AE 688 Dynamics And Vibration Assignment No. 1

1. The car is traveling at a constant speed $v_0 = 100$ km/h on the level portion of the road. When the 6 percent (tan $\theta = 6/100$) incline is encountered, the driver does not change the throttle setting and consequently the car decelerates at the constant rate $g \sin \theta$. Determine the speed of the car (a) 10 seconds after passing point A and (b) when s = 100 m.

Ans. (a) v = 21.9 m/s, (b) v = 25.6 m/s

2. On its takeoff roll, the airplane starts from rest and accelerates according to $a = a_0 - kv^2$, where a_0 is the constant acceleration resulting from the engine thrust and $-kv^2$ is the acceleration due to aerodynamic drag. If $a_0 = 2m/s^2$, $k = 0.00004 m^{-1}$, and v is in meters per second, determine the design length of runway required to reach the takeoff speed of 250 km/h if the drag term is (*a*) excluded and (*b*) included.

Ans. (a) s = 1206 m, (b) s = 1268 m

3. With what minimum horizontal velocity u can a boy throw a rock at A and have it just clear the obstruction at B?

Ans. u = 28.0 m / s

4. An outfielder experiments with two different trajectories for throwing to home plate from the position shown: (a) $v_0 = 42$ m/s with $\theta = 8^\circ$ and (b) $v_0 = 36$ m/s with $\theta = 12^\circ$. For each set of initial conditions, determine the time *t* required for the baseball to reach home plate and the altitude *h* as the ball crosses the plate.

5. A long-range artillery rifle at A is aimed at an angle of 45° with the horizontal, and its shell is just able to clear the mountain peak at the top of its trajectory. Determine the magnitude u of the muzzle velocity, the height H of the mountain above sea level, and the range R to the sea.

Ans.
$$u = 396 m/s$$
, $H = 4600 m$, $R = 16.58 km$

6. In the design of a timing mechanism, the motion of the pin A in the fixed circular slot is controlled by the guide B, which is being elevated by its lead screw with a constant upward velocity $v_0 = 2$ m/s for an interval of its motion. Calculate both the normal and tangential components of acceleration of pin A as it passes the position for which $\theta = 30^{\circ}$.

Ans. $a_n = 21.3 m / s^2$, $a_t = -12.32 m / s^2$

7. An aircraft takes off at *A* and climbs at a steady angle with slope of 1 to 2 in the vertical y-z plane at a constant speed v = 400 km/h. The aircraft is tracked by radar at *O*. For the position *B*, determine the value of \dot{R} , $\dot{\theta}$, and $\dot{\phi}$.

Ans.
$$R = 92.0$$
 km/h, $\theta = 0.1988$ rad/s
 $\dot{\phi} = 0.0731$ rad/s

8. An aircraft flying in a strength line at a climb angle β to the horizontal is tracked by radar located directly below the line of flight. At a certain instant, the following data are recorded: r = 3600 m, $\dot{r} = 110 m/s$, $\ddot{r} = 6 m/s^2$, $\theta = 30^\circ$, and $\dot{\theta} = 2.20 \text{ deg/} s$. For this instant determine the aircraft altitude *h*, velocity *v*, angle of climb β , $\ddot{\theta}$, and acceleration *a*.

Ans. $h = 3120 \ m, v = 176.7 \ m/s, \beta = 8.5^{\circ}$ $\ddot{\theta} = -2.10(10^{-3}) \ rad/s^2, a = 1.112 \ m/s^2$

