AE 688 Dynamics And Vibration
 Assignment No. 1

1. The car is traveling at a constant speed $v_{0}=100 \mathrm{~km} / \mathrm{h}$ on the level portion of the road. When the 6 percent $(\tan \theta=6 / 100)$ incline is encountered, the driver does not change the throttle setting and consequently the car decelerates at the constant rate $g \sin \theta$. Determine the speed of the car $(a) 10$ seconds after passing point A and (b) when $s=100 \mathrm{~m}$.

Ans. (a) $v=21.9 \mathrm{~m} / \mathrm{s},(b) v=25.6 \mathrm{~m} / \mathrm{s}$

Figure 1
2. On its takeoff roll, the airplane starts from rest and accelerates according to $a=a_{0}-k v^{2}$, where a_{0} is the constant acceleration resulting from the engine thrust and $-k v^{2}$ is the acceleration due to aerodynamic drag. If $a_{0}=2 \mathrm{~m} / \mathrm{s}^{2}, k=0.00004 \mathrm{~m}^{-1}$, and v is in meters per second, determine the design length of runway required to reach the takeoff speed of $250 \mathrm{~km} / \mathrm{h}$ if the drag term is (a) excluded and (b) included.

Ans. (a) $s=1206 \mathrm{~m},(b) s=1268 \mathrm{~m}$

3. With what minimum horizontal velocity u can a boy throw a rock at A and have it just clear the obstruction at B ?

Ans. $u=28.0 \mathrm{~m} / \mathrm{s}$

4. An outfielder experiments with two different trajectories for throwing to home plate from the position shown: (a) $v_{0}=42 \mathrm{~m} / \mathrm{s}$ with $\theta=8^{\circ}$ and (b) $v_{0}=36 \mathrm{~m} / \mathrm{s}$ with $\theta=12^{\circ}$. For each set of initial conditions, determine the time t required for the baseball to reach home plate and the altitude h as the ball crosses the plate.

Ans. (a) $t=1.443 \mathrm{~s}, h=0.525 \mathrm{~m}$
(b) $t=1.704 \mathrm{~s}, h=0.813 \mathrm{~m}$

Figure 4
5. A long-range artillery rifle at A is aimed at an angle of 45° with the horizontal, and its shell is just able to clear the mountain peak at the top of its trajectory. Determine the magnitude u of the muzzle velocity, the height H of the mountain above sea level, and the range R to the sea.

$$
\text { Ans. } u=396 \mathrm{~m} / \mathrm{s}, H=4600 \mathrm{~m}, R=16.58 \mathrm{~km}
$$

6. In the design of a timing mechanism, the motion of the pin A in the fixed circular slot is controlled by the guide B, which is being elevated by its lead screw with a constant upward velocity $v_{0}=2 \mathrm{~m} / \mathrm{s}$ for an interval of its motion. Calculate both the normal and tangential components of acceleration of pin A as it passes the position for which $\theta=30^{\circ}$.

Ans. $a_{n}=21.3 \mathrm{~m} / \mathrm{s}^{2}, a_{t}=-12.32 \mathrm{~m} / \mathrm{s}^{2}$

7. An aircraft takes off at A and climbs at a steady angle with slope of 1 to 2 in the vertical y-z plane at a constant speed $v=400 \mathrm{~km} / \mathrm{h}$. The aircraft is tracked by radar at O. For the position B, determine the value of $\dot{R}, \dot{\theta}$, and $\dot{\phi}$.

$$
\begin{aligned}
\text { Ans. } \dot{R} & =92.0 \mathrm{~km} / \mathrm{h}, \dot{\theta}=0.1988 \mathrm{rad} / \mathrm{s} \\
\dot{\phi} & =0.0731 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

8. An aircraft flying in a strength line at a climb angle β to the horizontal is tracked by radar located directly below the line of flight. At a certain instant, the following data are recorded: $\quad r=3600 \mathrm{~m}, \dot{r}=110 \mathrm{~m} / \mathrm{s}, \ddot{r}=6 \mathrm{~m} / \mathrm{s}^{2}, \theta=30^{\circ}$, and $\dot{\theta}=2.20 \mathrm{deg} / \mathrm{s}$. For this instant determine the aircraft altitude h, velocity v, angle of $\operatorname{climb} \beta, \ddot{\theta}$, and acceleration a.

$$
\text { Ans. } h=3120 \mathrm{~m}, v=176.7 \mathrm{~m} / \mathrm{s}, \beta=8.5^{\circ}
$$

$$
\ddot{\theta}=-2.10\left(10^{-3}\right) \mathrm{rad} / \mathrm{s}^{2}, a=1.112 \mathrm{~m} / \mathrm{s}^{2}
$$

