which is borrowed from Nuhman et al. (2022). The 
steps are: (1) cropping images to retain regions of interest and applying a Gaussian blur; 
(2) convolving a Gabor filter to estimate phase contours; (3) convolving phase with a 

FIG. 6: Overview of the phase-based optical flow scheme (reprinted from Nuhman et al. with 
permission from Elsevier, copyright 2022)
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Sobel kernel and use thresholds; (4) estimating displacements; (5) repeating steps 1–4 
for all frames to obtain a response from the video.

3.2.3 Digital Image Correlation

The digital image correlation (DIC) method has been used in two reports by Gupta et al. 
(2021) and Raizada et al. (2024). The DIC method, like the optical flow-based schemes, 
is also a subpixel-level motion registration capable scheme. It estimates motion by find-
ing the maximum correlation between pixel subsets in the image of interest and the 
reference image. For the subset window, the region around the vibrating tool’s edges is 
chosen since that is the region of high contrast, which makes tracking easier. Implemen-
tation in machine tool systems is correlated to the tool’s own features and not random 
speckle patterns sprayed on the tool, which is what is usually recommended with DIC. 
To deal with the noise, every frame was also convolved with a Gaussian kernel.

An overview of the DIC procedure to estimate motion is shown in Fig. 7. The figure 
is borrowed from Gupta et al. (2021), and as such, includes details from that study. Since 
implementation by Gupta et al. (2021) was with their own code and not a commercially 
available code, the procedure to register motion may differ from commercial software 
packages. There are three main steps. The first involves cropping each frame around the 
region of interest, followed by a smoothing operation. In the second and main step, a 
correlation function is evaluated for every subset within every pair of frames, and that 
is then used to estimate rigid body displacement of the tool between those frames. The 
third step involves repeating step two for all pairs of frames from the video to finally 
result in the response of the vibrating artifact.

3.2.4 Particle Image Velocimetry

Particle image velocimetry (PIV) is usually used to measure 2D velocity fields in mac-
roscopic fluid flow by imaging the flow seeded with particles followed by cross-corre-
lating groups of particles, like in DIC, to obtain average displacements (Yamamoto et 
al., 2017). Since PIV can estimate velocity fields, and since extracting displacements 
from those velocities is trivial, PIV was also leveraged to estimate displacements of 
vibrating cutting tools–as reported in Raizada et al. (2024). That report is the only one. 
In that study, the tool’s own features were correlated across frames to estimate displace-
ments. In that sense, the implementation was like that of the DIC scheme. And like DIC, 
PIV requires a speckle pattern to be sprayed on the object to be tracked to ensure a high 
degree of correlation is obtainable. However, since that is not possible, the challenges 
associated with DIC are applicable to PIV-based motion registration too.

As opposed to the case of DIC, in which the researchers wrote their own code 
(Gupta et al., 2021), the PIV study used PIVLab, an easy to use, GUI-based MATLAB 
tool to analyze, validate, post process, visualize, and simulate PIV data (Thielicke and 
Stamhuis, 2014). PIVLab provides nice inbuilt features for image pre-processing and 
process parameter selection. The Fourier transform correlation with multiple passes was 
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FIG. 7: Overview of the digital image processing scheme (reprinted from Gupta et al. with per-
mission from Elsevier, copyright 2021)
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used to estimate motion with PIVLab. The use of multiple passes is said to make motion 
estimation more robust than the case of DIC. The documentation for PIVLab (Thielicke 
and Stamhuis, 2014) is robust, and an overview of its use and implementation in the con-
text of estimating motion of vibrating machine tool elements would essentially reduce 
to providing screenshots of the GUI. This will not add to the scientific discourse of this 
paper; an overview such as those in Figs. 4–7 is not provided herein, and the reader is 
instead directed to the help manuals and documentation of PIVLab for its use.

3.2.5 Deep Learning

There are three reports of using deep learning methods to register motion of vibrating 
machine tool systems. The first such report used the robust and open-source OpenCV 
computer vision tool (Yanamadala and Muralidharan, 2021). In the use of OpenCV, the 
researchers investigated the influence of different algorithms for object tracking. Eight 
such algorithms were tried, and the CSRT algorithm was reported to fare better than 
the others. Since OpenCV was developed for real-time computer vision applications, 
the researchers reported that OpenCV was well-suited for tracking motion, even in the 
presence of noise.

The other two reports used convolutional neural networks (CNN) (Raizada and Law, 
2023; Raizada et al., 2024). The CNNs have seen wide-scale adoption across engineer-
ing domains for classification, segmentation, and recognition. Unlike classic image pro-
cessing schemes, CNNs learn what filters to use to estimate flow by training itself on a 
dataset. In one study using CNNs, the researchers trained the model with videos of a tool 
vibrating with potentially small and subpixel-level motion, whose motion was recorded 
in laboratory settings (Raizada and Law, 2023). In the other use of CNNs, open-source 
data sets were used to train the model (Raizada et al., 2024). The two implementations 
also differed in their choice of CNN models.

In the implementation in which data was generated in the laboratory, the FlowNet 
model, (Dosovitskiy et al., 2015) which has become the de facto CNN model, was used. 
The FlowNet model is a supervised learning model whose model architecture com-
prises convolution and deconvolution layers with residual connections. The model was 
trained using videos of a tool vibrating with potentially small and subpixel-level mo-
tion. Ground truths for training from these videos were generated using the phase-based 
optical flow algorithm, which can provide an accurate displacement estimation even for 
subpixel motion. The method was reported to satisfactorily estimate natural frequencies 
of vibration. However, there were issues in the estimates of the amplitude of motion, and 
those errors led to errors in estimating damping.

The other method using CNNs to extract small and subpixel level motion from 
video used the iterative residual refinement (IRR) scheme (Hur and Roth, 2019), is an 
improvement over the PWC-Net scheme (Sun et al., 2018) and builds on the standard 
FlowNet scheme (Dosovitskiy et al., 2015). The IRR scheme has been designed ac-
cording to simple and well-established principles of an encoder, warping, use of a cost 
volume, and a decoder. Implementation of the scheme proceeds as outlined in Fig. 8. 
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First, a pair of images is passed into the encoder, which is a 6-level convolution pyra-
mid. At each level, filters and kernels are applied to the images for feature extraction. 
These kernels form the learnable unit. Output from the sixth level of the encoder (level 
L1) is passed directly to the decoder, which is also a 6-level deconvolution pyramid for 
optical flow estimation and is then used in the next level. In the implementation reported 
in Raizada et al. (2024), the input image was 101 × 101 × 3 pixels. This was encoded 
to result in an image size of 4 × 4 × 196 pixels, which was again decoded to result in its 
original size. The optical flow thus obtained was then up-sampled using bilinear inter-
polation. That up-sampled flow became the current optical flow for that level to warp 
the features of the second image using bilinear interpolation. The warped features from 
the second image, combined with features of the first image, were then used to construct 

FIG. 8: Overview of the iterative residual refinement deep-learning scheme. Figure reproduced 
from (Raizada et al.) under a Creative Commons license.
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a cost volume using a correlation function. That then became the input to the optical 
decoder along with the first image and current optical flow from the previous level, re-
sulting in a more refined optical flow. The original PWC-Net incrementally updated the 
estimation across the pyramid levels with individual decoders for each level. The IRR 
scheme substituted the multiple decoders with only one shared decoder that iteratively 
refined the output over all the pyramid levels. Additional details are in Raizada et al. 
(2024).

In this implementation, the model was trained on a publicly available dataset called 
FlyingThings3D. Testing was against the ground truth, which in this case was twice 
integrated accelerations. Besides needing large data for training, the method was found 
to be robust and capable of predicting small subpixel-level motion.

4. REPRESENTATIVE RESULTS

Since different research groups have used different methods of motion registration and 
have measured different artifacts, a direct comparison of the different methods is not 
possible. Hence, as representative cases, the motion of a vibrating end mill for a setup, 
like in Fig. 2(a), is shown in Fig. 9, and the motion of a vibrating grooving blade for the 
setup shown in Fig. 2(e) is shown in Fig. 10. These results are borrowed from Raizada et 
al. (2024). The response shown in Figs. 9 and 10 was obtained using six different image 
processing schemes. These include the Canny edge detector, intensity- and phase-based 
optical flow-based schemes, DIC, PIV, and the IRR CNN. Results were benchmarked 
with twice-integrated accelerations. A normalized root mean square error (NRMSE) was 
used to quantify differences between motion estimated from vision and twice-integrated 
accelerations. Since data was sampled at different rates, to estimate the NRMSE, re-
sponse from the video was up-sampled to the ground truth data acquisition rate using 
spline interpolation.

From Fig. 9 and the NRMSE shown therein, it is evident that the response obtained 
with the DIC method is not as well resolved as the other five methods. The PIV method 
fares best in this case and is closely followed by the other four methods. Though PIV 
uses the same principle as DIC, lower NMRSE with it is thought to be due to PIVLab 
handling image noise better than their own implementation of the DIC method. More-
over, the results are likely also better because PIVLab automatically suggests the inter-
rogation window size and allows the user to select multiple interrogation windows in 
multiple passes. This is different than their (Raizada et al., 2024) implementation of DIC 
in which only one subset size in two frames is correlated. What is further evident is that 
for all methods, motion of the order of ± 54 µm that is averaged over the first four cycles 
is easily resolved, even when the pixel size is 36 µm. However, since there is damping 
in the system, the response decays and becomes magnitudes lesser than the pixel size. 
Also, since not all methods are good at subpixel level motion registration, the methods 
that are fare better.

From Fig. 10 it is observable that the CNN-based method fares best in this case, 
followed by the edge and the PIV schemes, respectively. The DIC method fares better in 
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this case than in the case of the end mill, and this is thought to be due to the blade vibrat-
ing with larger magnitudes than the end mill. It is thought to be due to the blade hav-
ing different features and having been acquired with different parameters. The response 
obtained with the intensity-based optical flow method has the largest NRMSE, followed 
by the phase-based optical flow method.

These differences between results for the end mill and the blade suggest that the reg-
istered motion is sensitive to the magnitude of motion, to the image processing scheme 
being used, tool features, and to image acquisition parameters. However, since the edge 
detection scheme, the PIV scheme, and the CNN scheme consistently give low NMRSE, 
it may be concluded that these schemes are more robust.

Since the ultimate objective of registering motion from video is to extract modal pa-
rameters from that video, modal parameters for the response that is shown in Figs. 9 and 
10 are listed in Table 2, which is also borrowed from Raizada et al. (2024). Parameters 
were extracted using the eigensystem realization algorithm. From Table 2, it is evident 

FIG. 9: End mill’s motion estimated from the six image registration schemes being benchmarked 
with ground truth in terms of the NMRSE. Figure reproduced from (Raizada et al.) under a Cre-
ative Commons license.
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TABLE 2: Modal parameters for the response shown in Figs. 9 and 10 (adapted from Raizada 
et al., 2024) 

Method Modal parameters
End mill Grooving blade

f [Hz] ζ [%] f [Hz] ζ [%]
Twice integrated accelerations 523 1.80 151 1.08
Edge detection 524 1.91 150 0.98
Intensity-based optical flow 524 1.96 151 0.62
Phase-based optical flow 524 2.05 150 1.03
DIC 523 2.12 150 0.93
PIV 524 2.30 151 0.60
CNN 523 1.88 150 1.00

FIG. 10: Grooving blade’s motion estimated from the six image registration schemes being 
benchmarked with ground truth in terms of the NMRSE. Figure reproduced from (Raizada et al.) 
under a Creative Commons license.
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that all six vision-based schemes could estimate the natural frequencies correctly. How-
ever, there are differences in the estimated damping ratios (ζ). Since correct damping is 
a function of the response being captured accurately, those schemes with larger NMRSE 
also exhibit higher errors in damping estimates. Since the research done by Raizada et 
al. (2024) did not measure the input force, that was a case of output-only modal analysis, 
and hence, the eigenvector was not estimated or reported in Table 2.

Results in Figs. 9 and 10 and Table 2 are representative only. Similar compari-
sons between edge detection and tracking methods and other deep learning-based track-
ing methods implemented in OpenCV are available in Yanamadala and Muralidharan, 
(2021). Likewise, comparisons between the different methods of edge detection are 
available in Gupta et al. (2021). Those comparisons observed the Canny edge detector 
to fare best. However, for a different vibrating artifact, Huang et al. (2022) reported that 
the LoG method fares better than the Canny edge detector.

It is also important to highlight here that aside from the deep learning-based scheme, 
which may require training and testing which takes time, none of the other methods of 
motion registration are computationally heavy. Once the video is provided, the time that 
most schemes take to register motion is of the order of hundreds of milliseconds–for 
the representative cases discussed in Figs. 9 and 10. These times were for code that was 
written for research purposes and running on a desktop computer with 16 GB RAM 
and an i7-8550U CPU @ 1.80 GHz processor. The code was not optimized to make it 
computationally efficient.

5. CHALLENGES AND PROSPECTS

Having outlined the research progress on vision-based machine tool vibratory motion 
registration, this section discusses some challenges and future prospects of the method. 
Discussion on challenges include robustness of motion registration and stereo measure-
ments for simultaneous in- and out-of-plane motion registration. Discussions on the 
prospects of the method include developments in cameras.

5.1 Challenges

Since motion registered from video is sensitive to image acquisition parameters, to fea-
tures of the vibrating artifact, to the magnitude of motion, and to the image processing 
scheme being used, and since the use of vision for vibratory motion registration is still 
in its infancy, it is difficult to comment on which method is more robust than the oth-
ers. Only wider adoption of the method to measure different machine tool elements will 
help hone the method. Moreover, the method has only been tested in laboratory settings. 
Suitability of the method to measure machinery in shop floor settings within industries 
also needs to be evaluated. These evaluations must include characterizing the influence 
of lighting conditions and the presence of coolant, mist, and chips within the machine’s 
region that may distort acquisition. Again, only wider adoption and use of the method 
will help allay these questions.
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Furthermore, there are several other settings that influence measurements, such as 
the field of view, the sensor size, the aperture, the ISO settings, the analog and digital 
gains, the magnification, the choice of lens, and other camera-specific settings. Some 
of these settings need to be adjusted for high-speed recordings, and some other settings 
need to be tuned for high-resolution recordings. Since some of these settings are con-
founded with others, a systematic investigation on how image acquisition settings and 
parameters other than speed and resolution affect measurements is necessary and can be 
taken up in future investigations.

Another issue about the use of the method is that all reported research on vision-
based modal analysis has been restricted to measuring in-plane response only. Since the 
out-of-plane response is also of interest in machine tool systems, the vision setups need 
to be changed/oriented/indexed to measure that out-of-plane response. This is much like 
what also needs to be done in traditional modal analysis procedures that use contact-type 
single-axis accelerometers. However, for 2D/3D vision-based modal analysis, it is pos-
sible to leverage the developments in stereo vision across other disciplines for simulta-
neous in- and out-of-plane measurements using two or more cameras. The challenges 
pertaining to using stereo will be to correct for potential distortions due to projections, 
to ensure stereo matching, to synchronize cameras to each other, and to the input. Since 
these issues are unchartered, there is tremendous potential for the method.

5.2 Prospects

Rapid developments in camera hardware, especially that of smartphone cameras that 
can already record video at rates of up to 7680 Hz and with impressive resolutions of 
720 px × 720 px (Huawei, 2023), will make equipment for video recording more ac-
cessible. Since most image processing schemes to register motion are relatively light-
weight, these can be easily integrated within an application on smartphones to make 
every smartphone a vibration measurement device. Furthermore, since the main time-
taking task in visual vibrometry is to record and transfer high-speed and high-resolution 
video recordings that could be a few gigabytes, and since the use of smartphones would 
not require the transfer of such large files, it might even become possible to make smart-
phone aided visual vibrometry a real-time vibration measurement process. This will 
require the development of dedicated applications, which enterprising engineers well-
versed with structural dynamics, image processing, and code could help realize. Such 
developments are expected to democratize visual vibrometry.

Allied developments in compressed sensing hardware, including developments that 
will permit non-uniform random acquisition of images at sub-Nyquist rates with cameras, 
will also make it possible to address the temporal aliasing problem. Such developments, 
however, are likely to reap fewer benefits than developments in smartphone cameras.

Another revolutionary development that can cause another paradigm shift in vision-
based vibration measurements is the advent of event cameras (Event camera, 2023). Event 
cameras do not capture images using a shutter as conventional (frame) cameras do. Instead, 
each pixel inside an event camera operates independently and asynchronously, reporting 
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changes in brightness as they occur, and staying silent otherwise. Since only those pixels 
whose intensity change are tracked and stored, recording at higher frame rates becomes 
possible without adversely increasing storage (memory) requirements. Such cameras are 
already commercially available and can record at rates of up to 1,00,000 Hz and with 
impressive resolutions. Since there is no research yet that reports on the use of such event 
cameras for visual vibrometry of machine tools, there are opportunities aplenty.

Besides developments in camera hardware, commercial solutions such as those of-
fered by RDI Technologies (RDI Tech., 2023) have made possible vision-based modal 
analysis and vibration-based condition monitoring by leveraging developments in im-
age processing-based motion registration and magnification. Such solutions will enable 
the modal analysis community to adopt vision-methods as a working and more efficient 
method of modal analysis.

Furthermore, since vision-based measurements are non-contact, they allow for 
measuring speed-dependent changes in the dynamics of rotating elements of machine 
tools. Vision-based methods could also be used for in situ measurements of the chang-
ing dynamics of thin walls as they are machined. Measuring speed- and time-dependent 
dynamic behavior using vision-based methods remains largely unexplored and offers 
researchers more opportunities.

6. CONCLUSIONS

The aim of vision-based modal analysis of machine tool systems is to use cameras to 
record the motion of vibrating elements of the machine tool system and apply image 
processing schemes to that video to extract motion from that video. The method is non-
contact, does not require sophisticated data acquisition hardware, and makes possible 
full field shape analysis with just one measurement. As such, the method is fast emerg-
ing as a viable alternative to traditional experimental modal analysis procedures that 
use contact-type transducers. Since the method holds promise, this paper discussed the 
research progress and outlined the prospects.

A systematic review of the research revealed that different research groups have 
measured different elements with different cameras and acquisition parameters and have 
also used different methods to register motion from video. It is difficult to comment on 
which image processing scheme is more robust than the others. Given the developments 
in camera technology and the advent of new event cameras, together with the maturity 
of image processing schemes, and since the method holds much promise, a structured 
round-robin to measure with similar artifacts and similar image processing schemes of 
researchers active in the area, will likely resolve issues and help hone the method. This 
may also help uncover other fundamental issues that may be tackled by further research.
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