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A B S T R A C T   

Many studies in the theory of composite materials are based on the homogenization approach, which consists of 
the substitution of the heterogeneous medium by a homogeneous one with certain effective properties. These 
effective properties are obtained from internal asymptotics which excludes boundary layer effects. However, at 
the boundary of the individual ply the periodic solution is disrupted. This loss of periodicity of the interior 
asymptotic solution needs to be accounted for. Here, the boundary layer solution is a correction in the micro 
solution which accounts for the applied boundary condition. This error gives rise to a sharp boundary layer 
which decays very quickly when it travels to the interior of the domain, leaving behind a tail which has to be 
added to the interior solutions to get the correct representation of the global displacement field. It is shown that 
this correction is significant, local and affects local stress and strain predictions, which are missed by meso or 
classical micro mechanical solutions. This important outcome of the study proves the theoretical estimates 
available in the literature (via error estimates in L2 and H1 - norms) emphasizing significant improvement in the 
local solution at the boundary. It is shown, through numerical examples, that the corrected solution can 
significantly alter damage initiation predictions at the boundary.   

1. Introduction 

The homogenization of micro structured composite material is a 
subject of continuous interest for many years. For this kind of materials, 
the locally heterogeneous material behaves as a homogeneous media 
when the characteristic size of the inclusion is much smaller than the 
size of the whole domain. According to Willis [1] numerous methods in 
mechanics of composite can be classified into four broad categories: 
asymptotic, self-consistent, variational, and modeling methods. Most of 
the methods explained in literature [2,3] accurately predict the effective 
composite properties provided that the ratio of the RVE size to the global 
structural dimension is very small, i.e. tending to zero. Well known 
micro mechanical methods [4,5] include self consistent model [6], 
concentric cylinder assemblage model [7], method of cells and fully 
periodic model as shown in Fig. 1. These are the local interior ideali-
zation of the micro structure, enabling solution of local problems 
through which one can predict the effective properties. The solution of 
this boundary value problem gives the average properties along with the 
relation between the average and local strains. 

Further, local strains can be estimated from the relationship between 

average and local strains through local structure tensor obtained from 
the local analysis. The advantage of micromechanical approach is not 
only to predict the global properties of composites but also to model 
various micro mechanisms such as damage initiation and propagation. 
For the analysis, a basic structural element is defined as the smallest 
element of the microstructure reflecting basic geometrical features. A 
micrograph of materials, shown in Fig. 2, often displays randomness in 
distribution thereby making this assumption restrictive. 

A brief review presented here deals with the asymptotic approaches 
explained in literature [8,9] that are capable of analyzing the composite 
materials with constituents with high distinction in mechanical prop-
erties. The asymptotic method for homogenization is detailed in the 
works by Sanchez-Palencia [10] and Suquet [11]. As remarked by 
Sanchez-Palencia [10], the two scale asymptotic expansion is a classical 
method in mechanics. This approach obtains asymptotical developments 
for the heterogeneous medium in both micro and macro scale. The 
mathematical theory of homogenization, is used as an alternative 
approach to find the effective properties of the equivalent homogenized 
material [12]. The finite element method has been successfully applied 
in conjunction with the homogenization theory for the analysis of linear 
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elastic fibre reinforced composites by Hollister and Kikuchi [13]. From 
mathematical point of view the theory of homogenization is a limit 
theory which uses the asymptotic expansion in Ref. [14] and the 
assumption of periodicity to substitute the differential equations with 
rapidly oscillating coefficients. For our problem, we consider the unit 
cell as shown in Fig. 2 (c). In unit cell models, global properties are 
determined by assuming macroscopic periodicity conditions on the 
RVEs. Local problems are solved for specific representative load cases, 
thus representing the actual interaction between macro and micro scale 
deformations. Further, novel three dimensional homogenization 
methods are developed for the design of composites with woven rein-
forcement [15–18]. 

It is noteworthy that several authors, e. g, Refs. [19–21] and refer-
ence therein, have studied the meso-level boundary layer problem in 
layered composites. These studies use the effective properties of plies. A 
number of authors studied the convergence of solutions of equations 
with rapidly oscillating coefficients to a solution of an averaged equation 
that does not require the coefficients to be periodic, including a nearly 
periodic case [22] and sufficient conditions [23] for the convergence of 
solutions. However, problems relating to the theory of the boundary 

layer in inhomogeneous media were first treated by Panasenko [24]. 
Panasenko [25,26] also considered some mathematical questions of the 
boundary layer theory for inhomogeneous media. However, not much 
literature is available on the boundary layer tail except the theoretical 
work done by Allaire and Amar [27], Tartar [28]. Dumontet [29] 
studied the free edge effects in planar (2D) elastic composite materials 
with periodic micro structure near a Neumann boundary. The results 
demonstrate the significance of boundary layer corrections. 

In this study, we address the problem of boundary layer in a three- 
dimensional periodic homogenization for a domain with fixed edges 
(though the type of boundary condition is not a constraint on the 
method). Our goal is to investigate how the boundary layer decays from 
the vicinity of the boundary to the interior of the domain for different 
fibre orientations. The study is organized as follows: In section 2, the 
formulation for the asymptotic homogenization for multiple scale 
analysis starting from the basic elastic continuum is discussed. In section 
3, the asymptotic method is extended to the vicinity of the boundary 
through a boundary layer correction. In section 4 and section 5, nu-
merical implementation and results are discussed, with fibres at 
different orientations. Plies with 00, 450 and 900 orientations are 

Fig. 1. Different micro mechanical methods for the estimation of the effective properties. (a) Self consistent model and generalized self consistent model, (b) 
Composite cylinder assemblage (CCA) model, (c) Method of cells, (d) Composite cross section with square periodic arrangement. 

Fig. 2. A heterogeneous system with various levels. (a) A global system, (b) A representative micro structure, (c) A basic unit cell.  
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studied. Further the behaviour of the boundary layer for different 
fundamental load cases is analyzed. 

2. Asymptotic homogenization for multiple scale analysis 

Homogenization methods have proven to be powerful techniques for 
the study of heterogeneous media (see Refs. [14,30]). This section de-
scribes in detail asymptotic homogenization technique for elasticity 
[31]. We assume that the material under consideration has a micro-
structure comprising of two or more different elastic materials which are 
periodically distributed in all the three directions throughout the ma-
terial and is represented. 

By the unit cell. In the first step, the well known two scale asymptotic 
expansion method is applied in order to find the precise form of the 
homogenized equation [31,32]. The existence of two length scales, such 
as length scale of the microstructure, Δ, and the length scale of the 
structure, L, is shown in Fig. 3. Different patterns of the unit cell have 
been shown in Fig. 3 (a), out of which we have taken one pattern (shown 
in Fig. 3 (b)) as the representative volume element. A numerical finite 
element method has been employed directly to study the macroscopic 
behaviour of the structure together with its microstructure. This theory 
is based on two assumptions: The first one is that the fields vary on 
multiple scales due to existence of a microstructure and second one is 
that the microstructure is spatially periodic. The two scales x and y are 
spatial variables where, x is a macroscopic quantity and y ¼ x= Δ is a 
microscopic one as y is associated with the small length scale of the 
inclusions or heterogeneities. 

Considering linear elasticity, where the components of stress tensor 
σij are given as 

σij ¼ Cijklεkl (1)  

using a generalized Hooke’s law. The periodic nature of the material is 
manifested by the scaling relation 

CΔ
ijklðxÞ ¼ Cijkl

�x
Δ

�
(2)  

where, the function CΔ
ijkl is Y � periodic in x. Let, 

εij
�
uΔ� ¼

1
2

 
∂uΔ

i

∂xj
þ

∂uΔ
j

∂xi

!

(3)  

be the strain field, and 

σΔ
ij ¼ CΔ

ijklεkl
�
uΔ� (4)  

with, the script Δ denoting quantities that describe the rapidly oscil-

lating behaviour of the material under consideration. Let CΔ
ijkl be a 

periodically oscillating matrix of coefficients. Then the boundary value 
problem of elasticity is 

�
∂

∂xj

�
CΔ

ijklεkl
�
uΔ�
�
¼ fi in Ω;

uΔ
i ¼ 0 on Γu and

�
CΔ

ijklεkl
�
uΔ�
�

nj ¼ ti on ΓT

(5) 

which admits a unique solution in H1
0 ¼

�

u
�
�
�
�
1
2

R

ΩCΔ
ijklεklðuΔÞεijðuΔÞdV <

∞;ujΓD
¼ 0

�

. The homogenization of the above equation is a classical 

issue, which can be seen in the literature (see e.g. Refs. [8,9]). The so-
lution uΔ

i is approximated with an asymptotic series representation in Δ 
to admit the following ansatz 

uΔ
i ðxÞ¼ uð0Þi ðx; yÞ þ Δ uð1Þi ðx; yÞ þ Δ2 uð2Þi ðx; yÞ þ…þ Δn uðnÞi ðx; yÞ þ…

(6)  

where, uΔ
i is the exact value of the field variable, u0

i is the macroscopic or 
average value of the field variable. The displacements uð1Þi , uð2Þi ; …. ,uðmÞi 
are the perturbations in the field variable due to the microstructure, also 
called microstructural displacements. The microstructural displace-
ments uðmÞi are Y - periodic functions with respect to fast variable y. The 
strains εijðuÞ can be expanded as 

∂ui

∂xj
¼

∂ui

∂xj
þ

∂ui

∂yk

∂yk

∂xj
¼

∂ui

∂xj
þ

�
1
Δ

�
∂ui

∂yj
(7) 

Substituting Eq. (7) into Eq. (3), we get 

εij
�
uΔ�¼

1
2

 
∂uΔ

i

∂xj
þ

∂uΔ
j

∂xi

!

þ
1

2Δ

 
∂uΔ

i

∂yj
þ

∂uΔ
j

∂yi

!

(8) 

The above equation can be further simplified as 

1
2

 
∂uΔ

i

∂xj
þ

∂uΔ
j

∂xi

!

¼ εij and
1
2

 
∂uΔ

i

∂yj
þ

∂uΔ
j

∂yi

!

¼ ε�ij (9)  

where, εij is the macro, i.e. the smooth part of the strain and ε�ij is the 
micro, i.e. the oscillating part which changes rapidly in the periodic 
medium. The above equation can be expressed in terms of higher powers 
of Δ as 

εij¼
�

εð0Þ;ij þ ε�ð1Þ;ij
�
þ Δ

�
εð1Þ;ij þ ε�ð2Þ;ij

�
þ Δ2� εð2Þ;ij þ…

�
þ… (10)  

with ðεij ¼
P

Δk εðkÞ;ijÞ and ðε�ij ¼
P

Δk� 1 ε�
ðkÞ;ijÞ, which are expressed as 

Fig. 3. Macro to micro scale transition. (a) Heterogeneous material at macro scale, (b) Unit cell - RVE for periodic micro structure.  
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εðkÞ;ij ¼
1
2

 
∂uðkÞi

∂xj
þ

∂uðkÞj

∂xi

!

and ε�ðkÞ;ij ¼
1
2

 
∂uðkÞi

∂yj
þ

∂uðkÞj

∂yi

!

(11) 

Inserting Eq. (8) using Eq. (9) in Eq. (4), we get 

σΔ
ij ¼CΔ

ijklεkl þ CΔ
ijklε�kl (12) 

Further, from Eq. (12), we can write 

σΔ
ij;xj
¼ σΔ

ij;xj
þ

1
Δ

σΔ
ij;yj

(13)  

¼
�
Cijklεkl

�
;xj þ

�
Cijklε�kl

�
;xj þ

1
Δ
�
Cijklεkl

�
;yj þ

1
Δ
�
Cijklε�kl

�
;yj 

Now, considering the equilibrium equation, 
�

CðI=MÞ
ijkl εðI=MÞ

kl

�

;j
þ fi ¼ 0 (14)  

where, I and M denote inclusion and matrix, respectively. Accounting for 
powers of Δ, we get the first three expressions as 

Δ� 2 :
∂

∂yj

�

CI=M
ijkl

�
1
2

�
uð0Þk;yl
þ uð0Þl;yk

���

¼ 0 (15)  

Δ� 1 :
∂

∂yj

�

CI=M
ijkl

�
1
2

�
uð0Þk;xl
þ uð0Þl;xk

þ uð1Þk;yl
þ uð1Þl;yk

��
#

þ
∂

∂xj

�

CI=M
ijkl

�
1
2

�
uð0Þk;yl
þ uð0Þl;yk

���

¼ 0

(16)  

Δ0 :
∂

∂xj

�

CI=M
ijkl

�
1
2

�
uð0Þk;xl
þ uð0Þl;xk

þ uð1Þk;yl
þ uð1Þl;yk

���

þ
∂

∂yj

�

CI=M
ijkl

�
1
2

�
uð1Þk;xl
þ uð1Þl;xk

þ uð2Þk;yl
þ uð2Þl;yk

���

þ fi¼ 0
(17) 

Due to the consistency requirement (see Eq. (15) - Eq. (16)) the 
multipliers of Δ� 2 and Δ� 1 should become zero, leading to 

uð0Þk ðxÞ is independent of y

∂
∂yj

�
Cijklεð0Þ;klþCijklε�ð1Þ;kl

�
¼ 0

(18) 

Expressing, 

ε�ð1Þ;kl ¼ ~εmn
kl εð0Þ;mn (19) 

Fig. 4. Elastic body. (a) Elastic body with periodicity only in one direction, (b) y - periodic cells tends to infinity.  

Fig. 5. Unit cell showing different fibre orientations. (a) 00, (b) 450 and (c).900  

Fig. 6. Unit cell with angular fibre orientation. (a) Unit cell showing the fibre 
as a line with an angle θ, (b) Size calculation of the RVE for angular fibre 
orientation, (c) Placing the unit cell on all the sides to check the periodicity of 
the fibre. 
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the second of Eq. (18) can be rewritten as, 
"

∂
∂yj

�
Cijkl þ Cijmn ~εkl

mn

�
#

εð0Þ;kl ¼ 0 (20)  

where, the above equation is a purely Y - domain problem. The above 
condition is true for any value of εð0Þ;kl. Note that the above represen-
tation requires the solution of six fundamental problems corresponding 
to each εð0Þ;ij, the solution of which can be given as χ ðijÞ, with χ ðijÞ a fully 
periodic function in the Y - domain (or unit cell). Thus, 

~εðklÞ
mn ¼

1
2

�
χðklÞ

m;yn
þ χðklÞ

n;ym

�
(21) 

The six periodic fundamental solutions corresponding to εð0Þ;mn can 
be solved using Eq. (20). From the equilibrium Eq. (17) and the con-
sistency condition, we get 
Z

VRVE

h
Cijkl
�
δkmδlnþ~εmn

kl

��
εð0Þ;mn

�
;xj þ fi

i
dV ¼ 0 (22) 

Finally, dividing by the volume of the RVE, we get 

1
VRVE

�Z

VRVE

n
Cijklðδkmδln þ~εmn

kl ÞdV
oi
ðεð0Þ;mnÞ;xj þ fi¼ 0 (23) 

Further, from this expression we have 

1
VRVE

�Z

VRVE

�
Cijkl
�
δkmδln þ ~εmn

kl

�
dV
��
¼ Cijmn (24) 

which is the RVE volume averaged (or effective) global stiffness used 
for ply-level macro solutions. The homogenized tensor Cijkl may be 

Fig. 7. Unit cell. (a) Modeling fibres with angular orientation, (b) Unit cell with angular fibre orientation.  

Fig. 8. Unit cell in the vicinity of the boundary towards the interior of the 
domain (showing the displacement boundary condition). 

Fig. 9. Finite element model of RVEs with different fibre orientations. (a) 00 fibre orientation, (b) 450 fibre orientation, (c) 900 degree fibre orientation.  

Table 1 
Mechanical properties of AS4 carbon fibre material by Soden et al. [35].  

E1  E2  G12  G23  ν12  

(GPa) (GPa) (GPa) (GPa) 

225 15 15 7 0.2  

Table 2 
Mechanical properties of 3501-6 epoxy matrix material by Soden et al. 
[35].  

E G ν 

(GPa) (GPa) 

4.2 1.567 0.35  
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interpreted as a physical parameter corresponding to an effective macro- 
level homogeneous material, where overall response is ‘close’ to that of 
the heterogeneous material, when the size of the cell tends to zero. 

Theorem 2.1. Following the work in [27], let uΔ be the unique solution of 
the exact boundary value problem given by Eq. (5), then the approximation 
~uðx; yÞ� u0ðxÞ þ Δu1ðx; yÞ converges weakly to uΔ in H1

0ðΩÞ as: 

Fig. 10. Decay of the minimum displacement norms for different fibre orientations from Face 2 to Face 7 (a) 0� - (εð0Þ;xx), (b) 45� - (εð0Þ;yy) and (c) 90� - (εð0Þ;xx).  

Fig. 11. Decay of the maximum displacement norms for different fibre orientations from Face 2 to Face 7 (a) 0� - (εð0Þ;yz), (b) 45� - (εð0Þ;yz) and (c) 90� - (εð0Þ;yz).  

Table 3 
Extreme values of the displacement norm for different fibre orientation.  

Orientation 0� 45� 90�

MIN/MAX Value MIN MAX MIN MAX MIN MAX 

Macro Strain εð0Þ;xx  εð0Þ;yz  εð0Þ;yy  εð0Þ;yz  εð0Þ;xx  εð0Þ;yz  

Norm Value 2:07E � 09  7:54E � 01  3:8E � 06  5:42E � 01  2:94E � 09  8:13E � 02  
Displacement Norm kvkL2  

jjvjjL2  
kwkL2  

jjvjjL2  
jjujjL2  

kukL2  

Layers to Decay 4–5 6–7 4–5 5–6 4–5 5–6  

Fig. 12. Exponential decay of the maximum displacement norm for 0� fibre orientation. (a) Macro strain (εð0Þ;yz), (b) Decay constants for u, v and w - L2 norm.  
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�
�
�
�uΔðxÞ � ~uðx; yÞ

�
�
�
�

H1ðΩÞ � C
ffiffiffiffi
Δ
p

(25)  

where the expression in Eq. (25) is for the fully periodic problem and u1 
is given by 

u1ðx; yÞ¼
X3

m;n¼1
χ mnðyÞεð0Þ;mn þ uðxÞ (26)  

3. Problems in the vicinity of the boundary 

Due to the boundary layer phenomenon, the homogenized system 
depends in a non trivial way on the boundary. Consider the cell at the 
boundary of the composite material, as shown in Fig. 4, with homoge-
neous Dirichlet boundary condition, uðΔÞðx; yÞ ¼ 0 on ΓD. We expect the 
solution uΔ as 

Fig. 13. Exponential decay of the maximum displacement norm for 45� fibre orientation. (a) Macro strain (εð0Þ;yz), (b) Decay constants for u, v and w - L2 norm.  

Fig. 14. Exponential decay of the maximum displacement norm for 90� fibre orientation. (a) Macro strain (εð0Þ;yz), (b) Decay constants for u, v and w - L2 norm.  

Fig. 15. RVEs showing cutting plane. (a) 00 fibre orientation, (b) 450 fibre orientation, (c) 900 fibre orientation.  
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Table 4 
Extreme values of micro strains for applied normal macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 0� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

jStrain Valuej MIN 0.0014 0.00046 0.026 0.022 0.036 0.017 
MAX 0.013 0.012 0.390 1.200 0.940 1.100 

Strain Type MIN εðblÞ
;xx  εð1Þ;xx  εðblÞ

xx  εð1Þ;xx  εðblÞ
xx  εð1Þ;xx  

MAX εðblÞ
xy  εð1Þ;zz  εðblÞ

xy  εð1Þ;yy  εðblÞ
yz  εð1Þ;zz   

Fig. 16. Comparison of micro strain for BL and FP problem - normal and shear load cases for 0� RVE.  
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uΔ
i ðx; yÞ¼ uð0Þi ðxÞ þ Δ uð1Þi ðx; yÞ þ h:o:t: (27) 

The above expression works well for the internal asymptotics, i.e. for 
the periodic solution. However, we need to enforce uΔ

i ðx; yÞ ¼ 0, at the 
boundary. Since uð0Þi ðxÞ ¼ 0 is enforced on the boundary but uð1Þi ðx; yÞ is 
not necessarily zero at the boundary, there is a violation of displacement 
boundary condition and the hypothesis of Y - periodicity is not true in 
the vicinity of the boundary. Thus, 

uð0ÞjΓþΔuð1ÞjΓ ¼ ujΓD
¼ 0 is desired but uð1ÞjΓ 6¼ 0 (28) 

Hence, we need a correction in this term, i.e. a function that is 
negative of uð1Þi ðx; yÞ at boundary and decays to zero as we move far away 
from the vicinity of the boundary. This forms a displacement field due to 
a boundary layer, i.e. uðblÞ

i ðx; yÞ. Here, the superscript ‘bl’ stands for 
boundary layer. To improve the asymptotic expansion near the bound-
ary, we need to introduce additional terms, called boundary layer [27, 
33,34]. Thus, Eq. (27) becomes 

uΔ
i ðx; yÞ¼ uð0Þi ðxÞ þ Δ

�
uð1Þi ðx; yÞ þ uðblÞ

i ðx; yÞ
�
þ h:o:t: (29) 

The advantage of ansatz of Eq. (29) over Eq. (6) is that each term 
ðuð1Þi þ uðblÞ

i Þ satisfies a Dirichlet boundary condition. Note that uðblÞ
i ðx; yÞ

depends on y, but is not a periodic function with respect to the second 
argument. 

The boundary layer term uðblÞ is equivalently defined by 

uðblÞðx; yÞ ¼ χ ðblÞ;mnðx; yÞεð0Þ;mnðxÞ (30)  

with 

uðblÞðx; yÞjΓD
¼ � uð1Þðx; yÞjΓD

(31) 

and 

uðblÞðx → ∞; yÞ ¼ cðxÞ (32) 

Further, 

χðblÞ;mn
i

�
x; ys þ yp

�
¼ χðblÞ;mn

i ðx; ysÞ (33) 

which means there is tangential periodicity along the boundary 
plane with a period yp and there is no periodicity along the depth di-
rection ðxn;ynÞ. With such a boundary layer correction, the convergence 
result of Theorem 2.1 can be improved and is expressed in the next 
section. For this boundary layer problem, the strain can be expressed as 

εij�
�

εð0Þ;ij þ ε�ð1Þ;ij þ ε�ðblÞ
ij

�
þ Δ

�
εð1Þ;ij þ εðblÞ

ij

�
(34) 

Substituting the above equation in the equilibrium condition and 
collecting terms, we get 

∂
∂xj

h
Cijkl

�
εð0Þ;klþ ε�ð1Þ;klþ ε�ðblÞ

kl

�
þΔ

�
εð1Þ;klþ εðblÞ

kl

�i
þ fi

þ
1
Δ

∂
∂yj

h
Cijkl

�
εð0Þ;klþ ε�ð1Þ;klþ ε�ðblÞ

kl

�i
þΔ

h
Cijkl

�
εð1Þ;klþ εðblÞ

kl

�i
¼ 0

(35) 

Again, for Δ→0, using the consistency condition, we get uð0ÞðxÞ as a 
function of x only and for the Δ� 1 term we get 

∂
∂yi

n
Cijkl

�
εð0Þ;kl þ ε�ð1Þ;kl þ ε�ðblÞ

kl

�o
¼ 0 (36) 

Using the interior asymptotic construction given earlier, we get 

∂
∂yi

n
Cijkl

�
εð0Þ;kl þ ε�ð1Þ;kl

�o
¼ 0 and

∂
∂yi

�
Cijklε�ðblÞ

kl

�
¼ 0 (37) 

In the above equation the term ε�ðblÞ
kl is due to the boundary layer, 

which is solved using a periodic column, as shown in Fig. 4 (b). The first 
expression of Eq. (37) is for the fully periodic problem and the second 
expression is for the boundary layer problem, respectively. The second 
expression in Eq. (37) shows that the boundary layer problem does not 
have a driving force, but is only driven by the mismatch in the boundary 
condition given by Eq. (36) which can be rewritten as: 

∂
∂yj

�
Cijklbεmn

kl

�
εð0Þ;mn ¼ 0 (38)  

where, 

bεmn
kl ¼

1
2

 
∂χðblÞ;mn

k

∂yl
þ

∂χðblÞ;mn
l

∂yk

!

(39) 

The above condition means that.  

(1) ubl
i is not required to be fully Y - periodic,  

(2) ubl
i is taken to be ys - periodic as the mismatch along boundary ΓD 

is periodic (this means that we need to solve ubl
i for only one 

column of cells starting from ΓD) and  
(3) We want ubl

i ðx →∞; yÞ→ci; a constant.  

Theorem 3.1. Following the work in [27], let uΔ be the unique solution to 
Eq. (5) then, 

�
�
�
�uΔðxÞ � uð0ÞðxÞ � Δuð1Þðx; yÞ � ΔuðblÞðx; yÞ

�
�
�
�
H1

0ðΩÞ
� CΔ (40) 

Furthermore, for any open set (ω) embedded in Ω there exists a 
constant C1, independent of Δ such that, 
�
�
�
�uΔðxÞ � uð0ÞðxÞ � Δuð1Þðx; yÞ � ΔuðblÞðx; yÞ

�
�
�
�
L2ðωÞ � C1Δ3

2 (41) 

From the above expression we can justify that, 

Table 5 
Extreme values of micro strains for applied shear macro strain for both boundary 
layer (BL) and fully periodic (FP) problems for RVE with 0� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy   

BL FP BL FP BL FP 

jStrain Valuej MIN 0.540 0.041 0.160 0.051 0.190 0.048 
MAX 16 1.200 4.400 4 4 3.900 

Strain Type MIN εðblÞ
yy  εð1Þ;xx  εðblÞ

xx  εð1Þ;zz  εðblÞ
yy  εð1Þ;yy  

MAX εðblÞ
xz  εð1Þ;yz  εðblÞ

yz  εð1Þ;xz  εðblÞ
xz  εð1Þ;xy   

Table 6 
Extreme values of micro strains for applied normal macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 90� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

jStrain Valuej MIN 0.00147 0.00765 0.0475 0.0176 0.0238 0.018 
MAX 0.0143 0.0625 0.4860 4.2400 1.0200 4.360 

Strain Type MIN εðblÞ
xx  εð1Þ;xx  εðblÞ

xx  εð1Þ;xx  εðblÞ
xx  εð1Þ;xx  

MAX εðblÞ
yy  εð1Þ;yz  εðblÞ

xz  
εð1Þ;yz  εðblÞ

xy  εð1Þ;yz   
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Fig. 17. Comparison of micro strain for BL and FP problem - normal and shear load cases for 90� RVE.  

Table 7 
Extreme values of micro strains for applied shear macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 90� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

jStrain Valuej MIN 0.220 0.026 0.202 0.038 0.206 0.0384 
MAX 4.500 8 29.200 11.300 3.100 8.500 

Strain type MIN εðblÞ
yy  εð1Þ;xx  εðblÞ

xx  εð1Þ;yy  εðblÞ
yy  εð1Þ;zz  

MAX εðblÞ
xz  

εð1Þ;yz  εðblÞ
yz  

εð1Þ;xz  εðblÞ
xy  εð1Þ;xy   
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uðblÞ
recons¼ uð0Þ þ Δuð1Þ þ uðblÞ (42) 

So, the error eðblÞ is given as 

eðblÞ ¼ uex � uðblÞ
recons (43)  

where, uðblÞ
recons denotes the reconstructed boundary layer solution, uð1Þ is 

the displacement for the fully periodic problem and uex is the exact 
displacement. 

Theorem 3.1 indicates that the boundary layer correction leads to an 
optimal convergence rate for the error (as a function of Δ) in the H1

0 - 
norm. However, in the L2 - norm the rate is better than the classical 
result (i.e. Δ3

2 instead of Δ) but is still non-optimal. Note that the two- 
dimensional result of Dumontet [29] shows a significant improvement 
in the solution due to boundary-layer correction. In the following sec-
tions, we will carry out a detailed study of the three-dimensional in-
fluence of boundary, for the specific case of Dirichlet boundary. 

4. Basic concept of generation of RVE 

As in most micromechanical analysis of composite materials, regular 
packing has been assumed, typically in a square or hexagonal layout as 
shown in Fig. 3. A micromechanical model is set up based on periodic 
RVE technique for continuous reinforced composite. It is assumed that 
fibres are uniformly distributed in a matrix and have the same radii as 
shown in Fig. 3 (b). 

Therefore, each unidirectional layer can be represented by a unit 
cube with a single fibre having the required fibre volume fraction. Here, 
three different scenarios are considered as unit cell with fibre in three 
directions as 00, 450 and 900 and are shown in Fig. 5. When modeling 
the unit cell with fibre orientation 450, periodicity has to be enforced 
carefully. For angle-ply, a specific strategy has been followed by which 
initially a rectangle of height b and width h is considered and then a line 
segment is placed diagonally as a fibre as shown in Fig. 6 (a). This 
rectangle is the master unit cell. 

Now, this master unit cell is placed on all the four sides as shown in 
Fig. 6 (c), and a check is done to ascertain whether the fibres are running 
continuously, maintaining the periodicity on all the sides with the same 
angle as that of the master unit cell. Now the diagonal line is replaced by 
a fibre of diameter d, with the master unit cell defined by height, h ¼ d

cosθ 

and width, b ¼ d
sinθ. Now considering this as a base, three dimensional 

RVE is modeled to create the periodic unit cell. For this we assume a 
rational number and from Fig. 6 (a) it can be said that, 

tanθ¼
�

b
h

�

¼ ðany rational numberÞ (44) 

For example, if tanθ  ¼ 1
3, then 

�
b
h  ¼

1
3

�

, 3b ¼ h, i.e. the unit cell 

should have a width that is three times the height. This will also ensure 
the periodicity of the angular fibre on both faces of the unit cell. As an 
example, an RVE is modeled with fiber orientation 450 with fibre vol-
ume fraction of 0.6 (see Fig. 7). The periodic column at the boundary is 
constructed, as shown in Fig. 8, by stacking unit periodic cells. 

5. Numerical formulation of the problem 

The linear system of equations resulting from the finite element 
analysis of the boundary layer problem given by Eq. (38) is of the form 

Ku ¼ f (45) 

K is symmetric and semi-positive definite, while the right side vector 
f denotes the nodal forces due to the boundary conditions. Now, 
considering a single unit cell the displacements can be written in terms 
of top, bottom and interior displacements as shown in Fig. 8. Thus, the 
matrix problem can be reformulated in terms of top, bottom and interior 
displacements as 
2

4
Kbb KbI Kbt
KIb KII KIt
Ktb KtI Ktt

3

5

8
<

:

ub
uI
ut

9
=

;
¼

8
<

:

Fb
FI
Ft

9
=

;
(46) 

In the above equation, the suffix b, I and t represent the top face, 
interior and bottom face of the unit cell, respectively. From Eq. (46) we 
can write, 

KIIuI þKItut ¼ FI � KIbub ¼ F1 (47) 

and 

KtIuI þKttut ¼ Ft � Ktbub ¼ F2 (48) 

From Eq. (47), we can write uI as 

uI ¼K� 1
II F1 � K� 1

II KItut (49) 

Substituting this in Eq. (48), we get 

KtI
�
K� 1

II F1 � K� 1
II KItut

�
þKttut ¼ F2 (50) 

Rearranging the terms and representing 

Ktt � KtIK� 1
II KIt ¼ Ktt and F2 � KtIK� 1

II F1 ¼ Ft (51) 

Eq. (50) can be rewritten as 

Kttut ¼ Ft (52) 

Solving Eq. (52) we get 

ut ¼ K� 1
tt

�
F2 � KtIK� 1

II F1
�

(53) 

Substituting the values of F1 and F2 from Eq. (47), we get 

ut ¼ K� 1
tt

�
Ft � Ktbub � KtIK� 1

II ðFI � KIbubÞ
�

(54) 

Substituting, F ¼ K� 1
tt ðFt � KtIK� 1

II FIÞ and K ¼ K� 1
tt ðKtIK� 1

II KIb � KtbÞ, 
the final equation can be written as, 

ut ¼Fþ Kub (55) 

From Eq. (55), we can extract the displacements in the vicinity of the 
boundary, as one moves from the boundary to the interior of the domain. 
Note that since Ft ;FI ¼ 0, Eq. (55) leads to the recursive relation ut ¼

Kub. This gives us 

uðiÞt ¼ K
ðiÞ

uð0Þt (56) 

As K is invertible, from diagonalization we can write, 

K ¼
�
P
��

Λ
��

P
�� 1 (57) 

For the ith term we get, 

K
ðiÞ
¼ ½P�½Λ�ðiÞ½P�� 1 (58) 

Thus, Eq. (56) can be rewritten as, 

uðiÞt ¼ ½P�½Λ�
ðiÞ
½P�
� 1

uð0Þt (59)  

Table 8 
Extreme values of micro strains for applied normal macro strain for both 
boundary layer (BL) and fully periodic (FP) problems for RVE with 45� fibre 
orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz   

BL FP BL FP BL FP 

jStrain Valuej MIN 0.210 0.112 0.153 0.117 0.127 0.123 
MAX 2.680 2.430 3.200 2.550 2.180 1.130 

Strain Type MIN εðblÞ
zz  εð1Þ;zz  εðblÞ

zz  εð1Þ;zz  εðblÞ
zz  εð1Þ;yy  

MAX εðblÞ
xy  εð1Þ;xx  εðblÞ

xy  εð1Þ;yy  εðblÞ
xy  εð1Þ;zz   
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which upon pre-multiplying by ½P�� 1 gives 

½P�� 1uðiÞt ¼ ½Λ�
ðiÞ
½P�
� 1

uð0Þt (60)  

or, 

yðiÞt ¼ ½Λ�
ðiÞyð0Þt where; yðiÞt ¼ ½P�

� 1
uðiÞt and yð0Þt ¼ ½P�

� 1
uð0Þt

(61) 

Letting each term be given as, yðiÞtk ¼ yð0Þtk e� i=tk we get, 

Fig. 18. Comparison of micro strain for BL and FP problem - normal and shear load cases for 45� RVE.  

Table 9 
Extreme values of micro strains for applied shear macro strain for both boundary 
layer (BL) and fully periodic (FP) problems for RVE with 45� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

jStrain Valuej MIN 0.44 0.278 3.95 0.272 0.08 0.104 
MAX 18 2.300 74.50 2.320 2.06 0.624 

Strain Type MIN εðblÞ
zz  εð1Þ;zz  εðblÞ

zz  εð1Þ;zz  εðblÞ
xx  εð1Þ;zz  

MAX εðblÞ
xz  

εð1Þ;yz  εðblÞ
xz  

εð1Þ;xz  εðblÞ
zz  

εð1Þ;xy   
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yðiÞtk ¼ yð0Þtk

�
e� 1=tk

�i
¼ yð0Þtk λi

k (62)  

where, λk ¼ e� 1=tk . Considering the norm of the nodal displacements, we 
can write 
�
�yðiÞt

�
��

�
�yð0Þt

�
�e� i=tk �

�
�yðiÞt

�
�ðλÞi (63) 

It is noticed that the exponential decay perfectly matches with the 
displacement norms, as shown in the numerical results later. We will 
also show that the decay of boundary-layer depends on the strain and 
material. The method of this section can thus be used to study boundary- 
layers for any boundary condition and (periodic) material. 

6. Numerical results 

To illustrate the method given in the previous section, some nu-
merical results are presented. To study these effects, three different cell 
geometries are considered for unidirectional fibre reinforced composites 
with fibres orientated at 00, 450 and 900 as shown in Fig. 9. 

By using the required information three dimensional representative 
volume element (RVE) models are generated in ABAQUS/Standard, 
which are then imported in HYPERMESH software for meshing. Initially, 
solid RVE is meshed on one side of the surface of cube using two 
dimensional (2D) triangular elements and then same elements get 
duplicated and translated to the opposite face to maintain periodicity. 
Three dimensional (3D) linear tetrahedron matrix and fibre elements are 
created, which now represent an RVE with finite elements. All the three 
finite element (FE) models are generated with approximately 2609 
nodes and 11121 elements, as shown in Fig. 9. Once the meshing is over, 
the mesh data like, the total number of elements, total number of nodes, 
their coordinates and node connectivity, is extracted. These are given as 
input to the mathematical homogenization code, which is written in 
FORTRAN 77. In this study, unidirectional composite laminate 
composed of epoxy matrix and carbon fibre is considered. The constit-
uent material for matrix and fibre are assumed as isotropic and trans-
versely isotropic, respectively. Tables 1 and 2 give the material 
properties used in this study. 

The focus of these analyses is to study the longitudinal, transverse 
and shear behaviour of the material and also to determine how the 
boundary layer decays from the fixed edge to the interior of the domain 
in the y3 direction. Note that on the y1 � y3 and y2 � y3 planes the 
periodicity of uðblÞ is enforced. In this boundary layer analysis, the above 

mentioned FE models are considered with non - periodicity boundary 
condition in the depth direction. 

6.1. Decay of displacement for RVEs with fibre orientations 0�, 45� and 
90�

For the above analyses, the norms are calculated for different fibre 
orientation, i.e. 0�, 45� and 90� RVE. L2 - norm of nodal displacements 
for each of the displacement component is used as a measure. Here, L2 - 
norm is defined as 

kxkL2
¼

ffiffiffiffiffiffiffiffiffiffiffiX

i
x2

i

r

(64) 

The problem is solved by applying unit macro strain on these finite 
element models. It is observed that the displacement norms are settling 
within five to six layers along the thickness direction. However, for each 
fibre orientation the magnitude of the displacement norm varies 
significantly for normal and shear load cases. Fig. 10 and Fig. 11 show 
the plots of the decay of the displacement norms for different fibre 
orientation from Face/layer 2 to 7. The figures clearly demonstrate that 
the displacement norm settles quickly, for different loading conditions. 

From Table 3, it can also be seen that for 0� fibre orientation the 
minimum and the maximum norm occur for v displacement and for 90�

fibre orientation both of these norms occur for u displacement. However, 
minimum and maximum displacement norm for 45� RVE are for w and v 
displacements, respectively. For the shear load case, the maximum value 
is 7:54E � 01 for macro strain of εð0Þ;yz for 0� RVE. Even the maximum 
values for the other shear load cases are 5:42E � 01 for εð0Þ;yz for 45� RVE 
and 2:85E � 02 for εð0Þ;xy for 0� RVE. 

Interestingly, note that the minimum norm values for all the three 
orientations occur for the macro normal load conditions but the 
maximum norm values occur for the macro shear load case, mainly for 
εð0Þ;yz loading condition. This means that the boundary layer tail has a 
significant effect for εð0Þ;yz macro strain. From Table 3, it can be seen that 
the maximum norms are decaying in 5–6 layers for 45� and 90� RVEs. 
For 0� RVE the maximum norm is settling down in 6–7 layers. Note that 
for all the three different fibre orientations, boundary layer due to shear 
load is significant. 

To show the theoretically desired (refer to Saint-Venant’s principle 
based on Hill-Yosida theorem) exponential decay by means of curve 
fitting, we get the equation which is of the form 

y � Ae� z=t (65)  

where, z is the distance along the strip and t is the decay factor or 
characteristic length. For studying the exponential decay of the 
displacement fields, we considered the plots from Face 2 to Face 7 for the 
above mentioned maximum displacement norms. Fig. 12 shows the 
exponential decay of the displacement norms for macro strain εð0Þ;yz for 
RVE with 0� fibre orientation. 

In Fig. 12, the table shows the values of the constants of Eq. (65) for 
different displacement norms for εð0Þ;yz macro strains. Fig. 13 shows the 
exponential decay of the maximum displacement norms for macro strain 
εð0Þ;yz for RVE with 45� fibre orientation. In Fig. 13, table shows the 
constant values of the exponential decay for the RVE with 45� fibre 

Table 10 
Extreme values of micro stresses for applied normal macro strain for both 
boundary layer (BL) and fully periodic (FP) problems for RVE with 0� fibre 
orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

jStress Valuej MIN 7.05 6.50 244 465 560 405 
MAX 76.50 108 1910 7900 4800 7900 

Stress Type MIN σðblÞ
xz  σð1Þ;xz  σðblÞ

xz  σð1Þxz  σðblÞ
xz  σð1Þ;xz  

MAX σðblÞ
yy  σð1Þ;xx  σðblÞ

yy  σð1Þ;yy  σðblÞ
yy  σð1Þ;zz   

Table 11 
Extreme values of micro stresses for applied shear macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 0� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

jStress Valuej MIN 3720 410 1660 182 1760 155 
MAX 3:04E04  4320 9750 1:07E04  1:70E04  1:07E04  

Stress Type MIN σðblÞ
yz  σð1Þ;xz  σðblÞ

xy  σð1Þ;yz  σðblÞ
yz  σð1Þ;yz  

MAX σðblÞ
xx  σð1Þ;yz  σðblÞ

xx  σð1Þ;xz  σðblÞ
xx  σð1Þ;xy   
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Fig. 19. Comparison of micro stress for BL and FP problem - normal and shear load cases for 0� RVE.  

Table 12 
Extreme values of micro stresses for applied normal macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 90� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

jStress Valuej MIN 10.3 120 425 5900 292 9000 
MAX 98 6400 2370 7:35E05  6050 2:50E05  

Stress Type MIN σðblÞ
xz  

σð1Þ;xx  σðblÞ
yz  

σð1Þ;xz  σðblÞ
xz  

σð1Þ;xx  

MAX σðblÞ
xx  σð1Þ;yy  σðblÞ

zz  σð1Þ;yy  σðblÞ
yy  σð1Þ;yy   
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Table 13 
Extreme values of micro stresses for applied shear macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 90� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

jStress Valuej MIN 1180 1:68E04  3080 430 1060 590 
MAX 7:60E04  9:20E05  4:60E04  1:36E05  2:44E04  1:28E05  

Stress Type MIN σðblÞ
xy  σð1Þ;xx  σðblÞ

xz  σð1Þ;yz  σðblÞ
yz  σð1Þ;yz  

MAX σðblÞ
xx  σð1Þ;yy  σðblÞ

yz  
σð1Þ;xy  σðblÞ

xx  σð1Þ;xy   

Fig. 20. Comparison of micro stress for BL and FP problem - normal and shear load cases for 90� RVE.  
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orientation. 
Similarly, Fig. 14 shows the exponential decay of the maximum 

displacement norms for macro strain εð0Þ;yz for RVE with 90� fibre 
orientation. In Fig. 14, table shows the constant values of the expo-
nential decay for the RVE with 90� fibre orientation. 

It is observed that after doing the curve fitting, the exponential decay 
plot converges with the norm plot (with the value of R2 above 0.99) for 
all the load cases. Importantly, it should be noted that the coefficients 
(for the exponential decay) depend strongly on the load type and fibre 
orientation. 

6.2. Variation of micro strains along the depth of the RVE 

In this section, we will study the variation of micro strains along the 
depth of an RVE for both boundary layer (BL) and fully periodic (FP) 
problems. Here, RVEs with 0�, 45� and 90� fibre orientations are studied. 
The planes on which the micro strains distribution is obtained are shown 
in Fig. 15 for these RVEs. For 0� and 45� RVEs the planes are midway 
along x - axis and for 90� RVE it is midway along y - axis. 

The variation of micro strains and micro stresses are estimated for all 
the three macro normal strains εð0Þ;jj and macro shear strains εð0Þ;ij. Note 
that the bar on the symbol for macro strain, asterisk for both boundary 
layer microstrain and fully periodic microstrain (as in Eq. (34)) are 
omitted for brevity in the following. Illustrative contour plots are pre-
sented, for both minimum and maximum micro strain and stress, only 
for one normal macro strain and one shear macro strain cases. 

6.2.1. Variation of micro strains along the depth of the RVE for 0� fibre 
orientation 

For macro normal strain load cases, the minimum and maximum 
values of micro strains and their types, for boundary layer and fully 
periodic problems are reported in Table 4. Further, the corresponding 
micro strain distributions on a plane perpendicular to x - axis at mid 
length of x - axis through contour plots are shown in Fig. 16. The plane 
on which the contours are plotted is also depicted in these figures. From 
the results, it can be seen that in comparison to the boundary layer 
problem, the micro strain values for all the macro strains are higher for 
fully periodic problem except for εð0Þ;xx. Furthermore, it can be observed 
that for macro normal cases, the maximum micro strains for fully peri-
odic problem occur in normal micro strain components whereas for 
boundary layer problem the maximums occur for shear micro strains. 

From Table 5, we see that for macro shear strains the maximum of 

maximum and minimum values in micro strains are obtained for the 
boundary layer problem. However, the nature of the micro strains for 
which these values are obtained differ for boundary layer as compared 
to the fully periodic problem. The minimum values are obtained only for 
normal micro strains. In contrast, maximum value is obtained for shear 
micro strains. 

Thus, for this particular fibre orientation, shear load cases have 
significant effect due to boundary layer. Furthermore, it can be observed 
that for fully periodic cases with macro shear strains the maximum 
values are also reported for the same nature of micro strains, that is for 
εð0Þ;yz the maximum value is seen for εð1Þ;yz and likewise. However, for 
boundary layer problem these micro strain components are different 
than macro strain cases. 

6.2.2. Variation of micro strains along the depth of the RVE for 90� fibre 
orientation 

The minimum and maximum values of micro strains and their types 
in this RVE, for boundary layer and fully periodic problems are reported 
in Table 6 for normal macro strain. Further, the corresponding micro 
strain distributions on a plane perpendicular to y - axis at mid length of y 
- axis (as shown in Fig. 15) through contour plots are shown in Fig. 17. 
For the 90� RVE, it has been observed that εðblÞ

xx has the lowest value for 
the boundary layer problem among all the normal load cases. From 
Table 6, it can be observed that for εð0Þ;yy and εð0Þ;zz the maximum strain 
values are respectively 10 and 4 times higher for fully periodic problem 
compared to boundary layer. Also, in all macro strain cases it occurs for 
the micro strain εð1Þ;yz. Thus, it is an important result that for the macro 
normal load cases micro strain εð1Þ;yz is significantly effected by the 
boundary layer correction, with a lowering of the actual strain. Further, 
it is important to see that except εð0Þ;xx for boundary layer problem, the 
macro normal strains affect the micro shear strains. 

The results due to macro shear load cases are reported in Table 7. It is 
noticed from Tables 6 and 7 that the minimum strain value of both the 
normal and shear load cases for boundary layer and fully periodic 
problem occurs in micro normal strains only. For all shear load cases, the 
maximum strain value for boundary layer and fully periodic problem 
occurs for micro shear strains. It can also be noticed that the maximum 
value is 29.2 for εðblÞ

yz for εð0Þ;xz which is significantly higher compared to 
other strain values. Further, for εð0Þ;yz and εð0Þ;xy the maximum values of 
micro strains have significant differences. 

Thus, from the above discussion it can be noted that the normal and 

Table 14 
Extreme values of micro stresses for applied normal macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 45� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

jStress Valuej MIN 1960 1480 1620 1160 1100 550 
MAX 1:40E04  1:50E04  1:52E04  1:76E04  1:08E04  9550 

Stress Type MIN σðblÞ
yz  σð1Þ;yz  σðblÞ

yz  σð1Þ;xz  σðblÞ
xz  σð1Þ;xy  

MAX σðblÞ
xx  σð1Þ;xx  σðblÞ

xx  σð1Þ;yy  σðblÞ
xx  σð1Þ;xy   

Table 15 
Extreme values of micro stresses for applied shear macro strain for both boundary layer (BL) and fully periodic (FP) problems for RVE with 45� fibre orientation.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

jStress Valuej MIN 1:34E04  2020 4:20E04  2000 2680 505 
MAX 6:10E04  7450 1:12E06  7500 1:33E04  1:38E04  

Stress Type MIN σðblÞ
zz  σð1Þ;xz  σðblÞ

yz  σð1Þ;yz  σðblÞ
xy  σð1Þ;yz  

MAX σðblÞ
yy  σð1Þ;yz  σðblÞ

xx  σð1Þ;xz  σðblÞ
zz  

σð1Þ;xy  

Further, it is to be noted that stress values are much higher for the shear condition compared to the normal cases. 
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Fig. 21. Comparison of micro stress for BL and FP problem - normal and shear load cases for 45� RVE.  

Table 16 
Variation of σRMS along the depth of the RVEs for both boundary layer (BL) and fully periodic (FP) problems considering normal macro strain.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  

BL FP BL FP BL FP 

0� RVE 8:917E02  2:084E03  1:139E04  7:092E03  2:101E04  5:399E03  
90� RVE 2:966E03  5:483E03  9:102E04  1:850E03  1:583E05  4:664E03  
45� RVE 6:101E05  3:390E04  7:229E05  3:385E04  4:383E05  1:928E04   
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shear load cases have significantly different effects for fully periodic and 
boundary layer problems. It is also observed that micro strain εðblÞ

yz has 
significant effect due to boundary layer. 

6.2.3. Variation of micro strains along the depth of the RVE for 45� fibre 
orientation 

For this particular fibre orientation, the minimum and maximum 

Table 17 
Variation of σRMS along the depth of the RVEs for both boundary layer (BL) and fully periodic (FP) problems considering shear macro strain.  

Macro Strain εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

BL FP BL FP BL FP 

0� RVE 7:872E06  7:479E03  3:440E05  1:878E04  4:632E05  1:885E04  
90� RVE 3:001E05  2:006E04  2:514E07  7:513E03  1:107E05  1:895E04  
45� RVE 1:208E07  1:562E04  3:087E07  1:535E04  1:423E05  2:594E04   

Fig. 22. Distribution of σRMS for macro strain (εð0Þ;zz) for fully periodic problem (FP). (a) RVE with 0� fibre orientation, (b) RVE with 90� fibre orientation, (c) RVE 
with 45� fibre orientation. 

Fig. 23. Distribution of σRMS for macro strain (εð0Þ;yz) for fully periodic problem (FP). (a) RVE with 0� fibre orientation, (b) RVE with 90� fibre orientation, (c) RVE 
with 45� fibre orientation. 

Fig. 24. Distribution of σRMS for macro strain (εð0Þ;zz) for boundary layer problem (BL). (a) RVE with 0� fibre orientation, (b) RVE with 90� fibre orientation, (c) RVE 
with 45� fibre orientation. 
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values of micro strains and their types, for boundary layer and fully 
periodic problems are reported in Table 8 for normal macro strain. 
Further, the variation of micro strains are observed through contour 
plots which are shown in Fig. 18. Both normal and shear macro strains 
are applied on the RVE for both boundary layer and fully periodic 
problems. Here, for all the cases the maximum value occurs for 
boundary layer problem. Further, for all macro normal load cases, it can 
be observed that the maximum value among all the micro strain is for 
εðblÞ

xy but for the fully periodic problem the maximum strain value occurs 
for the micro normal strain corresponding to a macro strain applied (see 
Table 8). 

The minimum and maximum values of micro strains and their types, 
for boundary layer and fully periodic problems are reported in Table 9 
for macro shear strains. For εð0Þ;yz and εð0Þ;xz the maximum strain value 

occurs for εðblÞ
xz with values 18 and 74.5, respectively which is much 

higher compared to the micro strain for fully periodic problem. How-
ever, for εð0Þ;xy maximum strain value occurs for εðblÞ

zz . For the fully pe-
riodic problem, the maximum value occurs for micro strain types 
corresponding to macro strain. For example, for εð0Þ;yz it occurs for εð1Þ;yz. 

Thus, for this particular fibre orientation it can be noticed that both 
for normal and shear macro strain the maximum strain value occurs only 
for the micro shear strains mainly in the boundary layer problem. So, it 
can be concluded that boundary layer significantly affects the shear 
micro strains, mainly εð1Þ;xz. 

6.3. Variation of micro stresses along the depth of the RVE 

In this section, we will study the variation of micro stresses along the 
depth of an RVE for both boundary layer (BL) and fully periodic (FP) 
problems. Here, RVEs with 0�, 45� and 90� fibre orientations are studied. 

6.3.1. Variation of micro stresses along the depth of the RVE for 0� fibre 
orientation 

The variation of micro stresses has been also observed due to applied 
macro strains on the RVE. The variation of micro stresses due to applied 
macro strains is reported in Table 10 and Table 11 for normal and shear 
macro strains, respectively. Further, the corresponding distribution of 
these micro stresses on planes as shown in Fig. 15 is shown in Fig. 19 for 
normal and shear macro strains, respectively. It can be noticed that for 

Fig. 25. Distribution of σRMS for macro strain (εð0Þ;yz) for boundary layer problem (BL). (a) RVE with 0 fibre orientation, (b) RVE with 90� fibre orientation, (c) RVE 
with 45� fibre orientation. 

Table 18 
Variation of maximum σRMS along the fibre-matrix interface for both boundary layer (BL), fully periodic (FP) problems for RVE with 0� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

Boundary layer (BL) problem 40.726 2015.783 2351.362 125126.904 29932.831 11093.059  

Fully periodic (FP) problem 47.261 4509.979 2904.696 3183.566 10605.603 10512.138  

Ratio (BL/FP) 0.862 0.447 0.810 39.304 2.822 1.055  

Table 19 
Variation of maximum σRMS along the fibre-matrix interface for both boundary layer (BL), fully periodic (FP) problems for RVE with 90� fibre orientation.  

Macro Strain εð0Þ;xx  εð0Þ;yy  εð0Þ;zz  εð0Þ;yz  εð0Þ;xz  εð0Þ;xy  

Boundary layer (BL) problem 22.333 1148.409 1428.395 21506.160 204189.102 8215.585  

Fully periodic (FP) problem 3609.071 41.138 2641.533 10683.544 3220.292 10545.845  

Ratio (BL/FP) 0.006 27.916 0.541 2.013 63.407 0.779  

Fig. 26. Unit cell representing the fibre-matrix interface where the maximum 
σRMS value is extracted. 
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the normal macro strains the maximum stress values are much higher for 
the fully periodic problem compared to boundary layer corrected case. 
These values are 2–4 times more than corresponding boundary layer 
problem values. From Table 10, it can be noticed that the maximum 
stress value for the boundary layer case occurs for σðblÞ

yy whereas for the 
fully periodic case the maximum stress value occurs corresponding to 
applied macro strain, i.e. for εð0Þ;jj it is σð1Þ;jj. Further, it is interesting to 
note that the minimum value occurs for σxz component for all normal 
macro strain cases in both boundary layer and fully periodic problems. 

For the macro shear load cases, it can be observed that the maximum 
stress value is for σðblÞ

xx for all the three applied macro shear strains. 
Further, from Table 11 it is observed that σðblÞ

xx has the maximum stress 
value for unit macro strain of εð0Þ;yz. However, for the fully periodic case 
it can be noticed from Table 11 that maximum stress value occurs for the 
corresponding shear micro strains, i.e. for εð0Þ;ij the stresses are σð1Þ;ij. 

Thus, from these results it can be concluded that stress values are 
maximum for the boundary layer case as compared to fully periodic for 
the macro shear load case. However, for the macro normal load cases the 
maximum reduces when boundary layer correction is made. 

6.3.2. Variation of micro stresses along the depth of the RVE for 90� fibre 
orientation 

The minimum and maximum values of micro stresses and their types, 
for boundary layer and fully periodic problems are obtained for this RVE 
and reported in Table 12 and Table 13 for macro normal and shear 
strains, respectively. The variation of micro stresses is given as contour 
plots in Fig. 20. From Table 12, it can be noticed that the stress values 
are maximum for the fully periodic problem when macro normal loads 
are applied. Interestingly, from Table 12 it can be seen that the 
maximum stress occurs for σð1Þ;yy for all the three macro normal strains 
for the fully periodic case. However, for the boundary layer case, the 
maximum value depends on the applied macro strain. It is noteworthy 
that for εð0Þ;yy and εð0Þ;zz the maximum stress for the fully periodic case is 
much higher compared to the boundary layer solution. 

From Table 13 it is seen that for the macro shear load condition, the 
maximum stress occurs for fully periodic case. The maximum value 
observed is σð1Þ;yy for fully periodic case when εð0Þ;yz is applied. Further, it 

is seen that the maximum stress value occurs for σðblÞ
xx for both the macro 

strain εð0Þ;yz and εð0Þ;xy for the boundary layer case but for the fully pe-
riodic problem it occurs for σð1Þ;xy. Interestingly, the boundary layer 
correction reduces the micro-stress intensity for this case. 

It is observed that for the normal macro strains the maximum micro 
stresses occur for normal components for both boundary layer and fully 
periodic problem. However, for the shear case both normal and shear 
micro strains can be the higher. 

6.3.3. Variation of micro stresses along the depth of the RVE for 45�
fibre orientation 

Finally, for the 45� fibre orientation the micro stress variations have 
been studied for different macro strains. The minimum and maximum 
values of micro stresses and their types, for boundary layer and fully 
periodic problems are reported in Table 14 and Table 15 for macro 
normal strain and shear strain cases, respectively. Further, the corre-
sponding distribution of these micro stresses are shown in Fig. 21 for 
both normal and shear macro strains. From Table 14 it can be noticed 
that the maximum stress value occurs for σðblÞ

xx for all the three normal 
macro strains εð0Þ;jj for the boundary layer case. However, for the fully 
periodic case maximum stress value occurs for σð1Þ;jj corresponding to 
applied macro strain εð0Þ;jj. Interestingly, it can be noticed that there is 
not much difference in stress values between the boundary layer and 
fully periodic problems for this particular fibre orientation contrary to 
the observations made earlier. 

The stress value is maximum for the σðblÞ
yy for unit macro strain εð0Þ;yz 

which is 6:10E04 but for the fully periodic case it is only 7450. Inter-
estingly, for εð0Þ;xy the maximum stress value for boundary layer and 
fully periodic problem are very close which is 1:33E04 and 1:38E04, 
respectively but for different micro stresses, i.e. σðblÞ

zz and σð1Þ;xy. 

6.4. Variation of σRMS along the depth of different RVEs for boundary 
layer and fully periodic problem 

After studying the variation of micro strains and micro stresses for 
the RVEs with different fibre orientations, we have extended the study to 
the variation of RMS value of the micro stress, σRMS due to unit macro 
strains on these two scenarios. In this study, initially effect of macro 
normal strain is considered. Table 16 presents the σRMS values for the 
applied normal macro strain for both boundary layer and fully periodic 
problems. These values are reported for all the three RVEs. From this 
table, it can be noticed that in general, for the boundary layer the σRMS 
values are much higher compared to the fully periodic condition for all 
the three macro normal strains. 

The σRMS values for macro shear strain cases for the three RVEs of 
boundary layer and fully periodic problems are reported in Table 17. 
From this table it is clearly seen that σRMS values are significantly higher 
for boundary layer problem than fully periodic problem for all the cases. 
Further, in case of boundary layer problem σRMS values for 45� RVE are 
significantly higher compared to those 0� and 90� RVEs for εð0Þ;yz and 
εð0Þ;xz cases whereas for εð0Þ;xy case it is higher in 0� RVE. Similarly, for 
fully periodic problem the maximum σRMS values are seen for εð0Þ;yz, 
εð0Þ;xz and εð0Þ;xy cases in 90�, 0� and 45� RVEs, respectively. 

Further, contour plots for the variation of σRMS are provided on the 
planes as shown in Fig. 15 from Fig. 22 to Fig. 25 for both fully periodic 
and boundary layer problems. Illustrative contour plots are shown only 
for macro strain εð0Þ;zz and εð0Þ;yz for both fully periodic (FP) and 
boundary layer (BL) problems. These plots also show the areas of high 
stress concentration. Damage initiation is expected to take place in these 
regions due to applied macro strains for different fibre orientation (for 
example, see Fig. 23). 

It can be seen that σRMS values for boundary layer corrected solutions 
are significantly higher than those for fully periodic problem. It is also 
seen that σRMS values are more for applied macro shear strain cases than 
applied macro normal strain cases for all RVEs. Furthermore, these 
distributions show clear symmetry in case of applied macro normal 
strains. From Fig. 24 - Fig. 25, it is seen that the effect of shear loading is 
significant on σRMS for boundary layer problem. 

Finally, we extended our study for the variation of maximum σRMS 
around the fibre-matrix interface. The variation is calculated for both 
boundary layer and fully periodic problem for 0� and 90� fibre orien-
tation. Table 18 and Table 19 show the variation of maximum σRMS for 
boundary layer and fully periodic problem for 0� and 90� fibre orien-
tations, respectively. The data is extracted around the fibre-matrix 
interface as shown in Fig. 26. 

It is observed that for the RVE with 0� fibre orientation, the ratio is 
less that 1 for normal macro strain cases. However, for shear macro 
strain case, εð0Þ;yz the ratio is very high (see Table 18). However, for RVE 
with 90� fibre orientation, the ratio is high for normal macro strain case, 
εð0Þ;yy and shear macro strain cases, εð0Þ;yz and εð0Þ;xz. Ratios for the other 
macro strain values are less than 1 (See Table 19). So, the ratio varies not 
only with the fibre orientation but also with the applied macro strain. 

7. Conclusion 

In this study, a novel approach to study the effect of boundary layer 
at the edge of the composite material is presented. The classical math-
ematical homogenization theory is modified from the interior of the 
domain to the edge of the composite material. The method presented 
uses the macro and fully periodic micro solution to determine a 
boundary layer correction term, which accounts for the mismatch in the 
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boundary displacement induced due to the fully periodic micro solution. 
The mismatch of the displacement drives the boundary problem corre-
sponding to the boundary layer correction. This method gives a more 
accurate representation of the local stresses in the neighbourhood of the 
boundary. The method developed is used to study plies with three 
different fibre orientations. For the applied unit macro strains, variation 
of the micro strains and micro stresses are studied along strips termi-
nating at the boundary. Variation of σRMS is studied in order to deter-
mine critical regions in the vicinity of boundary, which will be regions of 
damage initiation. Comparison with the classical two-scale solution 
shows a significant change in the local stress concentrations as a result of 
the boundary layer correction. 

The major conclusions that can be drawn from this study are:  

1. The boundary layer tail decays within 5–6 layers from the fixed edge.  
2. The displacement norm shows exponential decay for the boundary 

layer problem. This is the classical St. Venant principle. Note that the 
rate of decay varies with the load type and fibre orientation.  

3. The boundary correction leads to significant changes in the local 
strains, in the layer close to the boundary. Consequently, the varia-
tion of micro stresses is also similar. Interestingly, σyz and σxz in-
crease significantly near the boundary, for almost all load cases and 
orientations considered. The increase can be as high as 772% for RVE 
with 90� fibre orientation.  

4. The minimum and maximum values of micro strains and stresses for 
all the cases in this study vary from one RVE to another as it is 
noticed from the contour plots. This variation is mainly due to the 
orientation of the fibre. So, orientation of the fibre has a significant 
effect on the boundary layer tail to decay.  

5. It is noteworthy that σRMS changes significantly when the boundary 
layer correction is added. The increase can be as high as 133% for 
εð0Þ;xx case of RVE with 0� fibre orientation. This is important as it 
completely changes the failure initiation mechanism (matrix normal 
or shear mode), failure load value and failure zones, in the vicinity of 
the boundary. 

The method presented in this study can be easily extended to Neu-
mann or Robin boundary conditions, leading to a better understanding 
of the mechanics near boundaries. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compositesb.2019.05.026. 
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