AE 688 Dynamics And Vibration Assignment No. 3

1. The circular disk rotates with a constant angular velocity $\omega = 40$ rad/s about its axis, which is inclined in the y - z plane at the angle $\theta = \tan^{-1}\left(\frac{3}{4}\right)$. Determine the vector expressions for the velocity and acceleration of point *P*, whose position vector at the instant shown is $\mathbf{r} = 375\mathbf{i} + 400\mathbf{j} - 300\mathbf{k}$ mm. (Check the magnitudes of your results from the scalar values $v = r\omega$ and $a_n = r\omega^2$.)

Ans. $\mathbf{v} = -20\mathbf{i} + 12\mathbf{j} - 9\mathbf{k} \text{ m/s}$ $\mathbf{a} = -600\mathbf{i} - 640\mathbf{j} + 480\mathbf{k} \text{ m/s}^2$

2. A V-belt speed-reduction drive is shown where pulley *A* drives the two integral pulleys *B* which in turn drive pulley *C*. If *A* starts from rest at time t = 0 and is given a constant angular acceleration α_1 , derive expressions for the angular velocity of *C* and the magnitude of the acceleration of a point *P* on the belt, both at time *t*.

Ans.
$$\omega_c = \left(\frac{r_1}{r_2}\right)^2 \alpha_1 t$$
, $a_P = \frac{r_1^2}{r_2} \alpha_1 \sqrt{1 + \left(\frac{r_1}{r_2}\right)^4} \alpha_1^2 t^4$

3. A device which tests the resistance to wear of two materials *A* and *B* is shown. If the link *EO* has a velocity of 1.2 m/s to the right when $\theta = 45^{\circ}$, determine the rubbing velocity v_A .

4. Slider *A* moves in the horizontal slot with a constant speed *v* for a short interval of motion. Determine the angular velocity ω of bar *AB* in terms of the displacement x_A .

5. The punch is operated by a simple harmonic oscillation of the pivoted sector given by $\theta = \theta_0 \sin 2\pi t$ where the amplitude is $\theta_0 = \pi/12 \operatorname{rad} (15^\circ)$ and the time for one complete oscillation is 1 second. Determine the acceleration of the punch when $(a)\theta = 0$ and $(b)\theta = \pi/12$.

140 Inn Inn Inn Inn Inn Inn Inn Inn

Figure 5

6. For the instant represented, crank *OB* has a clockwise angular velocity $\omega = 0.8$ rad/s and is passing the horizontal position. Determine the corresponding velocity of the guide roller *A* in the 20° slot and the velocity of point *C* midway between *A* and *B*.

Ans. $v_A = 0.226$ m/s, $v_C = 0.1747$ m/s

Figure 6

Ans. (a) $a = 0.909 \text{ m/s}^2 \text{ up}$

(b) $a = 0.918 \text{ m/s}^2 \text{ down}$

7. The unit at *A* consists of a high-torque geared motor which rotates link *AB* at the constant rate $\dot{\theta} = 0.5$ rad/s. Unit *A* is free to roll along the horizontal surface. Determine the velocity v_A of unit *A* when θ reaches 60°.

Ans. $v_A = 305 \text{ mm/s}$

8. The elements of the mechanism for deployment of a spacecraft magnetometer boom are shown. Determine the angular velocity of the boom when the driving link *OB* crosses the *y*-axis with an angular velocity $\omega_{OB} = 0.5$ rad/s if $\tan \theta = 4/3$ at this instant.

Ans. $\omega_{CA} = 0.429$ k rad/s

9. The flexible band *F* is attached at *E* to the rotating sector and leads over the guide pulley. Determine the angular velocities of *AD* and *BD* for the position shown if the band has a velocity of 4 m/s.

Ans.
$$\omega_{AD} = 12.5 \text{ rad/s}, \ \omega_{BD} = 7.5 \text{ rad/s}$$

10. The sliding collar moves up and down the shaft, causing an oscillation of crank OB. If the velocity of A is not changing as it passes the null position where AB is horizontal and OB is vertical, determine the angular acceleration of OB in that position.

11. The linkage of Prob. 5/66 is shown again here. For the instant when $\theta = \beta = 60^{\circ}$, the hydraulic cylinder gives A a velocity $v_A = 1.2$ m/s which is increasing by 0.9 m/s each second. For this instant determine the angular acceleration of link *BC*.

Ans.
$$\alpha_{BC} = 2.08 \ rad / s^2 \ CCW$$

12. For the instant represented, link *CB* is rotating counterclockwise at a constant rate N = 4 rad/s, and its pin *A* causes a clockwise rotation of the slotted member *ODE*. Determine the angular velocity ω and angular acceleration α of *ODE* for this instant.

13. For the linkage shown, if $v_A = 500$ mm/s and is constant when the two links become perpendicular to one another, determine the angular acceleration of *CB* for this position. Ans. $\alpha_{CB} = 5.76 \, rad \, / \, s^2 \, CW$

14. The pin *A* in the bell crank *AOD* is guided by the flanges of the collar *B*, which slides with a constant velocity v_B of 0.9 m/s along the fixed shaft for an interval of motion. For the position $\theta = 30^{\circ}$ determine the acceleration of the plunger *CE*, whose upper end is positioned by the radial slot in the bell crank.

