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Generalized Hooke’s Law 
 
 The generalized Hooke’s law for a material is given as 
 

, , , 1, 2,3ij ijkl klC i j k lσ ε= =         (1) 
 
where, σij is a second order tensor known as stress tensor and its individual elements are 
the stress components. εij is another second order tensor known as strain tensor and its 
individual elements are the strain components. Cijkl is a fourth order tensor known as 
stiffness tensor. In the remaining section we will call it as stiffness matrix, as popularly 
known. The individual elements of this tensor are the stiffness coefficients for this linear 
stress-strain relationship. Thus, stress and strain tensor has (3 3× = ) 9 components each 
and the stiffness tensor has ( ( )43 =) 81 independent elements. The individual elements are 
referred by various names as elastic constants; moduli and stiffness coefficients. The 
reduction in the number of these elastic constants can be sought with the following 
symmetries. 

Stress Symmetry: 
 The stress components are symmetric under this symmetry condition, that is, 

ij jiσ σ= . Thus, there are six independent stress components. Hence, from Eq. (1) we 
write 
 

ji jikl klCσ ε=           (2) 
 
Subtracting Eq. (2) from Eq. (1) leads to the following equation 
 

( )0 ijkl jikl kl ijkl jiklC C C Cε= − ⇒ =        (3) 
 
There are six independent ways to express i and j taken together and still nine 
independent ways to express k and l taken together. Thus, with this symmetry the number 
of independent elastic constants reduces to ( 6 9× = ) 54 from 81. 

Strain Symmetry: 
 The strain components are symmetric under this symmetry condition, that is, 

ij jiε ε= . Hence, from Eq. (1) we write 
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ij ijlk lkCσ ε=  
 
Subtracting Eq. (3) from Eq. (2) we get the following equation 
 

( )0 ijkl ijlk kl ijkl ijlkC C C Cε= − ⇒ =        (4) 
 
 It can be seen from Eq. (3) that there are six independent ways of expressing i and 
j taken together when k and l are fixed. Similarly, there are six independent ways of 
expressing k and l taken together when i and j are fixed in Eq. (4). Thus, there are 
6 6 36× =  independent constants for this linear elastic material with stress and strain 
symmetry. 
 With this reduced stress and strain components and reduced number of stiffness 
coefficients, we can write Hooke’s law in a contracted form as 
 

( , 1, 2, ,6)i ij jC i jσ ε= = L         (5) 
 
where, 
 

1 11 1 11

2 22 2 22

3 33 3 33

4 23 4 23

5 13 5 13

6 12 6 12

2
2
2

σ σ ε ε
σ σ ε ε
σ σ ε ε
σ σ ε ε
σ σ ε ε
σ σ ε ε

= =
= =
= =
= =
= =
= =

          

 
Here, it should be noted that the shear strains are the engineering shear strains. 
 In order Eq. (5) to be solvable for strains in terms of stresses, the determinant of 
the stiffness matrix must be nonzero, that is, 0ijC ≠ .  
 The number of independent elastic constants can be reduced further, if there exists 
a strain energy density function W, given as below. 

Strain Energy Density Function (W): 
 The strain energy density function W is given as 
 

1
2 ij i jW C ε ε=           (7) 

 
with the property that 
 

i
i

Wσ
ε

∂
=
∂

          (8) 
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It is seen that W is a quadratic function of strain. A material with existence of W with 
property in Eq. (8) is called as Hyperelastic Material.  
 The W can also be written as 

1
2 ji j iW C ε ε=           (9) 

Subtracting Eq. (9) from Eq. (7) we get 
 

( )0 ij ji i jC C ε ε= −          (10) 
 
which leads to the identity ij jiC C= . Thus, the stiffness matrix is symmetric. This 
symmetric matrix has 21 independent elastic constants. The stiffness matrix is given as 
follows: 
 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

ij

C C C C C C
C C C C C

C C C C
C

C C C
C C

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (11) 

 
The existence of the function W is based upon the first and second law of 
thermodynamics. Further, it should be noted that this function is positive definite. Also, 
the function W is an invariant (An invariant is a quantity which is independent of change 
of reference). 
 The material with 21 independent elastic constants is called as Anisotropic or 
Aelotropic Material. 
 Further reduction in number of independent elastic constants can be obtained with 
the use of planes of material symmetry as follows. 
 

Material Symmetry: 
 It should be recalled that both the stress and strain tensor follow transformation 
rule and so is the stiffness tensor. The transformation rule for these quantities (as given in 
Eq. (1)) is known as follows: 
 

'

'

'

ij ki lj ij

ij ki lj ij

ijkl mi nj rk sl mnrs

a a
a a

C a a a a C

σ σ
ε ε

=
=
=

          (12) 

 

Symmetric 
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where ija are the direction cosines from i to j coordinate system. The prime indicates the 
quantity in new coordinate system. 
 When the function W given in Eq. (9) is expanded using the contracted notations 
for strains and elastic constants given in Eq. (11) W has the following form: 
 

2
11 1 12 1 2 13 1 3 14 1 4 15 1 5 16 1 6

2
22 2 23 2 3 24 2 4 25 2 5 26 2 6

2
33 3 34 3 4 35 3 5 36 3 6

2
44 4 45 4 5 46 4 6

2
55 5 56 5 6

2
66 6

2 2 2 2 2
2 2 2 2
2 2 21

2 2 2
2

C C C C C C
C C C C C
C C C C

W
C C C
C C
C

ε ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε
ε ε ε
ε

⎡ ⎤+ + + + + +
⎢ ⎥+ + + + +⎢ ⎥
⎢ ⎥+ + + +

= ⎢ ⎥
+ + +⎢ ⎥

⎢ ⎥+ +
⎢ ⎥
⎢ ⎥⎣ ⎦

  (13) 

 
Thus, from Eq. (13) it can be said that the function W has the following form in terms of 
strain components: 
 

2 2 2 2 2 2
1 2 3 4 5 6

1 2 1 3 1 4 1 5 1 6

2 3 2 4 2 5 2 6

3 4 3 5 3 6

4 5 4 6

5 6

, , , , , ,
, , , , ,
, , , ,
, , ,
, ,

W W

ε ε ε ε ε ε
ε ε ε ε ε ε ε ε ε ε
ε ε ε ε ε ε ε ε
ε ε ε ε ε ε
ε ε ε ε
ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       (14) 

 
 With these concepts we proceed to consider the planes of material symmetry. The 
planes of the material, also called as elastic, symmetry are due to the symmetry of the 
structure of anisotropic body. In the following, we consider some special cases of 
material symmetry. 

(A) Symmetry with respect to a Plane: 
 Let us assume that the anisotropic material has only one plane of material 
symmetry. A material with one plane of material symmetry is called as Monoclinic 
Material. 

 Let us consider the x1-x2 (x3=0) plane as the plane of material symmetry. This is 
shown in Figure 1. This symmetry can be formulated with the change of axes as follows: 
 

' ' '
1 1 2 2 3 3, ,x x x x x x= = = −         (15) 

 
With this change of axes, 
 

' ' '

3
3

and  for  = 1, 2 and i i i
ij ij i

j j

x x xa j
x x x

δ δ∂ ∂ ∂
= = = −
∂ ∂ ∂

     (16) 
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This gives us along with the use of the second of Eq. (12) 
 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,ε ε ε ε ε ε ε ε ε ε ε ε= = = = − = − =     (17) 

 

 
First Approach: Invariance Approach 
 
Now, the function W can be expressed in terms of the strain components '

ijε . If W is to be 
invariant, then it must be of the form 
 

2 2 2 2 2 2
1 2 3 4 5 6 1 2 1 3 1 6 2 3 2 6 3 6 4 5, , , , , , , , , , , ,W W ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε⎡ ⎤= ⎣ ⎦    (18) 

 
Comparing this with Eq. (13) it is easy to conclude that  
 

14 15 24 25 34 35 46 56 0C C C C C C C C= = = = = = = =      (19) 
 
Thus, for the monoclinic materials the number of independent constants are 13. With this 
reduction of number of independent elastic constants the stiffness matrix is given as 
 

11 12 13 16

22 23 26

33 36

44 45

55

66

0 0
0 0
0 0

0
0

ij

C C C C
C C C

C C
C

C C
C

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (20) 

 

'
1x  x1 

'
2x  

x2 

x3 

'
3x  

Figure 1 

Symmetric 
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Second Approach: Stress Strain Equivalence Approach 
 
The same reduction of number of elastic constants can be derived from the stress strain 
equivalence approach. From Eq. (12) and Eq. (16) we have 
 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,σ σ σ σ σ σ σ σ σ σ σ σ= = = = − = − =    (21) 

 
The same can be seen from the stresses on a cube inside such a body with the coordinate 
systems shown in Figure 1. Figure 2(a) shows the stresses on a cube with the coordinate 
system x1, x2, x3 and Figure 2(b) shows stresses on the same cube with the coordinate 
system ' ' '

1 2 3, ,x x x . Comparing the stresses we get the relation as in Eq. (21). 
 

 
Now using the stiffness matrix as given in Eq. (11), strain term relations as given in Eq. 
(17) and comparing the stress terms in Eq. (21) as follows: 
 

11 12 13 14 15 16

'
11 11

' ' ' ' ' ' ' ' ' ' ' '
11 1 12 2 13 3 14 4 15 5 16 6 1 2 3 4 5 6C C C C C C C C C C C C

σ σ

ε ε ε ε ε ε ε ε ε ε ε ε

=

+ + + + + = + + + + +  

Using the relations from Eq. (17), the above equations reduces to 
 

'
2x  

E 

σ22 

'
3x  

G

F E 

D C

B A σ13 

σ11 
σ12 

σ31 σ32 

σ33 

x1 
σ23 

σ21 

σ22 

x2 

x3 

G 

F 

D C 

B A σ13 

σ11 
σ12 

σ31 
σ32 

σ33 

'
1x  

σ23 

σ21 

Figure 2 
(a) (b)
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14 15

' ' ' '
14 4 15 5 4 5C C C Cε ε ε ε+ = +  

 
Noting that '

ij ijC C= , this holds true only when 14 15 0C C= =  
Similarly, 

'
22 22 24 25

'
33 33 34 35

'
23 23 46

'
13 13 56

 gives 0
 gives 0
 gives 0
 gives 0

C C
C C
C
C

σ σ
σ σ
σ σ
σ σ

= = =
= = =
= =
= =

 

 
This gives us the ijC  matrix as in Eq. (20). 

(B) Symmetry with respect to two Orthogonal Planes: 
 Let us assume that the material under consideration has one more plane, say x2-x3 
is plane of material symmetry along with x1-x2 as in (A). These two planes are orthogonal 
to each other. This transformation is shown in Figure 3. 

 
This can be mathematically formulated by the change of axes as 
 

' ' '
1 1 2 2 3 3, ,x x x x x x= − = = −         (22) 

 
And 

2x  

3x  

1x  

'
2x  '

3x  

'
1x  

Figure 3 
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' ' '

2
2

and  for  = 1, 3 and i i i
ij ij i

j j

x x xa j
x x x

δ δ∂ ∂ ∂
= = − =
∂ ∂ ∂

     (23) 

 
This gives us the required strain relations as (from Eq. (12)) 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,ε ε ε ε ε ε ε ε ε ε ε ε= = = = − = = −     (24) 

 
First Approach: Invariance Approach 
 
 We can get the function W simply by substituting '

ijε  in place of ijε and using 
contracted notations for the strains in Eq. (18). Noting that W is invariant, its form in Eq. 
(18) must now be restricted to functional form 
 

2 2 2 2 2 2
1 2 3 4 5 6 1 2 1 3 2 3, , , , , , , ,W W ε ε ε ε ε ε ε ε ε ε ε ε⎡ ⎤= ⎣ ⎦       (25) 

 
From this it is easy to see that 
 

16 26 36 45 0C C C C= = = =  
 
Thus, the number of independent constants reduces to 9. The resulting stiffness matrix is 
given as 
 

11 12 13

22 23

33

44

55

66

0 0 0
0 0 0
0 0 0

0 0
0

ij

C C C
C C

C
C

C
C

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

      (26) 

 
 When a material has (any) two orthogonal planes as planes of material symmetry 
then that material is known as Orthotropic Material. It is easy to see that when two 
orthogonal planes are planes of material symmetry, the third mutually orthogonal plane is 
also plane of material symmetry and Eq. (26) holds true for this case also. 
 Unidirectional fibrous composites are an example of orthotropic materials. 
 
Second Approach: Stress Strain equivalence Approach 
 
The same reduction of number of elastic constants can be derived from the stress strain 
equivalence approach. From the first of Eq. (12) and Eq. (23) we have 
 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,σ σ σ σ σ σ σ σ σ σ σ σ= = = = − = = −    (27) 

 

Symmetric 
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The same can be seen from the stresses on a cube inside such a body with the coordinate 
systems shown in Figure 3. Figure 4(a) shows the stresses on a cube with the coordinate 
system x1, x2, x3 and Figure 4(b) shows stresses on the same cube with the coordinate 
system ' ' '

1 2 3, ,x x x . Comparing the stresses we get the relation as in Eq. (27). 

 
 
Now using the stiffness matrix given in Eq. (20) and comparing the stress equivalence of 
Eq. (27) we get the following:  
 

11 12 13 16

'
11 11

' ' ' ' ' ' ' '
11 1 12 2 13 3 16 6 1 2 3 6C C C C C C C C

σ σ

ε ε ε ε ε ε ε ε

=

+ + + = + + +  

This hold true when 16 0C = . Similarly, 
 

'
22 22 26

'
33 33 36

' '
23 23 13 13 45

 gives 0
 gives 0

 (or ) gives 0
 

C
C

C

σ σ
σ σ
σ σ σ σ

= =
= =
= − = =

 

This gives us the ijC  matrix as in Eq. (26). 
 

σ31 

'
2x  

E 

σ22 

'
3x  

G

F E 

D C

B A σ13 

σ11 
σ12 

σ31 σ32 

σ33 

x1 
σ23 

σ21 

σ22 

x2 

x3 

G

F 

D C

B A σ13 

σ11 σ12 

σ32 
σ33 

'
1x  

σ23 

σ21 

Figure 4 
(a) (b)
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Alternately, if we consider x1-x3 as the second plane of material symmetry along with x1-
x2 as shown in Figure 5, then 
 

' ' '
1 1 2 2 3 3, ,x x x x x x= = − = −         (28) 

 
And 

' ' '

1
1

and  for  = 2, 3 and i i i
ij ij i

j j

x x xa j
x x x

δ δ∂ ∂ ∂
= = − =
∂ ∂ ∂

     (29) 

 
This gives us the required strain relations as (from Eq. (12)) 
 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,ε ε ε ε ε ε ε ε ε ε ε ε= = = = = − = −  

 
Substituting these in Eq. (18) the function W reduces again to the form given in Eq. (25) 
for W to be invariant. Finally, we get the reduced stiffness matrix as given in Eq. (26).  

 
 The stress transformations for these coordinates transformations are (from the first 
of Eq. (12) and Eq. (29)) 
 

' ' ' ' ' '
11 11 22 22 33 33 23 23 13 13 12 12, , , , ,σ σ σ σ σ σ σ σ σ σ σ σ= = = = = − = −  

  
 Same can be seen from the stresses shown on the same cube in x1, x2, x3 and 

' ' '
1 2 3, ,x x x  coordinate systems in Figure 6(a) and (b), respectively. The comparison of the 

stress terms leads to the stiffness matrix as given in Eq. (26). 

2x  

3x  

1x  

'
2x  

'
3x  

'
1x  

Figure 5 
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Note: It is clear that if any two orthogonal planes are planes of material symmetry the 
third mutually orthogonal plane has to be plane to material symmetry. We have got the 
same stiffness matrix when we considered two sets of orthogonal planes. Further, if we 
proceed in this way considering three mutually orthogonal planes of symmetry then it is 
not difficult to see that the stiffness matrix remains the same as in Eq. (26). 

 
 

Transverse Isotropy: 
 
First Approach: Invariance Approach 
 
 This is obtained from an orthotropic material. Here, we develop the constitutive 
relation for a material with transverse isotropy in x2-x3 plane (this is used in 
lamina/laminae/laminate modeling). This is obtained with the following form of the 
change of axes 
 

'
1 1
'
2 2 3
'
3 2 3

cos sin
sin cos

x x
x x x
x x x

α α
α α

=
= +
= − +

        (30) 

 
Now, we have 
 

'
3x  

C 

B 

σ31 

'
2x  

E 

σ22 G

F E 

D C

B A σ13 

σ11 
σ12 

σ31 σ32 

σ33 

x1 
σ23 

σ21 

σ22 

x2 

x3 

G 

F 

D 

A 

σ13 

σ11 

σ12 

σ32 
σ33 

'
1x  

σ23 

σ21 

Figure 6 
(a) (b)
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' '' ' '
3 31 2 2

1 2 3 3 2
'' ' '
31 1 2

2 3 1 1

1, cos , sin ,

0

x xx x x
x x x x x

xx x x
x x x x

α α∂ ∂∂ ∂ ∂
= = = = − =

∂ ∂ ∂ ∂ ∂

∂∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂

 

 
From this, the strains in transformed coordinate system are given as: 
 

( ) ( )

'
11 11

' 2 2
22 22 23 33

' 2 2
33 22 23 33

' 2 2
23 33 22 23

'
13 12 13

'
12 12 13

cos 2 cos sin sin

sin 2 cos sin cos

cos sin cos sin

sin cos

cos sin

ε ε

ε ε α ε α α ε α

ε ε α ε α α ε α

ε ε ε α α ε α α

ε ε α ε α

ε ε α ε α

=

= + +

= − +

= − + −

= − +

= +

     (31) 

 
 Here, it is to be noted that the shear strains are the tensorial shear strain terms.  
For any angle α, 
 

( ) ( )

( ) ( ) ( ) ( )

2 2' ' ' ' '
22 33 22 33 22 33 23 22 33 23

2 2 2 2' ' '
12 13 12 13

, ,

ij ij

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε

+ = + − = −

+ = + =
  (32)  

 
and therefore, W must reduce to the form 
 

( )2 2 2
22 33 22 33 23 33 12 13, , , , ijW W ε ε ε ε ε ε ε ε ε= + − +      (33) 

 
 Now, we put Eq. (31) in the function W using the ijC matrix as given in Eq. (26) 

and express it terms of '
ijε . Then, for W to be invariant follow the following: 

 

1. If we observe the terms containing ( )2
11ε and ( )2'

11ε  then we conclude that 11C  is 
unchanged. 

2. Now compare the terms containing 12 13,ε ε  and ' '
12 13,ε ε . From this comparison we 

see that 55 66C C= . 
3. Now compare the terms containing 22 33 23, ,ε ε ε  and ' ' '

22 33 23, ,ε ε ε . This comparison 

leads to ( )12 13 22 33 44 22 23 23
1,  and  and  is unchanged.
2

C C C C C C C C= = = −  
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Thus, for transversely isotropic material (in plane x2-x3) the stiffness matrix becomes as 
 

( )

11 12 12

22 23

22

22 23

66

66

0 0 0

0 0 0

0 0 0

1 0 0
2

0

ij

C C C

C C

C
C

C C

C

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     (34) 

 
Thus, there are only 5 independent elastic constants for a transversely isotropic material. 
 
Second Approach: Comparison of constants 
 
 This can also be verified from the elastic constants expressed in terms of 
engineering constants like ,  and E Gν . Recall the constitutive equation for orthotropic 
material expressed in terms of engineering constants. For the transversely isotropic 
materials the following relations hold. 

( )

2 3 12 13

2
12 13 23

232 1

E E

EG G G

ν ν

ν

= =

= =
+

 

When these relations are used in the constitutive equation for orthotropic material 
expressed in terms of engineering constants, the stiffness matrix relations in Eq. (34) are 
verified. 
 

Isotropic Bodies: 
 If the function W remains unaltered in form under all possible changes to other 
rectangular Cartesian systems of axes, the body is said to be Isotropic. In this case, W is a 
function of the strain invariants. Alternatively, from the previous section, W must be 
unaltered in form under the transformations 
 

'
1 1 2
'
2 1 2
'
3 3

cos sin
sin cos

x x x
x x x
x x

α α
α α

= +
= − +
=

        (35) 

Symmetric 
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And 
 

'
3 3 1
'
1 3 1
'
2 2

cos sin
sin cos

x x x
x x x
x x

α α
α α

= +
= − +
=

        (36) 

 
In other words, W when expressed in terms of '

ijε  must be obtained from Eq. (33) simply 

by replacing ijε  by '
ijε . By analogy with the previous section it is seen that for this to be 

true under the transformation Eq. (35) 

( )

13 23

11 22

66 44 11 12
1
2

C C

C C

C C C C

=

=

= = =

        (37) 

If follows automatically that W is unaltered in form under the transformation in Eq. (36). 
Thus, the stiffness matrix for isotropic material becomes as 
 

( )

( )

( )

11 12 12

11 12

11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

1 0 0
2

1 0
2

1
2

ij

C C C

C C

C
C

C C

C C

C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

   (38) 

 
Thus, for an isotropic material there are only two independent elastic constants. It can be 
verified that W is unaltered in form under all possible changes to other rectangular 
coordinate systems, that is, it is the same function of '

ijε  as it is of ijε  when ix  is changed 

to '
ix . 

Symmetric 


