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Generalized Hooke’s Law
The generalized Hooke’s law for a material is given as
0, =Cuty 1,J,k1=123 (1)

where, o 1s a second order tensor known as stress tensor and its individual elements are
the stress components. g; is another second order tensor known as strain tensor and its
individual elements are the strain components. Cjy; is a fourth order tensor known as
stiffness tensor. In the remaining section we will call it as stiffness matrix, as popularly
known. The individual elements of this tensor are the stiffness coefficients for this linear
stress-strain relationship. Thus, stress and strain tensor has (3x3 =) 9 components each

and the stiffness tensor has ((3)4 =) 81 independent elements. The individual elements are

referred by various names as elastic constants; moduli and stiffness coefficients. The
reduction in the number of these elastic constants can be sought with the following
symmetries.

Stress Symmetry:

The stress components are symmetric under this symmetry condition, that is,
0, =0 Thus, there are six independent stress components. Hence, from Eq. (1) we

write
0= Cjikl €u (2)
Subtracting Eq. (2) from Eq. (1) leads to the following equation

ij i

0= (C"kl - Cjikl)gkl = C‘/kl = C/'ikl 3)

There are six independent ways to express i and j taken together and still nine
independent ways to express k and / taken together. Thus, with this symmetry the number
of independent elastic constants reduces to (6x9 =) 54 from 81.

Strain Symmetry:

The strain components are symmetric under this symmetry condition, that is,
&; = &, Hence, from Eq. (1) we write
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0y = Cyy &y
Subtracting Eq. (3) from Eq. (2) we get the following equation

0= (Ci/‘kl - Ctjlk ) Eq = Cg‘jkl = ngzk 4)

It can be seen from Eq. (3) that there are six independent ways of expressing i and
j taken together when k and / are fixed. Similarly, there are six independent ways of
expressing k and / taken together when i and j are fixed in Eq. (4). Thus, there are
6x6 =36 independent constants for this linear elastic material with stress and strain
symmetry.

With this reduced stress and strain components and reduced number of stiffness
coefficients, we can write Hooke’s law in a contracted form as

0,=C,¢ (iajzlaza"'76) (5)

i /]

03 =03 & =&y
0, =0y & =26y,
O,=0,; & =2¢;

Oy =0y, & =2¢&,

Here, it should be noted that the shear strains are the engineering shear strains.
In order Eq. (5) to be solvable for strains in terms of stresses, the determinant of

C,|=o0.
The number of independent elastic constants can be reduced further, if there exists
a strain energy density function W, given as below.

the stiffness matrix must be nonzero, that is,

Strain Energy Density Function (W):

The strain energy density function W is given as

1
w ZECi/gigj (7)
with the property that
ow
o, =— 8
' O, ®
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It is seen that W is a quadratic function of strain. A material with existence of W with
property in Eq. (8) is called as Hyperelastic Material.
The W can also be written as

w :%C_uag )

Subtracting Eq. (9) from Eq. (7) we get
0=(C,-C;)ze, (10)

which leads to the identity C, =C),. Thus, the stiffness matrix is symmetric. This

symmetric matrix has 21 independent elastic constants. The stiffness matrix is given as
follows:

Cl 1 Cl 2 C'1 3 Cl 4 5 6
C22 C23 4 5 6

(11)

i

N

0
D00

D00 00

annn0n

W
(=)}

w
(=}

=3
(=}

The existence of the function W is based upon the first and second law of
thermodynamics. Further, it should be noted that this function is positive definite. Also,
the function W is an invariant (An invariant is a quantity which is independent of change
of reference).

The material with 21 independent elastic constants is called as Anisotropic or
Aelotropic Material.

Further reduction in number of independent elastic constants can be obtained with
the use of planes of material symmetry as follows.

Material Symmetry:

It should be recalled that both the stress and strain tensor follow transformation
rule and so is the stiffness tensor. The transformation rule for these quantities (as given in
Eq. (1)) is known as follows:

O_ij = akiale'ij
¢, = ayae, (12
Cijkl =da ‘anjarkaslc

mi mnrs
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where a, are the direction cosines from i to j coordinate system. The prime indicates the

quantity in new coordinate system.
When the function W given in Eq. (9) is expanded using the contracted notations
for strains and elastic constants given in Eq. (11) W has the following form:

B 2
C & +2C 6, +2C 68, +2C 66, +2C 6,65 +2C (6,64 +
2
C,,&, +2C6,6,+2C, 6,6, +2C 6,6 +2C 8,64 +
2
Cie;, +2C, 86, +2C 6,65 + 20, 8,6, +

(13)

N | —

2

Cpé, +2C 6,6 +2C 8,64+
2

Cise5 +2C 6,6, +

2
L C66 86

Thus, from Eq. (13) it can be said that the function W has the following form in terms of
strain components:

2 2 2 2 2 2 ]
81,82,83,84,85,86,

£\Ey> 6,65, 6,84, E,E5,EE¢ s
&,83,8,8,,8,85,8,8¢, (14)

E3E4,E,E5,E,86,

£,E5,8,E¢,

| €5&

With these concepts we proceed to consider the planes of material symmetry. The
planes of the material, also called as elastic, symmetry are due to the symmetry of the
structure of anisotropic body. In the following, we consider some special cases of
material symmetry.

(A) Symmetry with respect to a Plane:

Let us assume that the anisotropic material has only one plane of material
symmetry. A material with one plane of material symmetry is called as Monoclinic
Material.

Let us consider the x;-x, (x3=0) plane as the plane of material symmetry. This is
shown in Figure 1. This symmetry can be formulated with the change of axes as follows:

'

X, =X, x;:xz, x'3=—x3 (15)

With this change of axes,

a. o and T =5 forj=1,2and %z
a y

Toox, X, ox,

_51'3 (16)
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This gives us along with the use of the second of Eq. (12)

'

Gl T 11,8y T &85y, 833 T 833,83 = TEy3,813 = —E3,81, T & (17)

X3

Figure 1

First Approach: Invariance Approach

Now, the function W can be expressed in terms of the strain components gU .If Wisto be

invariant, then it must be of the form

W= W|:€12,€22,832,€j,852,862,6‘16‘2,6‘16‘3,8186,826‘3,6‘286,6‘36‘6,8485] (18)
Comparing this with Eq. (13) it is easy to conclude that
Cu=C;5=Cy=C;=C=Cs=C=C =0 (19)

Thus, for the monoclinic materials the number of independent constants are 13. With this
reduction of number of independent elastic constants the stiffness matrix is given as

Cl 1 Cwl 2 C11 3 0 0 Cl 6
C22 C23 0 0 C26
¢, 0 0 C
C44 C45 0
Symmetric C 0
L Coo ]
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Second Approach: Stress Strain Equivalence Approach

The same reduction of number of elastic constants can be derived from the stress strain
equivalence approach. From Eq. (12) and Eq. (16) we have

011 =071150 =0y,033 =033, O)3 ==0,3,0,3 ==03,0), =0, (21)

The same can be seen from the stresses on a cube inside such a body with the coordinate
systems shown in Figure 1. Figure 2(a) shows the stresses on a cube with the coordinate
system x;, x,, x; and Figure 2(b) shows stresses on the same cube with the coordinate

system x,, X,, x, . Comparing the stresses we get the relation as in Eq. (21).

X3
A
033
D AO33 C D A C
1 032
—» 037 03] €4—
032;
A B| o3 A Bl o013
023 T 023 ‘
A > > X > > X,
/I o1 A o1
%02 > 02
(Y] 02
02 G 02 G
E F E F
2 X5 v
X3
(a) (b)
Figure 2

Now using the stiffness matrix as given in Eq. (11), strain term relations as given in Eq.
(17) and comparing the stress terms in Eq. (21) as follows:

0y, =0y
C&+Che, + 06+ Cue, +Cises+Cie =C 6 +C 6,+C &,+C &,+C &+C &

Using the relations from Eq. (17), the above equations reduces to
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Cué,+C56,=C 6,+C &

i
Similarly,

0y, =0, gives C,,
o, = 0y, gives C,,
0y =0, gives Cy

0,; =0,; gives Cy

Noting that C;, = C, j , this holds true only when C, =C;; =0

=G5 =0
=G5 =0
=0
=0

This gives us the C;; matrix as in Eq. (20).

(B) Symmetry with respect to two Orthogonal Planes:

Let us assume that the material under consideration has one more plane, say x,-x;
is plane of material symmetry along with x;-x, as in (A). These two planes are orthogonal
to each other. This transformation is shown in Figure 3.

x3
A

[ 1/,

"7 %

x2 v,
X3

Figure 3

This can be mathematically formulated by the change of axes as

'

X ==X, Xy = Xy, Xy

And

= —x3

»

1

(22)

Department of Aerospace Engineering, Indian Institute of Technology Kanpur
Course: AE 681 Composite Materials

Instructor: PM Mohite




ox, Ox, O,
a =% and $i——5 forj=1,3and =5, (23)
7 Ox, ox; ’ o,
This gives us the required strain relations as (from Eq. (12))
€1 T &1y T &y €33 = 833, &3 T 763, &3 = 613, 6y = 6 (24)

First Approach: Invariance Approach

We can get the function W simply by substituting glj in place of &;and using

contracted notations for the strains in Eq. (18). Noting that ¥ is invariant, its form in Eq.
(18) must now be restricted to functional form
W=W|:€12,6‘22,6‘32,6‘j,852,6‘62,6‘182,816‘3,826‘3J (25)
From this it is easy to see that

C16 :C26 = C36 = C45 =0

Thus, the number of independent constants reduces to 9. The resulting stiffness matrix is
given as

¢, ¢, C; 0 0 0 ]
c, C, 0 0 0
~ C, 0 0 0

C, = (26)
! S . C44 0 0
ymmetric

Cs O

L Cos

When a material has (any) two orthogonal planes as planes of material symmetry
then that material is known as Orthotropic Material. It is easy to see that when two
orthogonal planes are planes of material symmetry, the third mutually orthogonal plane is
also plane of material symmetry and Eq. (26) holds true for this case also.

Unidirectional fibrous composites are an example of orthotropic materials.

Second Approach: Stress Strain equivalence Approach

The same reduction of number of elastic constants can be derived from the stress strain
equivalence approach. From the first of Eq. (12) and Eq. (23) we have

Oy =015 Oy =0y,033 =033, O3 =70,3,03 =0,3,0, =0, (27)
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The same can be seen from the stresses on a cube inside such a body with the coordinate
systems shown in Figure 3. Figure 4(a) shows the stresses on a cube with the coordinate
system x;, x,, x; and Figure 4(b) shows stresses on the same cube with the coordinate

system x,, X,, X, . Comparing the stresses we get the relation as in Eq. (27).

X3
A
033
D AO033 C D
032
—» 03
032 ; 03]
A B| o3 A Bl o013
023 T ,
> X, X <
[ /| O-[] <« o
» 0] o 0] 4 12
12 o) {V
022 G 023
E F E F
2 X2 v
X3
(a) (b)
Figure 4

(o]

Now using the stiffness matrix given in Eq. (20) and comparing the stress equivalence of

Eq. (27) we get the following:

o, =0y,

Ci 16, +Cr6, +Ca&; +Cis, =C 6,+C &, + C;_;g; + C;égg
This hold true when C,, = 0. Similarly,

0,, =0,, gives C, =0
Oy, =0y, gives Cy, =0

0,3, =—0,; (or 0y, =0y;) gives C,; =0

This gives us the C; matrix as in Eq. (26).
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Alternately, if we consider x;-x; as the second plane of material symmetry along with x;-
X, as shown in Figure 5, then

xi :xlaxvz :_xza'x; =X (28)

And

ay:% and %:—5” forj=2,3and%=5i1 (29)
axj 8xj axl

This gives us the required strain relations as (from Eq. (12))
EN T &1, 8y T &y E33 = 833, €3 = &3, &3 = —E3, & = &)

Substituting these in Eq. (18) the function W reduces again to the form given in Eq. (25)
for W to be invariant. Finally, we get the reduced stiffness matrix as given in Eq. (26).
‘x3

A '
Xy

Y

Figure 5

The stress transformations for these coordinates transformations are (from the first
of Eq. (12) and Eq. (29))

Oy1 =011,09 =05,033 =033,0,3 =03,03= 03,0, =0,

Same can be seen from the stresses shown on the same cube in x;, x, x3; and
X, X,, x; coordinate systems in Figure 6(a) and (b), respectively. The comparison of the

stress terms leads to the stiffness matrix as given in Eq. (26).
10
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Note: It is clear that if any two orthogonal planes are planes of material symmetry the
third mutually orthogonal plane has to be plane to material symmetry. We have got the
same stiffness matrix when we considered two sets of orthogonal planes. Further, if we
proceed in this way considering three mutually orthogonal planes of symmetry then it is
not difficult to see that the stiffness matrix remains the same as in Eq. (26).

X3
A
X
033 2
D AO33 C D ¢
032
(—» 03 03]
032
A B oj3 A B
023 T 023
0j] '
T /| > X/ V: > X
oi1
»02; o 0] 012l
12
022 03
022 G G
E F E F
X2
v
X3
(a) (b)

Figure 6

Transverse Isotropy:

First Approach: Invariance Approach

This is obtained from an orthotropic material. Here, we develop the constitutive
relation for a material with transverse isotropy in x;-x; plane (this is used in
lamina/laminae/laminate modeling). This is obtained with the following form of the
change of axes

X, =X,
X, =X,co8a+x;sina (30)

X, =—X, sina + x, cos &
Now, we have

11
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ox, ox, ox, ox, ox, .
—=1], —==—2=cosa, —==——2==sina,
Ox, ox, Ox, ox, Oox,
ox, Ox, Ox, Ox

From this, the strains in transformed coordinate system are given as:

& =&

o 2 . .2
£, =&, C08" a+2&,cosasina + &, 81N a

'

_ .2 : 2
&3 = EHp SN & — 2823 cosasma + &3, COS & (31)

&y, = (&3 — &y )cOsaSING + 8y (cos2 o —sin’ a)
£, =—&,SINa+&,cosa

'

&, =&,C080+¢&;sIna

Here, it is to be noted that the shear strains are the tensorial shear strain terms.
For any angle a,

' ) I ' \2 2
Ep T =&y T &y, €933 _(‘923) = Exnky; _(523) >
(32)

' \2 2 2 2 '
(312) +(513) =(&,) +(&3) ‘gl..‘ :‘gl.j‘
and therefore, W must reduce to the form

_ 2 2 2
W= W(822 T E33,80833 — &35, 83,8, T &3, gij‘) (33)

Now, we put Eq. (31) in the function W using the C; matrix as given in Eq. (26)

and express it terms of {;‘U . Then, for W to be invariant follow the following:

1 \2 .
1. If we observe the terms containing (g“)2 and (g”) then we conclude that C, is

unchanged.

2. Now compare the terms containing &,,, &, and &,,, &,. From this comparison we
see that Cys = C, .

3. Now compare the terms containing &,,, &3, &,; and &,,, &;, &,;. This comparison

1 .
leads to C, =C;, C,, =C;; and C,, = E(sz —C,;) and C,; is unchanged.

12
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Thus, for transversely isotropic material (in plane x,-x3) the stiffness matrix becomes as

Cll CIZ C12 0 0 0
C, G, 0 0 0
C, 0 0 0
C, = 1 (34)
N ( G, =Gy ) 0 0
Symmetric Cs O
C66

Thus, there are only 5 independent elastic constants for a transversely isotropic material.
Second Approach: Comparison of constants

This can also be verified from the elastic constants expressed in terms of
engineering constants like £,v and G. Recall the constitutive equation for orthotropic
material expressed in terms of engineering constants. For the transversely isotropic
materials the following relations hold.

Ez = E3 Vip = Vi3

E

2
2(1+vy)

When these relations are used in the constitutive equation for orthotropic material
expressed in terms of engineering constants, the stiffness matrix relations in Eq. (34) are
verified.

G12 = G13 G23 =

Isotropic Bodies:

If the function W remains unaltered in form under all possible changes to other
rectangular Cartesian systems of axes, the body is said to be Isotropic. In this case, Wis a
function of the strain invariants. Alternatively, from the previous section, /¥ must be
unaltered in form under the transformations

X, =X, cosa+x,sina
X, =—Xx,sina +x, cosa (35)

X3 = X5

13
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And

X, =X;cosa +x sina
X, =—Xx;sina +x, cosa (36)

X, =X,

In other words, W when expressed in terms of gy must be obtained from Eq. (33) simply
by replacing &; by 5,, . By analogy with the previous section it is seen that for this to be

true under the transformation Eq. (35)

C13 = C23

G =Cy (37)

Cos =Cyy :%(Cu = C12)

If follows automatically that 7 is unaltered in form under the transformation in Eq. (36).
Thus, the stiffness matrix for isotropic material becomes as

¢, ¢, C, 0 0 0
c, C, 0 0 0
C, 0 0 0
C, = | (38)
E(CH—CD) 0 0
1
Symmetric 5 ( -Gy ) 0
1
| E(CII_CIZ)_

Thus, for an isotropic material there are only two independent elastic constants. It can be
verified that W is unaltered in form under all possible changes to other rectangular

coordinate systems, that s, it is the same function of &, as it is of &; when x, is changed

to x..

1
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