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Abstract Epoxy is a widely used thermosetting polymer in various engineering fields to develop composites.
Studying its damage and fracture behaviour under various loading conditions is highly important. In this work,
a micromechanics-based damage model is developed for understanding the damage initiation and growth in
epoxy. To support this damage model, tests are performed for obtaining mechanical properties and to study the
damage behaviour of epoxy. Diglycidyl ether of bisphenol A (DGEBA) resin with triethylenetetramine (TETA)
hardener in 10:1 ratio are mixed and cured to make the epoxy. To give a physical meaning to damage, the model
quantifies the damage as volume fraction of a spherical void in a unit representative volume element (RVE) of
epoxymaterial. Degraded effective properties are computed for damagedRVEusing standardmechanics-based
micromechanical approach. A second-degree polynomial is established for effective stiffness with damage at
any loading instance. This functional form of degraded stiffness in terms of damage is used in constitutive
relations. A strain energy- based approach is used to compute thermodynamic forces, a state variable used for
the evolution of damage. A damage evolution model is proposed with two material-specific parameters which
are determined using experimental tests. The model is implemented by user material subroutine (UMAT) in
commercial finite element software, Abaqus/Standard. The proposed model accurately captures the tensile
behaviour of the epoxy material and gives capability to simulate an epoxy material’s damage behaviour from
its initiation till failure or macrolevel rupture under uniaxial tensile loading. The developed model predicts the
behaviour of the material in agreement with experimental results.
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1 Introduction

Understanding the material failure mechanism and its modelling has always been important for the better
utilization of materials in critical applications. Microlevel damage and macrolevel fracture have been the
criteria to measure the degradation of material behaviour. Kachanov [1] and Rabotnov [2] in the past have
shown that damage initiation is not the final fracture. Failure at microlevel grows with loading in the material
and leads to macrolevel fracture. This process of damage involves degradation of the effective stiffness at
those damaged material points. The continuum damage mechanics is the field which primarily deals with it
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[3]. Janson [4] in his work has demonstrated how microlevel damage leads to macrolevel fracture. Mazars and
Pijaudier-Cabot [5], assumed some microlevel damage and fracture variables and established some relations
between them using thermodynamics.

Damage in a material is referred as discontinuities in continuum, and it is represented as the creation
and growth of microvoids in the continuum. Damage, in its physical sense, is always related to inelastic or
irreversible strains and more generally to strain energy dissipation which occurs either on the mesoscale (the
scale of the RVE), or on the microscale, the scale of the discontinuities. Ladevèze et al. [6–8] used damage
mechanics and thermodynamics principles to predict the progressive damage in interlaminar interface and
growth of fracture. They used state-dependent variables to compute the deterioration of material and damage
initiation and its evolution. They used a linear degradation of the stiffness with damage from its initiation to
failure at macrolevel. Different damage parameters were used for failure modes in the damage modelling of
the composites. The numerical methods developed by Ladevèze [9,10] in prediction of rupture enhanced the
computational capabilities in computational damage mechanics.

In this study, a novel model is developed to explain the damage initiation and its growth for polymer
materials. Standard mechanics-based micromechanical approach is used to compute effective properties of a
representative volume element (RVE) [11]. For modelling the damage, an RVE with a spherical void at its
centre is considered. The spherical void is assumed to have no elastic properties and rest of the material is
given the properties of an epoxy material. The volume fraction of the spherical void is the measure of damage
in the RVE. Effective elastic properties of the RVE for a series of damage sizes are computed using standard
mechanics approach known as Hill’s concentration factor approach [11,12]. A quadratic relation is established
for degraded elastic properties and the damage indicator.

For establishing a damage law including damage initiation and damage saturation strain energy release
rate with respect the damage is used. A simple inelastic strain model is used in terms of damage and ultimate
fracture strain of the material. A general form of damage evolution is established, and then a material-specific
damage law is obtained by best matching computation stress–strain behaviour with the experimental one. This
model is implemented using user material subroutine in Abaqus/Standard [13,14]. Abaqus/Standard offers a
platform to define a user’s choice constitutive relation using user material subroutine [14].

Material under this study is epoxy. This is the mostly used polymeric material in aerospace applications.
Various composites, such as nanocomposites [15–17], glass fibre/epoxy [18,19], carbon fibre/epoxy [20–25],
have been developed using thismaterial. It has excellent binding properties and provides greatmatrix behaviour.
It transfers the load to the reinforcing fibres without any lag. Performing its damage analysis is very important
to enhance the design capabilities of the composite materials. In this work, epoxy system constitutes diglycidyl
ether of bisphenol (DGEBA) resin and triethylenetetramine (TETA) hardener. Experimental study is conducted
for mechanical properties of this epoxy. Experimentally obtained data is used for the user material subroutine
as input which gives the damage evolution model parameters for this material.

In the following the micromechanical modelling of damage, its modelling and experimental evaluation are
presented.

2 Micromechanical modelling of damage

Micromechanics is widely used to determine the effective properties of the materials such as composites and
solid foams. consists of two or more constituents of different properties and distribution. In a fibrous composite
at the fibre and matrix level, it is used to determine the effective or averaged elastic or inelastic properties
of a composite lamina, depending on the distribution, properties and volume fraction of each constituents in
the RVE. The following section will describe the definition of the damage and its micromechanical model
developed in the present work.

2.1 Damage: definition and quantification

Many researchers in the past have modelled different modes of damage at micro or continuum level using
micromechanics. For example, Chevalier et al. [26] have modelled the damage in an RVE and analysed it
using micromechanics. Furthermore, based on this study, they proposed a new fracture criterion for semi
brittle epoxy materials. They considered the defect as ellipsoidal void in an RVE. In the present study, the
progressive internal deterioration of the material is represented by a single spherical void inside an RVE. The
radius of the sphere r increases as the progressive material degradation occurs, as shown in Fig. 1. The change
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Fig. 1 Growth of void or damage in an RVE

in state of stress or strain leads to change in spherical void in the RVE which, in turn, leads to degradation of
the elastic behaviour of the material. The damage d is quantified as the volume fraction of the spherical void
in the RVE is given as:

d = VVOID
VRVE

(1)

where, VVOID and VRVE are volume of the void and RVE of side a, respectively, and are defined as follow:
VVOID = 4

3πr
3; VRVE = a3. In the computations a = 1, is taken. Micromechanical analysis is performed

on this RVE for various damage sizes for computations of the effective properties of the RVE using Hills
concentration factors approach [11,12] which is briefly explained in the next section.

Damage initiation can be visualized as the sprouting of the spherical void in the unit cube. It is assumed
that there will be no damage in the material till it reaches yield stress during its loading history. After reaching
yield once, as stress grows further, it leads to growth of the void and hence the damage value increases till final
fracture. In a unit cube RVE, due to computational constraints, the allowable value of damage size is from
r = 0 to r = rc = 0.495 units. As void grows to rc, the damage d becomes critical (dc). At dc, the damage
reaches saturation and RVE breaks completely. This stage is the start of macro level material fracture in the
body. It is to be noted that in continuum, an RVE represents a point.

2.2 Hill’s concentration factors approach

Micromechanics employs different methods to compute the averaging of the properties. Gregy [27] in his work
has shown that the mathematical theory of homogenization [28] and Hill’s concentration factors approaches
[11,12] yield similar results for an RVE with spherical void at its centre. In this study, Hill’s concentration
factor approach is used to compute the effective properties of the RVE with void and matrix as its constituents.
This standard mechanics-based approach works on the principle of stress and strain averaging in a composite
material with fibre and matrix as two phases [11]. The average strains as a linear combination of unit strains
were applied on RVE boundary surfaces. Thus, six fundamental cases were analysed state of strains and stress
in the phases. The void has a volume fraction for each size of its radius and has zero elastic properties. The
averaged stresses σ̄i j in the RVE related to corresponding average strains ε̄kl applied, are given as:

σ̄i j =
[
VvC

(v)
i j pm Ā(v)

pmkl + VmC
(m)
i j pm Ā(m)

pmkl

]
ε̄kl = C∗

i jkl ε̄kl (2)

where subscripts v and m represent the quantities correspond to void and matrix material, respectively. V is
the volume fraction, Ci jpm is stiffness of the phase, Ā pmkl is the phase averaged Hill’s strain concentration
factor and C∗

i jkl represents the effective stiffness of the RVE. The details of this method can be seen in [11,29].
Hence, for computing effective properties of the RVE of various void volume fractions, the void is assigned
zero stiffness, i.e. C (v)

i j pm = 0. Now, Eq. (2) can be rewritten as:
[
VmC

(m)
i j pm Ā(m)

pmkl

]
ε̄kl = C∗

i jkl ε̄kl (3)
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Hill [11,12] introduced the pointwise phase concentration factors to relate the pointwise strains with its phase
averaged values. These concentration factors can be averaged over its own phase to give averaged values as:

Ā(m)
i jkl = 1

Vm

∫

Vm
A(m)
i jkl(x)dVm (4)

Using this phased averaged strain concentration factor, phase averaged pointwise strains in epoxy material
ε̄
(m)
i j can be related to RVE averaged strain ε̄kl as follow:

ε̄
(m)
i j = Ā(m)

i jkl ε̄kl (5)

ε̄
(m)
i j = 1

Vm

∫

Vm
ε
(m)
i j (x)dVm (6)

here, Ā(m)
i jkl is obtained by applying uniform strains on theRVE inAbaqus/Standard. Six different uniform strains

as displacement (ε̄kl ) are applied and ε
(m)
i j (x) are pointwise strain fields obtained from the FEM solution. These

strain fields are averaged over the whole volume of the RVE using Eq. (6). Bar on the deformation symbols
indicates the averaged value over the RVE. Therefore, all rows of Ā(m)

i jkl are obtained by six uniform boundary
conditions applied on the particular RVE. Hence, for various values of Vm , the degraded effective stiffness
matrix C∗

i jkl of the RVE is obtained from this micromechanical analysis. In this study, Young’s modulus and
Poisson’s ratio of the epoxy material are obtained from tensile testing. These values are fed as RVE material
for the micromechanical analyses. Various radii of the spherical damage are considered and damaged elastic
constants are evaluated using Eq. (3). Then to use this effective stiffness in a progressive damage model, a
second-order regression models are fit for elastic constants and damage (d) as follow.

Ed = E0
(
1 + E1d + E2d

2) (7)

νd = ν0
(
1 + ν1d + ν2d

2) (8)

Gd = G0
(
1 + G1d + G2d

2) (9)

where subscripts 0 and d refer to undamaged and damaged value of elastic constants, respectively. As evident
from the equations, subscripts 1 and 2 are the coefficients for that elastic constant in the second-order regression
fit equation. These coefficients will be obtained by carrying out micromechanical analyses of the unit RVEs
with various void sizes. These equations will be used in the damage evolution model for energy released rate
computations and stiffness matrix update.

3 Progressive damage evolution model

A damage evolution model defines the growth of damage from its initiation to its saturation. Damage starts
after a threshold at a material point and its growth needs to be defined in terms of state-dependent variables
which can be quantified at every material point at any instant of loading till the damage saturates and a macro
level fracture initiates. In this study, damage growth is described in terms of a thermodynamic force or energy
release rate which is a state-dependent function and computed using strain energy.

3.1 Strain energy density and damage force

Strain energy density is the elastic energy stored per unit volume by a material under loading. At any point in
a loaded material, the strain energy density U0 is given by:

U0 = 1

2
σi jεi j (10)

This strain energy density can be split into hydrostatic strain energy UH and distortional stain energy UD as:

U0 = σ 2
H

2K
+ σ 2

VM

6G
(11)
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where, σH is hydrostatic stress component and σVM is von Mises stress component developed at a material
point. The von Mises stress is evaluated from the deviatoric stress component of the stress tensor as:

σV M =
√
3

2
σi jσi j (12)

Hence, distortional stain energy UD is:

UD = σi jσi j

4G
(13)

However, hydrostatic component of the state of stress is evaluated as follow:

σH = 1

3
tr(σi j ) = σkk

3
= σ11 + σ22 + σ33

3
(14)

In case of metals, the hydrostatic state of stress does not affect the yield behaviour. However, as shown by
Ward [30] for polymers, the yield stress and nonlinear behaviour are affected by the hydrostatic stress. Pan
et al. [31,32] and Hsu et al. [33] have explained the effects of hydrostatic stress component by including into
their visco-plasticity models using the variation of the Drucker–Prager yield criterion [34]. Hydrostatic stress
σH can be compressive or tensile, and hence, it is important to note the effect of compressive σH on damage.
In case of resins, the compressive hydrostatic stress plays a significant role to maintain the continuity of the
material, and it does not allow growth of the damage in the material, rather it closes the void at micro level.
So, to incorporate this effect, Eq. (11) is modified and rewritten as:

U0 = 〈σH 〉2+
2Kd

+ 〈σH 〉2−
2K0

+ σ 2
V M

6Gd
(15)

where, K0 is undamaged bulk modulus and Kd andGd are damaged bulk and shear moduli, respectively. Here,
〈〉+ and 〈〉− are evaluated in case of tensile σH and compressive σH , respectively. This operator indicates that
the damage will grow when the hydrostatic stress is tensile in nature. However, when the hydrostatic stress is
compressive in nature then the damage remains same. K0, Kd and Gd can be computed in terms of damaged
Young’s modulus and Poisson’s ratio at any damaged state as:

Kd = Ed

3(1 − 2νd)
; K0 = E0

3(1 − 2ν0)
; Gd = Ed

2(1 + νd)
(16)

here, subscript d and 0 represent the damaged and undamaged values of mechanical constants, respectively.
Damaged elastic constant will be evaluated from the micromechanical analysis of the damaged RVE.

3.2 Damage evolution model

The thermodynamic force or damage force Yd associated with damage d is calculated as the rate of change of
strain energy density with respect to damage d at the loading step corresponding to τ is given as:

Y τ
d = −∂U0

∂d
(17)

where (−) sign signifies the energy dissipated out of the system. Damage initiates when a material yields
or von Mises stress reaches yield stress of the material. This is true for metals but to account for the effect
of hydrostatic stresses in resin, damage initiation criterion is defined using damage force. The corresponding
value of damage force is referred as threshold damage force, Y0. Hence, putting the values of tensile yield
stress σ t

y and compressive yield stresses σ c
y and Yd is computed with d = 0 to give Y0. Similarly, damage

saturation reaches when damage force reaches its critical value Yc and damage d attains its maximum value,
dc and RVE breaks at this stage. Hence, the material fails at this point. The value of Yc is computed by putting
ultimate stress in tension σ t

ult as well as in compression σ c
ult of the material along with d = dc in the expression

of Yd in Eq. (17). In the proposed evolution model, the healing of the damage is not considered. Here, only
growing nature of the damage is modelled. This is done by taking a maximum value of the thermodynamic
force at a given material point until the current loading state. Thus, Yd = max

0≤τ≤t
Y τ
d .
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For evaluating inelastic strains at a damaged state, a linear inelastic strain model is defined. Inelastic strain
ε I Ndi j

at any damaged state is calculated in terms of damage d , dc and failure strain of the material as:

ε I Ndkl = ε I Ndckl

(
d

dc

)
(18)

where ε I Ndckl
is the inelastic strain in tensorial form at d = dc, which is essentially the fracture strain or ultimate

strain of the material. This inelastic strain is related to stress at any stage between d = 0 to d = dc as follows:

σ d
i j = Cd

i jklε
e
kl = Cd

i jkl

(
εkl − ε I Ndkl

)
(19)

where, Cd
i jkl , εekl and εkl are degraded stiffness, elastic strain tensor and total strain tensor in the material at

any loading stage, respectively. The 3D constitutive relation of elastic strain and stress in terms of damaged
Ed and νd at a material is given in the following equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εe11
εe22
εe33

γ e
23

γ e
13

γ e
12

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Ed

−νd
Ed

−νd
Ed

0 0 0
−νd
Ed

1
Ed

−νd
Ed

0 0 0
−νd
Ed

−νd
Ed

1
Ed

0 0 0

0 0 0 2(1+νd )
Ed

0 0

0 0 0 0 2(1+νd )
Ed

0

0 0 0 0 0 2(1+νd )
Ed

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

τ23

τ13

τ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

This stress is used to calculate Yd , which determines the value of damage in the material at this state of stress.
Following the work by Ladevèze et al. [8], a damage evolution model is proposed as:

d = 0 when Yd < Y0

d = dc

[
Ym
d − Ym

0

Ym
c − Ym

0

]n
when Y0 ≤ Yd ≤ Yc

d = dc when Y0 ≤ Yd ≤ Yc

(21)

where m and n are material-specific parameters which depend on the material under study. These coefficients
are obtained using best curve fitting on experimental stress strain curve for a uniaxial tensile test. Experiments
are carried out to evaluate properties like Young’s modulus, Poisson’s ratio, yield stress, and ultimate stress
along with stress–strain curve of neat epoxy material.

Different values of m and n are taken in the evolution model for a material under study. Then material
parameters, m and n will be obtained using the best matching computed stress strain curve with experimental
stress strain curve. These values of m and n in evolution model can be used to describe the behaviour of the
actual material in a computational model implemented in Abaqus/Standard using user material subroutine
(UMAT) [14]. The algorithm followed in the study is presented in Fig. 2. UMAT requires input parameter in
the user defined material section of ABAQUS/Standard. The algorithm starts with taking some i th state stress
components from the solver. Using these stress components, it evaluates the σH and proceeds accordingly with
the usage of damage or undamaged bulk modulus value. Then thermodynamic forces are evaluated and the
damage is calculated according to threshold value of these forces and damage is further evolved.

4 Experimental study

The proposed damage model needs elastic moduli and strength parameters evaluated from experimental study
for the material chosen. Here, epoxy material is prepared and tested for its tensile properties. The details of the
experimental testing procedure to evolve theirmoduli and strength parameters alongwithmaterial development
are presented in the following subsections.
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Start

Input E0, ν0, σL, σult, ult, E1, E2, ν1 and ν2

At ith increment

σH > 0 ?Use K0, Gd Use Kd, Gd

Compute
U0 and

Yd. Check
if Yd ≥ Y0

d = 0

Update d by damage model, Update Ed, νd, Gd

Last load
step?(i + 1)th increment

Stop

No
Yes

No

Yes

(i + 1)th increment

No

Yes

Fig. 2 Flowchart for UMAT algorithm

4.1 Material development

Epoxy system,which constitutes diglycidyl ether of bisphenol (DGEBA) resin and triethylenetetramine (TETA)
harder, is used in this study.Montazeri et al. [35] studied the effect of curing cycle on the mechanical properties
of neat epoxy andmulti-walled carbon nanotubes (MWCNTs)/epoxy composites. They used two curing cycles:
The first was heating at 80 ◦C for 4h and the second was curing at room temperature for 24h followed by 4h
heating at 80 ◦C. The properties for the second curing process were better than the first one, second curing
process is followed in current study. ASTMD638 designation is used for finding tensile properties of reinforced
and unreinforced plastics [36]. Epoxy samples are prepared using a mould which constitutes an aluminium
plate with 10 samples shape cut outs as shown in Fig. 3 and two steel plates to cover this cut outs plate from
both sides. Special attention was paid in the manufacturing of the mould to achieve the specimen with same
dimensions. CNC machine was used to manufacture the mould. A CAD model based on ASTM standard
geometry was developed and fed to the machine during manufacturing process.

The resin and hardener are mixed in 10:1 ratio. Following procedure is used for making the specimen.



G. Singh et al.

Fig. 3 Mould for making epoxy tensile testing specimen

Fig. 4 Tensile testing specimen dimensions

1. Pour the hardener into resin beaker gently near to the wall of the beaker to prevent air bubbles during
pouring and stir it for 8–10min.

2. Pour the mixture into the mould cavities gently and keep it at 34 ◦C (room temperature) for 24h in oven
at atmospheric pressure.

3. After 24-h cycle, increase the oven temperature to 80 ◦C and keep it for 4h.
4. Let the temperature of the mould sets down to room temperature gradually and then remove the plates of

the mould. Then remove the samples out of it.

The dimensions of a specimen are shown in Fig. 4. All the dimensions mentioned in the figure are in mm.

4.2 Material testing

Experimental testing of prepared epoxy specimen under uniaxial tension is carried out using TiniusOlsenUTM
of 10KN capacity. Longitudinal strain in themiddle section of the specimen ismeasured using an extensometer
of 25mm gauge length. For obtaining the Poisson’s ratio, strains for longitudinal and lateral directions are
required. Installing two extensometers on a sample was not possible; therefore, two strain gauges were pasted
along longitudinal and transverse directions on the sample. Soldering on both the strain gages was done to
receive the data. For measurement of strain from strain gauges, National Instruments NI 9923 strain module is
used. The connections of both strain gauges are made in half bridge mode for data acquisition. Longitudinal
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STRAIN MODULE

TENSILE LOADING

  ACTIVE
SPECIMEN

LONGITUDINAL STRAIN GAUGE

LATERAL STRAIN GAUGE

STRAIN
 DATA

STRESS
   VS.
STRAIN

NO LOADING

  DUMMY
SPECIMEN

GAUGE DOMAIN OF SPECIMEN

Fig. 5 Tensile testing set-up for stress and strain measurements

and transverse strain gauge connections aremade in two different channels and both read values relative to their
counterparts embedded on a dummy sample which is not under load. Complete experimental set-up is shown
in Fig. 5. A LabVIEW program developed for measurement of Poisson’s ratio, is used for data acquisition. The
quasi-static strain rate is considered as 10−5/s [37] and it was used by Gilat et al. as well in [38]. The gauge
length of the epoxy samples is 50 mm. Thus, the cross head speed chosen is 0.03 mm/min [36].

5 Results and discussion

In this section, the results obtained from experimental testing and the micromechanical analysis of an RVE
with spherical void damage in it, are presented.

5.1 Experimental results

Epoxy samples are tested at quasi-static loading on Tinius Olsen UTM. The cross head speed for quasi-static
loading is set to 0.03 mm/min. The gauge length of the epoxy samples is 50 mm, so the strain rate is 10−5/s.
Young’s modulus, limit of linearity, ultimate stress, and ultimate strain are evaluated for all tested samples.
In this work, five samples are tested to take into account the variability and to get consistency in results.
Stresses are calculated using the load given by UTM machine and the original cross sectional area of the
sample while, longitudinal strain is obtained from extensometer. This stress and longitudinal stain are used to
compute Young’s modulus and other points on stress vs. strain curve. However, Poisson’s ratio is evaluated
from the strain data obtained from longitudinal and transverse strain gauges. The properties obtained for all
specimen are shown in Table1.

Averaged value of Young’s modulus of all specimens under study is 3.566 GPa. The Young’s modulus is
obtained in the initial linear region of the curve by least square fitting with the value of R2 ≥ 0.98. Poisson’s
ratio is consistent for all tests with very slight deviation and average value is 0.3734. Average value of linearity
limit is 25.06MPa, average ultimate stress value is 50.18MPa, and ultimate or fracture strain is 1.723%. Stress
vs. strain curves for all test cases together are shown in Fig. 6.

The obtained results for an epoxy material are in good agreements in literature [38]. Further, the very low
values of standard deviation (SD) show that the tests are repeatable.
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Table 1 Material properties of epoxy obtained by testing

S. No E (GPa) Linearity limit (MPa) σult (MPa) εult ν

1 3.6178 25.12 49.84 0.0160 0.3738
2 3.3793 24.53 47.80 0.0173 0.3723
3 3.6213 23.65 51.32 0.0174 0.3744
4 3.6126 25.42 51.21 0.0190 0.3735
5 3.5995 26.60 50.73 0.0165 0.3728
Mean 3.5661 25.06 50.18 0.0173 0.3734
SD (%) 2.94 4.35 2.89 6.38 0.21
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Fig. 6 Stress-Strain behaviour of all epoxy Specimens

5.2 Micromechanical analysis

Elastic properties of epoxy resin DGBEA/TETA in undamaged state are as obtained by tests and
presented in previous subsection. The micromechanical analysis is carried out for void radii r =
0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.48 and 0.495 unit of the spherical void. The von Mises stress plot of the RVE
under uniform strain along z on the boundary of the RVE for some of these radii are shown in Fig. 7. Similarly,
other five uniform strains are applied as boundary conditions on the outer surface of every RVE. Applying
uniform strains (ε̄kl ) as boundary conditions, give rise a strain field (ε

(m)
i j ) in the RVE. Individuals components

of the strains are averaged (ε̄(m)
i j ) over the RVE and the averaged strain concentration factor ( Āi jkl ) is computed

using Eq. (5). Hence, using averaged strain concentration factors, effective stiffness of the RVE is obrained
using Eq. (3).

Corresponding to these void radii, the effective properties of theRVEare obtained.A2nd degree polynomial
is fit between effective properties and damage d . Variation of Young’s modulus, Poisson’s ratio, and shear
modulus with damage parameter are shown in Figs. 8, 9 and 10, respectively. Furthermore, the second-degree
polynomial curve fitting is also shown in figures. The robustness for these fittings are more than 0.999.

It can inferred from the degraded elastic constants curves that Young’smodulus and shearmodulus decrease
with quite high rate with increase in damage. While, Poisson’s ration shows lesser sensitivity with increase in
the damage size inside the RVE.

To implement in a progressive damage model, it is necessary to write these data points in a continuous
functional form which is used in strain energy equations. Further, this is then used for the computation of
damage force and hence damage parameter itself for a new state of stress. The fitted quadratic curves for
elastic degradation are given by following equations.
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Fig. 7 von Mises stress for different void radii RVEs in cut view
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Fig. 8 Variation of Young’s modulus with damage
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Fig. 9 Variation of Poisson’s ratio with damage
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Fig. 10 Variation of shear modulus with damage

Ed = E0
(
0.514d2 − 1.507d + 0.9948

)
(22)

νd = ν0
(
0.210d2 − 0.570d + 1.0022

)
(23)

Gd = G0
(
0.785d2 − 1.581d + 0.9975

)
(24)

The maximum radius of the spherical void that can be included inside an RVE of unit size is 0.495 unit. A
shown in Fig. 7, the RVE with this radius of damage has very refined mesh. Increasing the size of the further
will lead to very thin elements in the middle of each face. Such a implementation in FE model will require
to further refinement in mesh and hence will increase computational complexity in the implementation using
Abaqus/Standard. This size of void corresponds to complete fracture of the RVE. Therefore, the critical damage
parameter dc, corresponding to this void size is 0.508.

5.3 Damage evolution model for epoxy

For describing the damage in a material from its initiation to final failure, damage evolution model is essential
to be defined. This governs the material behaviour after damage initiation. In this work, the damage evolution
is given in terms of thermodynamic force, as defined in Sect. 3.2. The material constants in the proposed
damage model for epoxy are obtained by computational tensile tests carried out using user material subroutine
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Table 2 Input to Abaqus/Standard for UMAT

Input Value

Young’s modulus (E0) 3566 MPa
Poisson’s ratio (ν0) 0.37
Linearity limit (σL ) 25.06 MPa
Ultimate stress (σult) 50.18 MPa
Ultimate strain (εult) 0.0173
Coefficient of d in Ed (E1) −1.507
Coefficient of d2 in Ed (E2) 0.514
Coefficient of d in νd (ν1) −0.570
Coefficient of d2 in νd (ν2) 0.210

(UMAT) in Abaqus/Standard. The inputs of UMAT are the material properties obtained from experimental
testing and micromechanical analysis of the RVE with various damage sizes. These material properties of
epoxy are fed into the UMAT to run multiple simulations on a tensile test specimen in Abaqus/Standard to
obtain the material-specific parameters of proposed damage model. The full list of the properties required as
input to computational test, are mentioned in Table2.

In actual specimen, when the stress reaches maximum value and strain reaches to its ultimate value, the
material fails completely. It simply means that there is no stiffness at those points which reach to these critical
values. Therefore, to capture this phenomenon in this damage model computationally, a condition on stiffness
is applied. As soon as the damage d in an element reaches it’s critical value, the stiffness of that material point
is forced to reduce to a very small value and there would be a sharp drop in stiffness value. After this point
onward, that element will continue to stretch but will carry no or very small stress. Thus, the set of failed
elements will not have enough stiffness to resist deformation. This is the initiation of a macrolevel crack, and
it can grow further if neighbouring elements of the failed region are also not capable of sustaining load. This
is the growth of the macro level crack. After carrying out computations on tensile test for epoxy, m = 2.0 and
n = 0.75 are the obtained values of the material parameters which can describe the best material behaviour.
For these material parameters, the damage model for the epoxy under consideration can be described as:

d = 0 when Yd < Y0

d = dc

[
Y 2
d − Y 2

0

Y 2
c − Y 2

0

]0.75

when Y0 ≤ Yd < Yc

d = dc when Yc ≤ Yd

(25)

This damage model can be implemented in Abaqus/Standard using UMAT subroutine for any structural
component of epoxy material.

A flat specimen of 10 mm × 5 mm × 100 mm is simulated for computational tensile test. Finite element
model is developed using 15534 quadratic tetrahedral elements of type C3D10 of Abaqus/Standard with
second-order accuracy. An axial displacement loading is applied at the ends of the specimen. The geometric
model along with boundary conditions is shown in Fig. 11. The computed stress–strain curve by using this
model along with all the experimental curves, are shown in Fig. 12. From this figure, it is clearly seen that the
axial stress-strain curve predicted from the proposed model captures the experimental curves very accurately.
The properties from the computational curve like Young’s modulus, σult and εult are 3.57 GPa, 51.97 MPa and
0.0173, respectively. These values are in agreement with those obtained from experimental tests.

6 Conclusions

In this study, a micromechanics-based damage model is developed for DGBEA/TETA epoxy material. A
micromechanics model based on standard mechanics with displacement loading is used to model a damage in
an RVE and to compute damaged or degraded effective properties of the epoxy resin. Experimental tests are
carried out to obtain elastic constant and strength parameter for axial tensile loading of this epoxy at quasi-static
strain rate. A damage evolution model is proposed in terms of thermodynamic force with two material-specific
parameters. The constitutive model is implemented in Abaqus/Standard by means of user material subroutine.
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Fig. 11 Tensile specimen FEM model in Abaqus/Standard
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Fig. 12 Computational and experimental stress vs strain curves

The experimentally determinedmechanical properties are used as input to themicromechanicsmodel to predict
degraded properties corresponding to various damage sizes in the RVE and damage evolution model material
parameters. The major points from this study that can be concluded are as follows:

1. The stiffness of an RVE with damage shows an isotropic nature. The degraded elastic constants vary
quadratically in terms of damage parameter.

2. Averaged mechanical properties of DGBEA/TETA Epoxy at quasi-static strain rate, are obtained from
experimental tests: The average Youngs modulus is 3.57 GPa, Poissons ratio is 0.37, and shear modulus is
2.60 GPa. The ultimate tensile strenth is 50.18 MPa and ultimate strain is 0.0173. The standard deviation
in these measured quantities is maximum of 6.38%.

3. The axial tensile stress–strain curve for all tests carried out are close to each other. This indicates the
repeatability of the material preparation and testing procedure followed.

4. The damage evolution model parameters are obtained from the experimental data. These parameters can
describe the material behaviour from damage initiation to failure or macrolevel rupture in the structure.

5. The proposed model accurately captures the tensile behaviour of the epoxy material. A similar model for
shear and compressive behaviour can be developed. Thus, these can be used to predict the overall behaviour
of the epoxy material.
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