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A B S T R A C T

A micromechanical framework is proposed to investigate the effective mechanical properties of elastic two-phase
composites with randomly dispersed inhomogeneities in the form of continuous fibres. In this study, an algo-
rithm is developed to generate the microstructure of unidirectional fibre reinforced composite through a three
dimensional RVE approach. Using this approach, both regular and random fibre distributions with both un-
distorted and distorted cross sections are considered and then analysed using mathematical theory of homo-
genization to estimate the homogenized or effective material properties. Here, RVEs are modeled with random
fibre distribution maintaining a fibre volume fraction of 0.6 but increasing the number of fibres gradually and
also randomly varying their positions. Finally, the effect of the variation of local volume fraction is studied
through master RVE using the moving window technique. The variation in the predicted elastic properties for the
given volume fraction for the above-mentioned scenarios is compared with the experimental values. The study
shows that results from RVE with more number of random fibres arrangement with geometric cross sectional
variations approach the experimental values. However, there is a significant percentage difference in transverse
shear moduli, G23 and ν23, of about 22% and 35%, respectively with respect to the experimental results for the
scenarios with random fibre distribution. Further, about 16% difference in axial modulus E1 is seen when the
effects of local volume fractions are studied.

1. Introduction

Composite materials are extensively used in advanced structural
elements in aerospace, automobile and many other industries due to
their high strength to weight ratio, high modulus and low density re-
inforcements [1]. These immense uses of composite materials require
accurate prediction of mechanical behaviour and effective elastic
properties of fibre reinforced composites. In fibre reinforced compo-
sites, fibres are the main load carrying members [2,3]. Therefore, fibre
volume fraction and fibre distribution morphology have decisive in-
fluence on the strength and stiffness properties of composite materials.
To study these effects, micromechanics of composite material has been
addressed by many researchers (For example, see [4]). However, there
exists one common problem in the mechanics of composite materials,
which is to establish a rational microstructure model considering the
random distribution of the fibres [5]. In order to analyse the mechanical
behaviour an appropriate Representative Volume Element (RVE), re-
presenting the microstructure of the composite should be defined first.
Therefore, the issue concerning the micromechanical study is the gen-
eration of RVE with the desired dimensions. As RVE cannot be too large

or too small as this would assist the possibility to numerically analyse it.
However, it should contain a large enough volume that captures the
essence of the microstructure of a composite material. Several attempts
have been made in literature to develop a procedure to determine the
representative volume. Gitman et al. [6] have studied about the de-
termination of RVE size on the basis of statistical analysis and with size
effect theory. Kanit et al. [7] demonstrated that different critical RVE
sizes exist for different effective properties, such as in the case of
thermal conductivity or linear elasticity.

The second issue is the spatial distribution of reinforcements in RVE
which highly depends upon the manufacturing process. Some authors
(see [8]) have developed computational techniques to simulate com-
posite materials with random distribution of fibres. The probabilistic
framework is a well established way for modeling randomness both
from theoretical and practical point of view. Many methods have been
developed for the generation of RVE model with random distribution of
fibres using Poisson point distribution [9], where the points are centres
of the fibres. This method faces a problem as it hardly generates the
distributions with fibre volume fraction greater than 50%. Some au-
thors have developed stochastic finite element methods like polynomial
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chaos expansion or perturbation methods [10] to retain the main sta-
tistics of the response of the random systems. Furthermore, this non-
uniformity not only affects effective properties of composite materials
but is also a crucial factor in initiation and subsequent development of
damage.

To determine the effective properties of a composite one needs to
consider the microscale, that is, the scale at which the fibre and matrix
are present. In this microscopic scale approach, the constituents are
employed in conjunction with homogenization to predict the composite
behaviour. Thus, ‘homogenization’ through numerical methods (e.g.
FEM) has been implemented by researchers as a capable method for
predicting properties of the material in higher scale using the results of
analysis in lower scale [11]. The current trend of work in micro-
mechanics is to estimate the effective elastic properties of the RVE of
the material with an equivalent random distribution of fibres [12]. It is
a highly attractive process to simulate the real mechanical behaviour of
the composite materials through finite element analysis. Effective
elastic properties of this heterogeneous structure, i.e. the composite,
depend on the size, shape, properties and spatial distribution of the
second phase, i.e. the fibre. Among the various uncertainties present,
the following uncertainties have been considered for the analysis: (a)
volume fraction, (b) randomness in the fibre arrangements and (c) fibre
cross-section shape. The influence of manufacturing uncertainties on
the composite material property variation is often not characterised
properly. Effect of manufacturing induced uncertainty is significantly
depend on the corresponding amount of constituent elements and many
other factors which are mentioned in [13]. Among others, Yushanov
and Bogdanovich [14] highlighted on the uncertainties of fibre curva-
ture and layer arrangement.

In the current study, a micromechanical framework is proposed to
investigate effective mechanical properties of elastic composites with
regular fibre array (square) and randomly dispersed fibres in a unit cell
model [15]. Initially, an algorithm for the automatic generation of 3D
RVE model of unidirectional fibre reinforced composite is presented.
Uncertainties in composite materials may be built up from a constituent
level which is carried out either by simulating the composite material
behaviour based on a large number of random variables starting from
fibre/matrix properties or by considering the microstructural mor-
phology. This uncertainty in the fibre distribution has been studied,
through which we estimate the scatter in the fibre arrangement at
macro scale. By using this scatter data, we create more realistic models
of the microstructure. To achieve this goal, a comprehensive study is
carried out with RVEs having single fibre (replica of the real image), 12
fibres, 20 fibres and 50 fibres. The effect of this random distribution has
been validated with the experimental results reported in [16]. The
performances of different fibre arrays in various aspects are compared
including the prediction of effective properties, stress concentration
factors, matrix rich and fibre cluster regions, which in most cases
contribute to failure initiation. Further, RVEs with fibres randomly
distributed in a periodic unit cell but with different fibre cross sections
are considered and studied how these different fibre cross sections af-
fect the mechanical properties. Finally, it has been studied how the
variation in the local volume fraction affects the effective elastic
properties at different positions inside the RVE due to the random
distribution of the fibres. Here, two RVE models are considered. In the
first RVE model we fixed the window size and then this window is
moved throughout the RVE to estimate the effective properties. In the
second RVE model, different sizes of the window are chosen and they
are moved throughout the RVE to estimate the effective properties.

The main motivation for this work is that single fibre unit cell data
is not good enough as the computed single fibre unit cell properties are
at great variance with the experimental results mainly the shear prop-
erties. This is because the shielding effect of neighbouring fibres is not
seen in this RVE. This is one of the reasons for modelling of multi-fibre
RVE. However, the issue over multi-fibre RVE is the statistical homo-
geneity as the obtained properties should be independent of the RVE

size. Based on the literature by Gitman et al. [6] and Kanit et al. [7], the
size of the RVE has been decided which will be sufficient for doing the
micromechanical analysis, that is a statistically equivalent RVE with
more fibres is constructed. Unlike most studies reported in literature,
here three dimensional RVEs are analysed. On the basis of literature,
RVEs are modeled with a maximum of 50 fibres. The main focus here is
to carry a systematic study of RVE’s of different sizes obtained by
varying the number of fibres and cross section shape. Statistically
converged (i.e. with almost zero variance) RVE analysis based proper-
ties will be compared to experimental results. Thus we build in ran-
domness in spatial distribution of fibres, variation in the fibre cross
section and also the size of the RVE (through change in number of fibres
in the RVE). This is possibly the most comprehensive study of its kind.
The result clearly indicate what predictions can be obtained by the
homogenization method, and also identify the variance between the
computational and experimental results.

Remark: The experiment results, with which the obtained results
are compared, must have been obtained with a certain reliability and
are the outcome of a comprehensive study [17]. The experimental data
depends upon (a) Amount of available data, (b) quality of the available
data, (c) type of experiments conducted and (d) possible limitations.

Remark: Micromechanics gives all the effective material properties
for the composite with only the assumption of periodicity. A plane
strain analysis is a simplification, that will give the transverse proper-
ties with good accuracy, but not the ones in the fibre direction, i.e.
E G ν, ,1 13 13, etc. This is one of the reason why we have done three di-
mensional (3D) RVE analysis, which cannot be achieved by doing a
single plane strain model. The 3D-analysis allows us to look at effect of
(periodic) micro-damage, fibre waviness and voids easily. Thus, this
gives us a more general micro-mechanical tool. The (3D)-analysis also
takes care of Poisson’s ratio well.

However, for the data used here, from Soden et al. [16], for com-
parison and validation such information is not available. The data set
provided in [16] has become the accepted experimental benchmark.

2. Characterization of uncertainties in composites

The complex manufacturing processes of the composite render
randomness in the material parameters. The variability in fibre dis-
tribution, volume fraction measurements result in variability of stiffness
and strength, which in turn, results in the variability of response of
composite materials. In the composite structures, these uncertainties
can be addressed by means of material, geometric and structural con-
siderations [9]. The material and geometric uncertainties mainly arise
due to lack of control over the manufacturing and fabrication techni-
ques.

The manufacturing of composites is strongly influenced by the vo-
lume fractions of its constituents, i.e. fibre V( )f and matrix V( )m and the
distribution of fibres in the matrix material. The randomness of the
fibre distribution in the matrix also depends on curing technique. This
spatial arrangements of the reinforcement plays a vital role in the
transverse constitutive behaviour of polymer matrix composites. In
Fig. 1, an example of real composite microstructure SEM image, which
vividly demonstrates the random patterns in the distribution of re-
inforcements, is shown. From these real microstructures one can model
the non uniform arrangement of fibres. This modeling includes the
characterization of the microstructure, statistical analysis of the mi-
crostructure, construction of the RVE model with random arrangement
of fibres and micromechanical modeling of the resulting RVE. Initially,
we estimate the scatter in the fibre distribution for these digital images
and analyses is carried out on the original image. The grey level image
and binary image are obtained from the real microstructure. Using
these data, we are able to extract the information about the location of
centres of the fibres, the distribution of fibre radius and the distance
between neighbouring fibres. Then the obtained statistical parameters
are utilized to construct a statistically equivalent RVE based on certain
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numerical algorithms [18].
Fig. 2 is a micrograph image of composite microstructure of size

706×678 pixels, which is first converted into a binary image. From
the binary image the volume fraction is calculated by counting the
pixels covered by fibre (white circles) compared to the overall size of
the image. The fibre volume fraction V( )f obtained was about 0.65. The
representative volume element (RVE) of the composite is calculated
using moving window technique. Different window sizes are considered
and the volume fraction is calculated for each window. Fig. 3 shows
moving window technique which is used to estimate the volume frac-
tion of a given window. The absolute error e in the mean value for
different window sizes are depicted in Table 1. It is noticed that, with
increase in the window size the absolute error value is reduced.

From this random binary image of the composite microstructure,
the total count and average radius of the fibres are calculated. The total
count of the fibre was 204. From Fig. 3(a), four random fibres are
chosen in every window and an ideal distribution of fibres is built along
the breadth. Using the mentioned data, the ideal number of fibres along
the breadth is estimated to be 14 (see Fig. 3(b) with red dots). The fibre
centre x y( , ) coordinates of these 14 fibres are considered as the ideal
coordinates which are further used to estimate the scatter S( ). Fig. 3(b)
also shows centres of ideal fibre distribution. Once both actual and ideal
coordinates are obtained, the deviations of centres of the fibres in

original micrograph are then calculated. Table 2 shows the scatter data
which is calculated by using the expression.

= − + −S x x y yScatter ( ) ( ) ( )actual ideal actual ideal
2 2 (1)

Thus, the scatter is estimated to give an idea of how the fibres are
distributed across the cross-section. Finally, with reference to this RVE,
the random distribution of fibres are modeled keeping the required
volume fraction constant.

3. Generation of RVE

In the estimation of effective properties of composite materials
using finite element techniques, the generation of an RVE plays a vital
role. Understanding the considerable deviations of microstructures of
real composites from the ideal ones resulted in an introduction of a
microstructure into numerical schemes. The two principle ways of
modeling the micro-structure are: (1) Direct use of scanned image of
microstructure and (2) Generation of an artificial microstructure. To
generate a statistically equivalent RVE, the random sequential adsorp-
tion technique has been widely used, which creates randomly dis-
tributed points inside a region, with a constraint that no pair of points
may be closer than a certain minimum distance. However, this tech-
nique does not permit the fibre volume fraction to be greater than 54.7%

Fig. 1. Distribution of continuous fibres in epoxy matrix in a transverse cross-section of a unidirectionally reinforced ply (digitalisation of a micrograph). (a) SEM
micrograph showing random arrangement of fibres, (b) SEM micrograph showing matrix rich region.

Fig. 2. Conversion of a grey scale image to binary image.
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because of “jamming limit”. Melro et al. [19] developed a three step
procedure for the generation of random fibre distribution and their
algorithm has the capability of achieving a fibre volume fraction of 65%.
Yang et al. [20] proposed random distributions for various fibre volume
fractions through adjusting the inter fibre distance parameters which
results in fibre aggregation in the centre area and matrix rich regions at
the corners. In order to generate a statistically equivalent RVE for a
composite microstructure of high fibre volume fractions, initially we
consider the micrograph of a single fibre which is then transformed into
a computer recognizable format by using binary image processing
technique. Fig. 4(a) shows the micrograph with single fibre. From this
binary image, we estimate diameter of the fibre and fibre volume
fraction, which are approximately 6.72 ± 0.25 μm and about 60%,

respectively.
Using this data three dimensional RVE is modeled with single fibre

maintaining a fibre volume fraction of 0.6 as shown in Fig. 4(b).
However, to consider it as an RVE, it should inherit certain character-
istics. According to Hill [21], representative volume should have two
main properties: Its structure is “entirely typical” for the composite and
it should contain a “sufficient number” of microstructure elements so
that boundary conditions at the surface of the composite do not affect
its effective properties. The RVE is a volume of a material whose ef-
fective behaviour is representative of (and indistinguishable from) that
of the material as a whole. Thus, the RVE is modeled in such a way that
it contains a large sufficient volume in order to capture the essence of
the microstructure from a statistical standpoint. The RVE must ensure a
given accuracy of the overall estimated properties obtained by spatial
averaging of the stress, strain or the energy fields. In particular, it is
now clear that the RVE size increases with the non-linearity of the
considered behaviour. Several studies have been attempted to define an
RVE for different purposes. See [22,23] for more details.

Considering the above characteristics for generating an RVE, the
RVEs with random arrangement of fibres are generated. Here, the mi-
crograph of random fibre distribution is transformed into a computer-
recognizable format by using image processing technique. From these
micrographs of both single fibre as in Fig. 4a) and and random fibre
distribution as in Fig. 2, the centres of the fibres and the corresponding
required dimensions are obtained. Further, the scatter in the distribu-
tion is also estimated. With reference to the scatter from these

Fig. 3. Fibre distribution to estimate the scatter. (a) Moving window technique used to calculate RVE, (b) Deviations of fibres from their ideal distribution.

Table 1
Absolute error in mean value of V( )f for different
window sizes.

Window size e in mean
value of V( )f

47×47 0.10
94×94 0.06

141×141 0.05
188×188 0.04
235×235 0.02
282×282 0.03

Table 2
Scatter data of fibres from their ideal positions.

Actual Coordinates Ideal Coordinates Displacement Scatter

xactual yactual xideal yideal −x x( )actual ideal −y y( )actual ideal S( )

148.63 616.71 148.40 587.93 0.23 28.78 28.78
146.27 641.33 148.40 611.86 −2.12 29.46 29.54
156.64 566.24 148.40 564.80 8.24 1.44 8.36
148.58 522.57 148.40 517.73 0.18 4.84 4.84
149.06 477.91 148.40 470.66 0.66 7.25 7.28
134.54 432.72 148.40 423.60 −13.89 9.12 16.62
163.68 393.75 148.40 376.53 15.28 17.21 23.02
168.75 336.39 148.40 329.46 20.35 6.93 21.49
143.20 291.87 148.10 282.40 −5.19 9.47 10.80
163.68 229.48 148.10 235.33 15.28 −5.84 16.36
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micrographs, the RVEs in Fig. 2 are modeled with ideal/regular ar-
rangements of fibres as shown in Fig. 5 by maintaining the fibre volume
fraction of 0.6. Fig. 5(a) shows the regular arrangement of fibres and
Fig. 5(b) shows the random arrangement of fibres which makes an off-
set from the ideal position. With regular arrangement of fibres an RVE
with 49 fibres was generated.

From the SEM images, the diameters of the fibre cross sections were
obtained. With this information, the RVE is modeled with regular array
maintaining the fibre volume fraction of 0.6. Here, all the fibres in an
RVE are considered to be straight and parallel to each other. The al-
gorithm for generation of an RVE is briefly presented here:

1. Step 1: The first fibre is generated at the centre of the domain and
then taken as the ‘current fibre’.

2. Step 2: If the distance between the new fibre and the previously
generated fibres is greater than the prescribed minimum distance
then, the new fibre will be generated.

3. Step 3: The periodicity of fibre is maintained to ensure material
continuity across the boundaries when multiple RVEs are arranged
for the generation of macrostructure, since RVE is locally periodic.

4. Step 4: The volume fraction is updated each time a newly generated
random fibre is placed inside the cube satisfying the above criteria.

5. Step 5: Once the rearrangement of fibres is done, fibres positioned
along the edges of the RVE are pushed inwards, always maintaining
the minimum distance between the fibres and not overlapping with
the neighbouring fibres.

The flowchart for the three-dimensional (3D) RVE generation with
regular distribution of fibre with the updation of fibre is shown in
Fig. 6.

RVEs with regular fibre distribution were generated. Now, to model
the RVE with random fibre distribution, these regular fibres are dis-
placed randomly both in x and y – directions. This arrangement is re-
stricted to a prescribed minimum distance so that the fibres do not
intersect each other and also maintain the periodicity at the edges of the
domain as shown in Fig. 5(b). Once the RVE is generated with random
fibre distribution, the scatter is measured with respect to the regular
arrangement. The RVE possesses very similar microstructural features
as in the original micrograph such as resin rich region, fibre aggregation
zones while maintaining the geometric periodicity of the RVE.

3.1. Geometric periodicity

One of the major assumptions of RVE is that the model is

Fig. 4. SEM image of single fibre. (a) Fibre cross section, (b) RVE with single fibre.

Fig. 5. RVE with regular and random fibre distribution. (a) Regular fibre arrangements in a square domain, (b) Scatter of fibre distribution from regular to random
arrangement.
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geometrically periodic in nature. The geometric periodicity can also be
explained as the periodicity of materials. For each reinforcement ele-
ment that intersects the boundaries of the cell, a set of matching geo-
metries is created in order to guarantee cell-to-cell continuity.
Therefore, by replicating RVE in three perpendicular directions one
should be able to form the actual structure. In the following, the im-
plementation of periodicity across faces, edges and corners are ex-
plained in brief.

3.2. Periodicity across faces

Periodicity across faces is implemented to maintain the continuity
of fibres across the faces of an RVE when a fibre crosses a face. The
following procedure is incorporated to build the periodicity of an RVE
across a face. It must be noted that the fibres that are crossing across the
face of a parent cell are shared by another adjacent virtual cell. Fig. 7(a)
shows that fibres are at the interior of the RVE which are periodic with
the adjacent front and rear unit cells. Thus, periodicity across the faces,
i.e. front and rear (y-z) plane of the RVE is considered (see Fig. 7(b)).

The common intersection between cylindrical fibre and faces of an
RVE need to be circular in shape as the fibres are unidirectionally ar-
ranged. There are no inclusions across the edges and this should be
considered as a mere coincidence.

3.3. Periodicity across edges

The fibres can cross the boundary of an RVE through the edges.
Here, edges represent the faces of RVE which are parallel to the fibres.
The continuity of a fibre across the edge of an RVE is ensured, if the
fibre passes across the edge of an RVE. A random arrangement of fibres
in cell may lead the fibres to cross the edge of a cell. Considering
Fig. 8(a), to I samples are taken as unit cells, with fibres crossing the
edge between the sample B and E and sample D and E. Now to make the
sample E to be periodic, the portion of fibre from sample D should sit
along the edge shared by samples E and F. Similarly, for the fibre

crossing the edge between the sample B and E, the portion of fibre
present in sample B should sit along the edge shared by samples E and
H. This makes sample E a periodic unit cell, as shown in Fig. 8(b).

By placing cell E on all the four sides of the parent unit cell for
periodicity, i.e. the cross section in a bigger view, one obtains the bigger
cell of Fig. 8(c).

3.4. Periodicity across corners

When fibres are sequentially arranged in a unit cell, there is a
possibility that fibres can cross the boundary of the cube through its
corner (formed due to intersection of the RVE faces parallel to the fi-
bres). A fibre crossing the boundary of a parent cell through its corner is
shared by four adjacent virtual cells. There are two possibilities: In the
first, the centre of a fibre exactly matches with the corner of the cell and
in the second, it is offset by some distance. Both these cases are dis-
cussed here. Fig. 9(a) shows when the fibre centre exactly matches the
corner of the cell samples A, B, E and D. Then to make the unit cell E to
be periodic, the portion of fibre shared by the sample D will sit at the
north-east corner of the cell E. Similarly, the portion of fibre shared by
the sample A will sit at the south-east corner of the cell E and the
portion of fibre shared by the sample B will sit at the south-west corner
of the cell E. This completes the geometrically periodic construction of
the unit cell E, as shown in Fig. 9(b).

The second case, the fibre centre is offset by some distance from the
corner of the unit cell, is shown in Fig. 9(c). Here, the same concept is
used and the periodic unit cell is shown in Fig. 9(d). Using this method,
a sample RVE is constructed in Fig. 10(a), with the assembled bigger
microstructure shown in Fig. 10(b).

4. Micromechanical analysis

A primary task in mechanics of materials is the prediction of ma-
terial behaviour, i.e to estimate the effective (or overall) properties of
the composition, commonly referred to as homogenization. The simplest
method leading to the homogenized moduli of a heterogeneous mate-
rial is the rule of mixtures. The overall properties are then calculated as
an average over the respective properties of the constituents. The
asymptotic homogenization theory [24,25] applies an asymptotic ex-
pansion of displacement and stress fields on the length parameter,
which is the ratio of the characteristic size of the heterogeneities to the
measure of the macrostructure [26]. The asymptotic homogenization
approach estimates overall effective properties as well as local stress
and strain values. Here, we consider a linearly elastic isotropic matrix
reinforced by transversely isotropic, unidirectionally aligned, randomly
located continuous fibres. Moreover, we assume that the composite
specimen has perfect interfacial bonding between matrix and fibre.

The overall properties of composite are, therefore transversely iso-
tropic. Here, carbon fibre (T300 carbon fibre) in epoxy matrix is con-
sidered for the estimation of effective properties. The advantage of the
micromechanical approach is that it allows not only estimation of ef-
fective properties of composites but also stress/strain concentration
factors which can be used in damage initiation and propagation study.
Micromechanical analysis calculates the local stress and strain dis-
tribution in the material followed by a volumetric averaging procedure
to obtain effective properties. Effective linear elastic modulus tensor, C ,
for a heterogeneous material is defined as the tensor relating the
average strain, ε̄ , to the average stress, σ̄ , as

=σ C ε¯ ¯ij ijkl kl (2)

The prediction is obtained by solving a boundary value problem on the
RVE. The boundary conditions are either traction or displacement type
on the boundary of RVE, ∂VRVE, i.e.

=τ σ n for tractioni ij j
(0)

(3)

Fig. 6. Algorithm to generate regular fibre arrangement in an RVE.
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=u ε n for displacementi ij j
(0)

(4)

where, σij
(0) and εij

(0) are the applied macro stresses and applied macro
strains, respectively. Random arrangement of fibres in the matrix re-
sults in C to be isotropic in the transverse (cross sectional) plane. The
macro-stress and macro-strain are derived by averaging stress and
strain tensors over the volume of the RVE as

∫=ε
V

ε dV¯ 1
ij

RVE V ij
RVE (5)

∫=σ
V

σ dV¯ 1
ij

RVE V ij
RVE (6)

where, σij and εij are the local stresses and local strains, respectively and
VRVE is the volume of the periodic representative volume element.

In this study, we use continuum approach to determine the effective
properties of the composites. In micro mechanics based method the
local level and global level analyses are decoupled. The local level
analysis considers the microstructural details in its modeling and this
analysis gives the effective elastic properties. Further, this local level
analysis can be used to calculate the effective or average RVE strain
from the local strain within the RVE. This approach has been used to
estimate the effective properties in a method termed as ‘mathematical
theory of homogenization’ by Suquet [27], as described briefly in the
next section.

4.1. Mathematical theory of homogenization

This theory establishes mathematical relations between micro-fields

and macro-fields [28], using a multi-scale perturbation method. The
effective properties naturally emerge as a consequence of these rela-
tions. The local displacement field in the cell is given as

≈ +x y x yu u u( ; ) ( ) Δ ( )i i i
Δ (0) (1) (7)

where, x is the actual coordinate, y is the scaled unit cell coordinate,
xu ( )i

(0) is the macro response, yu ( )i
(1) is the periodic micro correction

and Δ is the ratio of microstructure size to the total size of analysis
region (Δ = x

y
). yu ( )i

(1) can be obtained from each of the six funda-

mental macro-strains εij
x , where

= ⎛

⎝
⎜

∂
∂

+
∂
∂

⎞

⎠
⎟ε

u
x

u
x

1
2ij

x i

j

j

i

(0) (0)

(8)

by solving the periodic cell problem,

− ∂
∂

= ∂
∂

χ y
y

C ε
y

C( ( )) ( ( ))
j

ijkl kl
y rs

j
ijrs

Δ

(9)

where, χ rs is y periodic and

= ⎛

⎝
⎜

∂
∂

+
∂

∂
⎞

⎠
⎟χε

χ
y

χ

y
( ) 1

2
( ) ( )

ij
y rs i

rs

j

j
rs

i (10)

The above equation is obtained by assuming the general solution of the
micro problem, yu ( )i

(1) , of the following form

=x y χ υ xu ε( ; ) ( ( ))i
rs

rs
x(1)

0 (11)

The above expression implies that the micro solution is expressed as a
combination of solutions corresponding to individual macrostrains εrs

x ,

Fig. 7. Distribution of continuous fibres in epoxy matrix in a transverse cross-section of a unidirectionally reinforced ply. (a) Front view of the RVE showing fibres
interior of the RVE, (b) Isometric view showing fibres passing throughout the RVE which shows periodicity across faces.

Fig. 8. Modeling of edge periodicity in unit cell. (a) Fibre crossing the edges of unit cell, (b) Unit cell with geometric periodicity, (c) Multiple fibres crossing the edges
of the RVE, (d) Unit cell with edge periodicity.
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where υ x( )0 is the periodic solution which is a function of slow variable
x only. From the periodic solution, the total strain

≈ + ≈ +uε ε u ε u M ε u( ) ( ) ( ) (1 ) ( )ij ij
x

i ij
y

i ijkl kl
x

i
(0) (1) (0) , where Mijkl are the

point-wise influence functions and depend on vf at the level of the cell
[29]. More details can be seen in [30,31]. Mijkl can be expressed as

⎜ ⎟= ⎛
⎝

+ ⎞
⎠

−M δ δ δ δ ε1
2ijkl ik jl il jk ij

y

(12)

where, δij is the Kronecker delta. The effective stiffness tensor which
relates average stress and average strain can be calculated from Mijkl by
applying Hooke’s law at microscopic level and integrating it over the
volume of RVE and then dividing by the volume of RVE. Thus,

∫=σ
V

C M dV ε¯ 1 ¯ij
RVE V ijpm pmkl RVE kl

RVE (13)

from which the effective stiffness tensor can be written as

∫=C
V

C M dV1
ijkl

RVE V ijpm pmkl RVE
RVE (14)

4.2. Computer implementation

In the present work, an in-house finite element code was developed
in order to determine the effective homogenized properties of compo-
site materials using mathematical theory of homogenization.
Perturbation technique has also been implemented to generate RVEs
using MATLAB. In the RVE generation algorithm, fibres are modeled as
a line segment in a cube or cuboid. By using the information generated
in MATLAB, the commercial software HYPERMESH® is used to generate
a solid RVE model satisfying the periodicity condition. The RVEs are
discretized with linear tetrahedron elements. The tetrahedron elements
are formed from a two dimensional (2D) triangular elements on the
boundary. The commercial meshing software HYPERMESH® is used to
discretize the RVEs. Initially, a solid RVE is meshed on one side of the
surface of cube using two dimensional (2D) triangular elements and the
same elements get duplicated and translated to the opposite face to
maintain the periodicity. Similar procedure is followed for the fibre
elements also. A displacement based finite element formulation has
been implemented. A preconditioned conjugate gradient based solver is
developed to solve the resulting system of equations. The three di-
mensional (3D) model is utilized to predict all the elastic constants of
the resulting carbon fibre reinforced epoxy composite.

5. Results and discussion

In this section, the effect of randomness in fibre arrangement,
number of fibres in RVE and uncertainty in fibre cross section on the
effective properties of RVE are discussed. Further, the effect of variation

Fig. 9. Modeling of corner periodicity in unit cell. (a) Fibre centre is at the corner of the unit cell, (b) Unit cell showing periodicity at the corner, (c) Fibre centre is
offset to a distance from the corner of the unit cell, (d) Unit cell showing periodicity at the corner when fibre is offset.

Fig. 10. Periodicity at the corner of the unit cells on bigger cross section. (a) RVEs showing the fibre cross sections at every corner with periodicity, (b) Multiple fibres
crossing the corner of the unit cell with periodicity at the corner.

Table 3
Mechanical properties of AS4 carbon fibre material by Soden et al. [16].

E1 E2 G12 G23 ν12
(GPa) (GPa) (GPa) (GPa)

225 15 15 7 0.2

Table 4
Mechanical properties of 3501-6 epoxy matrix material by Soden et al.
[16].

E G ν
(GPa) (GPa)

4.2 1.567 0.35
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of local volume fraction on effective properties is also studied. To study
these effects, different scenarios are considered which are discussed in
the following. The material modeled here is a typical carbon fibre re-
inforced epoxy, whose constituent elastic properties are given in Tables
3 and 4. The fibre is transversely isotropic and matrix is isotropic in
nature.

The focus of these analyses is to study the longitudinal, transverse
and shear behaviour of the material. It is to be noted that the fibre -
matrix interface is not modeled in the present study. Here, analyses
have been done by considering three different scenarios. Initially, the
fibres are modelled as parallel cylinders of constant diameters.
Secondly, keeping the fibre diameter approximately same the fibre
cross-sections are randomly distorted. Finally, elliptical cross-section of

the fibre is considered keeping the position of the fibre constant.
Further, in all these cases the fibres are randomly distributed.

5.1. Case I: Prediction of the elastic constants of RVE with single fibre
(circular cross section)

RVE of dimension, approximately ( × ×d d d1.442 1.442 1.442 ) is
modeled with single fibre and the fibre volume fraction of 0.6. Here, d is
the diameter of the fibre. The RVE is shown in Fig. 11. This RVE is
discretized with 1, 32, 816 elements and 25, 323 nodes. The finite ele-
ment solution of the problem will require obtaining solutions of the
linear system of the form =Ku b. It is to be noted that the solutions
have to be obtained for all six load cases. Effective properties of the RVE
with single fibre are estimated and the results are tabulated in Table 5.

As part of World Wide Failure Exercise, a set of composite laminae
and constituent mechanical properties are made available by Hinton
et al. [17]. Mechanical properties for the composite laminae were

Fig. 11. RVE with single fibre.

Table 5
Effective properties of RVE model with single fibre of T300 and 3501-6 Epoxy.

Vf E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

0.60 139.58 9.55 9.55 4.70 4.70 3.06 0.25 0.25 0.26

Table 6
Effective properties of T-300/3501-6 epoxy composite (experimental results)
[16].

Vf E1 E2 G12 G23 ν12 ν23

(GPa) (GPa) (GPa) (GPa)

0.60 138 11.00 5.50 3.93 0.28 0.40

Fig. 12. Representative volume elements with 12 fibres. (a) RVE 1, (b) RVE 2 and (c) RVE 3.

Table 7
Effective properties of RVEs with twelve fibres (see Fig. 12).

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 138.19 8.77 8.88 4.51 4.81 3.57 0.25 0.25 0.26
RVE 2 138.70 8.96 8.88 4.91 4.67 3.52 0.25 0.25 0.31
RVE 3 138.54 9.06 9.01 5.06 4.86 3.50 0.25 0.25 0.30

μ( ) 138.48 8.93 8.93 4.83 4.78 3.53 0.25 0.25 0.29
σ( ) 0.26 0.15 0.07 0.28 0.10 0.03 0.00 0.00 0.03
ζ( ) 0.19 1.68 0.78 5.80 2.09 0.85 0.00 0.00 10.34
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considered from experimental studies carried out in Soden et al. [16]. It
must be noted that the properties of fibre are obtained by suitable
micromechanics relations from lamina properties. The experimental
value of the effective transverse shear modulus, G23 is obtained from
effective transverse modulus, E2 and through thickness Poisson’s ratio,
ν23. Owing to lack of standardisation of experiments on composites and
difficulties in measurements, variations in properties are expected from

different experimental sources.
Predicted effective elastic constants for the RVE with single fibre (of

circular cross section) are given in Table 5. The experimental results are

Fig. 13. Elastic constants with respect to experimental value for RVEs with 12 fibres. (a) Longitudinal modulus E1, (b) Transverse modulus E2, (c) Inplane shear
modulus G12, (d) Transverse shear modulus G23, (e) Inplane Poisson’s ratio ν12, (f) Transverse Poisson’s ratio ν23.

Table 8
Percentage change φ( )SF in the effective properties of RVEs with 12 fibres with respect to the RVE model with single fibre.

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 0.98 8.13 6.95 4.01 −2.28 −16.36 −1.31 0.67 −19.91
RVE 2 0.62 6.11 6.88 −4.44 0.72 −14.74 0.52 −0.71 −18.71
RVE 3 0.74 5.06 5.59 −7.71 −3.46 −14.24 0.44 −0.40 −15.51

Table 9
Percentage change φ( )EXP in the effective properties of RVEs with 12 fibres with
respect to the experimental result [16].

Model E1 E2 G12 G23 ν12 ν23

RVE 1 −0.14 20.27 17.88 9.13 8.71 22.30
RVE 2 −0.51 18.52 10.65 10.40 10.36 23.08
RVE 3 −0.39 17.60 7.86 10.78 10.29 25.15

Fig. 14. Representative volume elements with 20 fibres. (a) RVE 1, (b) RVE 2, (c) RVE 3 and (d) RVE 4.

Table 10
Effective properties of RVE model with twenty fibres (see Fig. 14).

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 139.23 8.83 8.84 5.02 5.10 3.69 0.25 0.25 0.32
RVE 2 139.42 9.13 9.21 4.97 5.22 3.52 0.25 0.25 0.29
RVE 3 139.45 9.08 9.12 4.94 5.04 3.54 0.25 0.25 0.29
RVE 4 139.45 9.11 9.23 4.90 5.20 3.51 0.25 0.25 0.29

μ( ) 139.39 9.04 9.11 4.96 5.17 3.57 0.25 0.25 0.30
σ( ) 0.11 0.14 0.18 0.05 0.11 0.09 0.00 0.00 0.01
ζ( ) 0.08 1.55 1.98 1.01 2.13 2.52 0.00 0.00 3.33
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given in Table 6. The predicted results are in agreement with experi-
mental results. Homogenization method shows good prediction of the
axial Young’s modulus and in plane shear modulus, that is E1 and G12

are very close to the experimental values. It is assumed that a uni-
directional fibre-reinforced lamina is treated as transversely isotropic
lamina and so the elastic constants are = =E E E G G, ,1 2 3 12 13 and G23.
The typical percentage difference of the effective elastic constants are
−1.14% for E1, 13.21% for E2 and E3, 14.45% for G12 and G13, 21.91%
for G23 and 35.20% for ν23 with respect to the experimental results. The
percentage difference/change φ( )EXP with respect to experimental result
is given by

⎜ ⎟= ⎛

⎝

− ⎞

⎠
∗φ

E E
E

100EXP
i

EXP
i

RVE

i
EXP

( ) ( )

( )
(15)

where Ei
EXP( ) generically refers to the experimental values and Ei

RVE( ) is
for that particular RVE. However, the percentage difference/change
φ( )SF with respect to RVE with single fibre is given by

⎜ ⎟= ⎛

⎝

− ⎞

⎠
∗φ

E E
E

100SF
i

SF
i

RVE

i
SF

( ) ( )

( )
(16)

where Ei
SF( ) generically refers to RVE with single fibre. The % error ζ( )

is calculated by considering the mean μ( ) and standard deviation σ( )
which is given as

⎜ ⎟= ⎛
⎝

⎞
⎠

ζ σ
μ

*100

Here, the percentage difference in properties with respect to that of
RVE with single fibre is reported because these are the most popularly
reported properties in literature.

5.2. Case II: RVE with twelve fibres

Following the procedure of generating the RVE, we refined our
analysis with random distribution of fibres maintaining the fibre vo-
lume fraction of 0.6. RVE with 12 fibres are shown in Fig. 12 with
approximate dimension of ( × ×d d d3.97 3.97 3.97 ). These RVEs are
meshed with approximately 2,00,000 elements and 40,000 nodes, re-
spectively. Here, the effect of randomness in fibre distribution on ef-
fective elastic properties is studied.

Observations are made for the predicted effective elastic constants
of RVEs with fibres randomly distributed. Here, three RVE models
considered are RVE 1, RVE 2 and RVE 3 as shown in Fig. 12. The
predicted effective elastic coefficients are given in Table 7. As RVEs are
modeled with random arrangements of fibre, there is a variation in
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Fig. 15. Elastic constants with respect to experimental values for RVE with 20 fibres (a) Longitudinal modulus E1, (b) Transverse modulus E2, (c) Inplane shear
modulus G12, (d) Transverse shear modulus G23, (e) Inplane Poisson’s ratio ν12, (f) Transverse Poisson’s ratio ν23.

Table 11
Percentage change φ( )SF in the effective properties of RVEs with 20 fibres with respect to the RVE model with single fibre.

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 0.25 7.49 7.32 −6.74 −8.54 −20.39 0.40 0.63 −21.57
RVE 2 0.12 4.28 3.47 −5.68 −11.07 −14.74 −0.32 0.91 −11.30
RVE 3 0.09 4.86 4.38 −5.16 −7.27 −15.49 −0.16 0.59 −13.43
RVE 4 0.09 4.47 3.29 −4.34 −12.26 −14.39 −0.63 1.19 −11.11

Table 12
Percentage change φ( )EXP in the effective properties of RVEs with 20 fibres with
respect to the experimental result [16].

Model E1 E2 G12 G23 ν12 ν23

RVE 1 −0.89 19.72 8.69 5.98 10.25 21.23
RVE 2 −1.03 16.93 9.59 10.39 9.61 27.88
RVE 3 −1.05 17.43 10.03 9.81 9.75 26.50
RVE 4 −1.05 17.09 10.74 10.66 9.32 28.00
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effective properties E2 and E3 in RVE 2 and RVE 3 as compared to RVE
1. This is as expected because for RVE 1 the fibres are more uniformly
distributed, whereas for the other two RVEs they are randomly ar-
ranged (see Fig. 12). The standard deviation (σ) values for all the
properties are less than 1 but ζ( ) is more for G12 and ν23, i.e. 5.8% and
10.34%, respectively and for the other properties it is less than 2% as
given in Table 7. However, the mean μ( ) values of all the constants are
equal to or less than the experimental values reported in [16]. The
comparison is shown in Fig. 13. The experimental results are shown as a
reference line.

The percentage differences φ( )SF between the properties obtained
from the three RVEs are given in Table 8. Axial modulus, E1 predicted
for all the three RVEs with different fibre arrangement has percentage
change less than 1% with respect to the effective properties of RVE with
single fibre. However, for the transverse shear modulus, G φ, ( )SF23 the
change is much higher compared to axial shear modulus G12 and G13
and is about 15%. Similarly, φ( )SF can be as high as 19% for the
transverse Poisson’s ratio ν23. This is due to the arrangement of fibres in
the yz plane.

From Fig. 12, it can be noticed that most of the projected areas near
the edges of the RVE are occupied by the fibres, this is the reason for the
higher value of G23. Table 9 shows the percentage change φ( )EXP in the

effective properties with respect to the experimental results. It is no-
ticed that φ( )EXP for ν23 is much higher compared to the other properties
which is almost 23%. From this, we can say that ν23 is significantly
affected due to the random distribution of fibres.

5.3. Case III: RVE with twenty fibres

For this section, we consider the RVE of approximate dimensions
( × ×d d d5.15 5.15 5.15 ). The number of fibres are 20 in this RVE. The
fibres are randomly distributed maintaining the volume fraction 0.6.
Here, four RVE models are considered with different fibre arrangements
as shown in Fig. 14. These RVEs are meshed with approximately
2,50,000 elements and 45,000 nodes, respectively. The predicted ef-
fective properties are tabulated in Table 10.

Table 10 shows the estimated effective properties, the average μ( )
and standard deviation σ( ). Also, φ( )SF is estimated for this case. These
are also compared with experimental values and are shown in Fig. 15.
The mean μ( ) values of all the properties are less than the experimental
values, except for E1 which is very close to experimental value as shown
in Fig. 15(a). The standard deviation σ( ) values for the RVEs with 20
fibres are less than one. Further, ζ( ) is less than 1% for E1 but for
G G,13 23 and ν23 these are about 2–3%.

It is observed that μ( ) of the elastic properties of RVE models with
20 fibres is higher comparable to RVE with 12 fibres. This is mainly due
to increase in the number of fibres and also arrangement of the fibres.
Increase in number of fibres by keeping the size of the RVE and fibre
volume fraction constant, makes the RVE more stiffer. For this reason
the values are higher compared to RVE with 12 fibres.

Axial modulus, E1 predicted from all the four RVEs with different
fibre arrangement has φ( )SF less than 1% as given in Table 11. For RVE
1, φ( )SF is more compared to the other three RVE models. This is mainly
due to the fact that in RVE 1 the fibres are arranged in a uniform
manner throughout the RVE. φ( )SF for transverse shear modulus, G23 is
much more for RVE 1 compared to other three RVE models due to the
same reason as mentioned for RVE with 12 fibres.

Also from Fig. 14 it can be noticed that except RVE 1, the other
three RVEs have some matrix rich regions which also affect the prop-
erties. Table 12 shows the percentage change φ( )EXP of the effective
properties with respect to the experimental values. It is observed that
on comparison with experimental data, φ( )EXP for E1 is less than 1.2%.

Fig. 16. Representative volume elements with 50 fibres of cicular cross-sections. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5, (f) RVE 6, (g) RVE 7 and (h)
RVE 8.

Table 13
Effective properties of RVE models with fifty fibres of circular cross-section (see
Fig. 16).

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 136.19 9.20 9.28 4.93 5.20 3.53 0.25 0.25 0.28
RVE 2 136.01 9.10 9.14 5.01 5.16 3.61 0.25 0.25 0.29
RVE 3 136.04 9.20 9.24 4.24 5.05 3.57 0.25 0.25 0.28
RVE 4 136.73 9.27 9.26 5.45 5.41 3.60 0.25 0.25 0.28
RVE 5 136.64 9.25 9.28 5.41 5.44 3.59 0.25 0.25 0.28
RVE 6 136.47 9.22 9.21 5.43 5.40 3.59 0.25 0.25 0.29
RVE 7 136.44 9.21 9.16 5.36 5.29 3.60 0.25 0.25 0.29
RVE 8 136.60 9.31 9.26 5.45 5.29 3.56 0.25 0.25 0.28

μ( ) 136.39 9.22 9.23 5.17 5.28 3.59 0.25 0.25 0.28
σ( ) 0.28 0.06 0.05 0.43 0.14 0.02 0.00 0.00 0.01
ζ( ) 0.21 0.65 0.54 8.32 2.65 0.56 0.00 0.00 3.52
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However, for ν23 it is much higher and approximately 26%. Even from
Fig. 15 it is noticed that for ν23 the variation is much more compared to
the experimental data. Thus, ν23 has a significant effect due to random
fibre distribution.

5.4. Case IV: RVE with fifty fibres

In this section, the variation in the fibre cross-section with the effect
of randomness has also been discussed and their effects on the effective
properties are studied. Here, RVEs with 50 fibres maintaining the same

RVE size and the volume fraction 0.6 are generated but with different
fibre arrangements shown in Fig. 16. Here, RVEs with the variation in
fibre cross-section are modeled maintaining the centres of the fibres at
the same position inside the RVE domain for the circular, distorted and
elliptical cross-sections.

5.4.1. RVE with fibres of circular cross sections
Here, eight different RVEs are modeled to study the clustering effect

of fibres on the effective properties. These RVEs are shown in Fig. 16
and their effective properties are given in Table 13. These RVEs are
meshed with approximately 5,50,000 elements and 1,00,000 nodes,
respectively.

Observations are made for these RVEs for the effect of randomness
in fibre arrangement. When we increase the number of fibres to 50, it is
noticed that there is a reduction in effective axial modulus, E1 with
respect to the RVE with single fibre, 12 and 20 fibres but there is a little
increment in the mean μ( ) values of other effective properties. σ( ) va-
lues in the properties for these RVEs are less than 1. Further, ζ( ) is less
than 1% except for G G,12 13 and ν23 which are equal to 8.32%, 2.65%
and 3.52%, respectively. The comparison of these properties with re-
spect to the experimental values are shown in Fig. 17. It can be seen
that predicted values of E1 and G12 are in comparison with experimental
results. However, for the other properties there is a significant

Fig. 17. Elastic constants with respect to the experimental values for RVEs with 50 fibres of circular cross-section (a) Longitudinal modulus E1, (b) Transverse
modulus E2, (c) Inplane shear modulus G12, (d) Transverse shear modulus G23, (e) Inplane Poisson’s ratio ν12, (f) Transverse Poisson’s ratio ν23.

Table 14
Percentage change φ( )SF in the effective properties of the RVEs with 50 fibres of circular cross section with respect to the RVE model with single fibre.

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 2.42 3.60 2.77 −4.93 −10.52 −15.34 −0.44 0.79 −9.03
RVE 2 2.56 4.66 4.22 −6.68 −9.66 −17.75 −0.16 0.52 −12.81
RVE 3 2.53 3.60 3.16 9.78 −7.46 −16.58 −0.16 0.52 −9.76
RVE 4 2.04 2.86 2.93 −16.01 −15.03 −17.46 0.52 0.39 −8.76
RVE 5 2.10 3.02 2.74 −15.10 −15.78 −17.19 0.36 0.52 −8.45
RVE 6 2.22 3.32 3.43 −15.57 −14.79 −17.03 0.44 0.28 −10.19
RVE 7 2.25 3.51 4.01 −14.03 −12.43 −17.31 0.59 −0.04 −11.11
RVE 8 2.13 2.40 2.96 −16.01 −12.49 −16.02 0.91 −0.24 −8.37

Table 15
Percentage change φ( )EXP in the effective properties of RVEs with 50 fibres of
circular cross section with respect to the experimental result [16].

Model E1 E2 G12 G23 ν12 ν23

RVE 1 1.31 16.34 10.23 9.93 9.50 29.35
RVE 2 1.44 17.25 8.74 8.04 9.75 26.90
RVE 3 1.41 16.34 22.82 8.96 9.75 28.88
RVE 4 0.92 15.69 0.75 8.27 10.36 29.53
RVE 5 0.99 15.83 1.53 8.48 10.21 29.73
RVE 6 1.11 16.10 1.13 8.61 10.29 28.60
RVE 7 1.13 16.26 2.45 8.39 10.43 28.00
RVE 8 1.01 15.30 0.76 9.39 10.71 29.78
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difference. For E φ, ( )EXP1 is less than 1.5% for all the RVEs whereas for
G12, except RVE 1, 2 and 3 φ( )EXP is less than 3%. However, for the other
properties it is within a range between (8 and 30)%.

The percentage change φ( )SF is reported in Table 14. It can be seen
that φ( )SF for all the properties is more than 1%. The change is ap-
proximately 4% for longitudinal and transverse moduli but for shear
moduli it varies between 4 and 17%. Except RVE 1, 2 and 3 φ( )SF is
more than 12%. Further, φ( )SF of effective transverse moduli E2 and E3

are reduced compared to RVE with 12 and 20 fibres. Table 15 shows the
percentage change φ( )EXP in the effective properties with respect to the
experimental result. It is observed that φ( )EXP for E1 is less than 1.5%

however, for ν23 it is very high, i.e. approximately 28%. For RVE 3, it is
noticed that G12 has very high φ( )EXP , i.e. 22% compared to other RVE
models.

After studying the variation of the effective properties due to
random fibre arrangements, we have extended the study to the varia-
tion of RMS value of the micro stresses, σRMS due to unit macro strains.
In this study, the effect of macro normal and shear strains are con-
sidered for both periodic and random arrangements of fibres with cir-
cular cross section. Table 16 presents the σRMS for RVEs with circular
fibre cross section for both periodic and random fibre arrangements.

From Table 16 it is clearly seen that σRMS values are significantly
higher for macro shear strain cases compared to the macro normal
strain cases. The highest value of σRMS is for RVE 7 for macro strain ε xx(0),
( E2.31 05). This makes the percentage error for macro strain ε xx(0), very
large, i.e. 144.89%. From Table 16 it can be noticed that ζ( ) is within
the range of (50–65)% except for ε xx(0), and ε yz(0), which are 114.89%
and 47.80%, respectively. Further, contour plots for the variation of
σRMS on the plane perpendicular to the fibre direction are shown in
Fig. 18 and Fig. 19. Fig. 18 shows the variation of σRMS for the periodic
arrangement of fibres and Fig. 19 shows the variation of σRMS for
random fibre distribution of circular fibre cross section. These plots also
show the areas of high stress concentration.

Fig. 18(a), (b), (c) are for the macro normal strains and (d), (e), (f)
are for macro shear strains. However, for both the cases the variation of
σRMS is in a periodic manner and also they show the regions of high
stress concentration where the damage initiation is expected to take
place. When the fibres are periodically arranged it is noticed from the
contour plots that the high concentration regions also occurred in a
periodic manner depending on the applied load case.

However, for Fig. 19 where the fibres are randomly distributed, the
scenarios are different. Here, the fibres are of circular cross section and
are randomly arranged in the RVEs. There are some fibre-rich regions,
i.e. the fibres are very close to each other and also there are matrix rich
regions, i.e. where there are no fibres present.

Further, contour plots for the variation of σRMS in an RVE with
random fibre distributions are shown in Fig. 19. Interestingly, for
Fig. 19 (a) the values are much less compared to the other plots as it is
for macro strain ε xx(0), where the loading is along the fibre direction.
However, for the other load cases the variation of σRMS is very promi-
nent. The areas of high stress concentration regions are easily identified
and they depend on different regions inside the RVE and the applied
load cases. It mainly occurs for the regions where the fibres are very
close to each other, i.e. fibre rich regions. It can also be concluded that
these are the regions which are highly prone to damage initiation.
Eventually, the highest value of σRMS occurs for macro strain ε xz(0), which
is E2.620 04 for this particular fibre arrangement. This doesn’t mean that
for all the arrangements σRMS will be the highest for ε xz(0), , it depends on
the arrangement of fibres. Thus, random fibre distribution/arrangement
plays a vital role in the variation of σRMS.

5.4.2. RVE with fibres of distorted cross sections
Here, RVEs with distorted fibre cross sections are studied. The fibres

are randomly distributed as shown in Fig. 20. The volume fractions for
these RVEs are less compared to those of the circular cross section as the
fibres have distorted cross sections. This plays a vital role which reflects
in the estimation of effective properties. Here, eight RVE samples are
studied for the effect of randomness and distortion of fibre cross section
on the effective properties. They are meshed with approximately
6,50,000 elements and 1,30,000 nodes, respectively.

The effective properties for these RVEs are given in Table 17 and the
percentage change φ( )SF is given in Table 18. From Table 17 it is ob-
served that Young’s modulus E1 shows a significant reduction in com-
parison with circular fibre cross section. However, for other properties
there is not much of change. The change in Young’s modulus E1 is
mainly due to the reduction in volume fraction as the fibres are dis-
torted. ζ( ) is less than 1% for axial, transverse moduli andG23. However,

Table 16
Variation of σRMS along the depth of RVEs with circular fibre cross section for
different load cases.

(ε )xx(0), (ε )yy(0), (ε )zz(0), (ε )yz(0), (ε )xz(0), (ε )xy(0),

E1.36 04 E1.93 04 E1.35 04 E1.96 04 E1.85 05 E1.44 05

E1.88 04 E1.10 04 E8.27 03 E8.71 03 E2.91 04 E3.38 04

E1.59 04 E9.99 03 E8.27 03 E9.11 03 E3.18 04 E3.02 04

E8.86 02 E1.01 04 E8.54 03 E9.34 03 E2.45 04 E2.33 04

E1.29 04 E4.69 04 E3.47 04 E2.77 04 E2.03 05 E2.06 05

E1.20 04 E3.84 04 E2.54 04 E2.94 04 E1.92 05 E1.94 05

E1.10 05 E4.86 04 E3.06 04 E2.82 04 E2.34 05 E2.15 05

E2.31 05 E4.19 04 E3.37 04 E2.95 04 E2.04 05 E1.99 05

E3.52 04 E4.13 04 E2.98 04 E2.90 04 E2.22 05 E1.98 05

E5.46 04 E3.10 04 E2.25 04 E2.14 04 E1.42 05 E1.37 05

μ( )
E7.91 04 E1.74 04 E1.19 04 E1.02 04 E9.53 04 E9.00 04

σ( )
144.89 56.12 52.90 47.80 66.87 65.46

ζ( )
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for G12 and G13 it is about 3.02% and 2.30% (see Table 17). σ( ) for all the
properties are less than 1, that means the effective properties do not
have a severe effect due to distortion of fibres.

However, errors in the effective properties with respect to the ex-
perimental values are shown in Fig. 21. It is observed that for the ef-
fective properties E2 and ν23 the variation is much more compared to

the other effective properties with respect to the experimental results.
From Table 18, it is observed that the values of E E,1 2 and E3 show

about 7% change. Similarly, this change for G12 is about - 18% and for
G13 and G23 it is about - 14% when compared to that of RVE with single
fibre. φ( )SF of shear moduli G13 and G23 for RVE 3 is much less compared
to other RVE models because more number of fibres are concentrated at

Fig. 18. Variation of σRMS of RVE with periodic arrangement (circular fibre cross section) for different load cases. (a) Macro strain (ε )xx(0), , (b) macro strain (ε )yy(0), , (c)
macro strain (ε )zz(0), , (d) macro strain (ε )yz(0), , (e) macro strain (ε )xz(0), and (f) macro strain (ε )xy(0), .

Fig. 19. Variation of σRMS in an RVE with random arrangement (RVE 1 – circular fibre cross section) for different load cases. (a) macro strain (ε )xx(0), , (b) macro strain
(ε )yy(0), , (c) macro strain (ε )zz(0), , (d) macro strain (ε )yz(0), , (e) macro strain (ε )xz(0), and (f) macro strain (ε )xy(0), .
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the centre of the RVE.
Further, Table 19 shows the percentage change φ( )EXP . φ( )SF is less

than 6% for E1 and G12 but for E2 and ν23 it is almost 18% and 26%,
respectively. So from experimental point of view E2 and ν23 have sig-
nificant effect due to fibre cross section and also due to their random
distribution.

Here, we studied the variation of RMS value of the micro stresses
σRMS due to unit macro strains. However here the fibres are of distorted
cross section. The effect of macro normal and shear strains are con-
sidered. Table 20 presents the σRMS for RVEs with distorted fibre cross

section.
From Table 20 it is noticed that σRMS values are in the same range for

both normal and shear macro strain cases, unlike for fibres with circular
fibre cross section where we observe higher values for shear strain cases
compared to normal strain cases. ζ( ) for ε yy(0), is only 7.83% compared
to other macro strain which is almost or above 50% except for ε xy(0),
which is 27.25% (see Table 20). On noticing σ( ) value, the value for
ε xx(0), is higher compared to other macro strain cases which is E3.15 05
thus we can say ε xx(0), has significant effect on the variation of σRMS for
this particular fibre arrangement.

Further contour plots for the variation of σRMS over the RVEs with
distorted fibre cross section are shown in Fig. 22. These plots show the
regions of high stress concentration due to applied macro strains of
different types. It is also observed that the maximum stress value occurs
for macro strain ε ε,yy xz(0), (0), and ε xy(0), for this particular fibre arrange-
ment. So from these contour plots we can say the failure or initiation of
damage will occur mostly at the fibre rich regions irrespective of the
applied load cases.

5.4.3. RVE with fibres of elliptical cross sections
RVEs with elliptical fibre cross sections are considered and are

randomly distributed. RVEs are modeled with elliptical fibre cross-
section with +0.5% of the radius of the circular fibre cross-section as
major axis and −0.5% of the circular fibre cross-section as minor axis
as shown in Fig. 23. The fibres are evenly distributed across the window
with random orientations, i.e. the major axis of the elliptical fibre cross-
section is placed randomly in the y–z plane. Here also we have

Fig. 20. Representative volume elements with 50 fibres of distorted cross-section. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5, (f) RVE 6, (g) RVE 7 and (h)
RVE 8.

Table 17
Effective properties of RVE models with fifty fibres of distorted cross-section
(see Fig. 20).

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 132.18 9.12 9.07 5.41 5.28 3.50 0.25 0.25 0.29
RVE 2 131.63 8.96 8.89 5.24 5.11 3.53 0.25 0.26 0.30
RVE 3 131.48 8.97 9.00 5.02 5.07 3.47 0.25 0.25 0.29
RVE 4 130.91 8.99 8.98 5.22 5.17 3.46 0.25 0.25 0.29
RVE 5 130.11 8.95 8.95 5.21 5.15 3.43 0.25 0.26 0.29
RVE 6 131.48 8.99 8.99 5.33 5.33 3.47 0.25 0.25 0.29
RVE 7 130.65 8.95 8.91 5.30 5.21 3.47 0.25 0.26 0.30
RVE 8 131.79 9.13 9.08 5.55 5.41 3.49 0.25 0.25 0.29

μ( ) 131.28 9.01 8.99 5.29 5.22 3.48 0.25 0.25 0.29
σ( ) 0.68 0.07 0.07 0.16 0.12 0.03 0.00 0.00 0.00
ζ( ) 0.52 0.78 0.78 3.02 2.30 0.86 0.00 0.00 0.00

Table 18
Percentage change φ( )SF in the effective properties of the RVEs with 50 fibres of distorted cross section with respect to the RVE model with single fibre.

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 5.29 4.44 4.96 −15.06 −12.37 −14.09 −0.08 −0.83 −11.19
RVE 2 5.69 6.14 6.79 −11.47 −8.77 −15.27 −0.24 −1.07 −15.93
RVE 3 5.79 5.97 5.70 −6.75 −7.89 −13.38 −1.03 −0.67 −13.12
RVE 4 6.21 5.79 5.91 −10.99 −9.94 −13.03 −0.87 −0.99 −13.19
RVE 5 6.78 6.18 6.21 −10.85 −9.55 −12.06 −0.99 −1.19 −13.54
RVE 6 5.79 5.76 5.82 −13.44 −13.29 −13.26 −0.87 −0.87 −13.62
RVE 7 6.39 6.23 6.65 −12.77 −10.84 −13.33 −0.67 −1.35 −15.01
RVE 8 5.58 4.35 4.83 −18.08 −15.12 −13.86 0.12 −0.91 −11.19
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considered eight RVE samples and studied how the randomness of fibre
arrangement with elliptical fibre cross sections affect the variation in
effective properties. These RVEs are meshed with approximately
5,75,000 elements and 1,20,000 nodes, respectively.

The effective properties for the RVEs with elliptical fibre cross
section are tabulated in Table 21. The effective property values are very
close to the RVEs of circular cross section. The standard deviation σ( )
for all the properties are less than 1 and ζ( ) is also less than 1, except for
G12 and G13 and it is about 2.6% and 2.06%, respectively. Thus, we can
say randomness with elliptical fibre cross section has negligible effect
on the effective properties. In Fig. 24, the error in the elastic constants
with respect to the experimental results are shown. It is noticed that the
computation results of E1 and G12 are almost matching with the ex-
perimental results. However, there is a large variation with the ex-
perimental results for E2 and ν12 (see Fig. 24).

The percentage change φ( )SF is given in Table 22. φ( )SF for E1 is
about 2.6%, whereas for E2 and E3 it is about 4.5%. φ( )SF for shear
moduli is varying between (12 and 18)%.

The percentage change φ( )EXP is shown in Table 23. It is noticed that
φ( )EXP for E1 is less than 1.5% for all the RVE models, however for E2 is
about 16%. It is observed that not only E2 has high percentage change
but also for ν23 which is about 29%. Thus, with respect to experimental
results, E2 and ν23 have a significant effect for this particular fibre

arrangement of elliptical fibre cross section.
From the study carried out in this section it can be understood that

with increase in the number of fibres in the RVE, the obtained prop-
erties converge and approach the experimental values. However, some
transverse properties can be up to 30% different from the experimental
values.

Remark on the goodness of the computational results: It is no-
ticed that the transverse properties E2 and ν23 do not match well with
the experimental results. On considering the computed values obtained
for the RVEs of 50 fibres with circular cross sections it is observed that
E2 shows a variance of up to 17% with respect to the experimental
results. It is noticed that experimental data for E2 is 11 GPa and com-
putational data for E2 is 9.22 GPa. However, % error in E2 is

− =[(11 9.22)/11] * 100 16.18%. If we carry out a simple standard me-
chanics analysis with E2 of fibre of 15 GPa [16] then E2 (of composite)
as
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Both these results are not close to desired experimental value of 11.
This points to a need to take a relook at the experimental result itself.
From these it can be said that this is best that can be done in micro
mechanics considering the realistic situations about fibre cross section
and distributions. A similar analysis can be applied for ν23. Further, the
variation in fibre cross sectional geometry does not have much effect on
effective properties. But, it can significantly effect stress distribution
which plays an important role in damage initiation and its propagation.
Finally, the variation of σRMS due to unit macro strains for elliptical fibre
cross section is studied. In this study, the effect of macro normal and
shear strains are considered on random arrangements of fibres.

Fig. 21. Elastic properties with respect to experimental value with 50 fibres of distorted cross-section. (a) Longitudinal modulus E1, (b) Transverse modulus E2, (c)
Inplane shear modulus G12, (d) Transverse shear modulus G23, (e) Inplane Poisson’s ratio ν12, (f) Transverse Poisson’s ratio ν23.

Table 19
Percentage change φ( )EXP is in the effective properties of RVEs with 50 fibres of
distorted cross section with respect to the experimental result [16].

Model E1 E2 G12 G23 ν12 ν23

RVE 1 4.21 17.07 1.56 10.90 9.82 27.95
RVE 2 4.61 18.54 4.63 9.89 9.68 24.88
RVE 3 4.72 18.39 8.68 11.46 8.96 26.70
RVE 4 5.14 18.25 5.04 11.73 9.11 26.65
RVE 5 5.72 18.58 5.17 12.49 9.00 26.43
RVE 6 4.72 18.21 2.95 11.52 9.11 26.38
RVE 7 5.32 18.62 3.52 11.50 9.29 25.48
RVE 8 4.50 16.99 −1.02 11.08 10.00 27.95
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Table 24 presents the σRMS for RVEs with elliptical fibre cross section.
From Table 24 it is observed that ζ( ) of σRMS for macro strain ε xx(0), is

very high of 101.34% compared to other macro strains which are in the
range of (11–18)%. However, σ( ) is more for macro strain ε xx(0), , i.e.

E1.12 05 compared to other macro strains. Further, contour plots for the
variation of σRMS over the RVEs with elliptical fibre cross section are
shown in Fig. 25. These plots show the regions of high stress con-
centration due to applied macro strains of different types.

From the contour plots, it is observed that the maximum σRMS value
occurs for macro strain ε ε,yy xz(0), (0), and ε xy(0), . Even from the contour
plots of macro shear strains there are many areas/zones which are
highly prone to failure or initiation of damage. For some load cases it
occurs near the edges of the RVE or at the fibre rich regions (where the

fibres are very close to each other). So from the damage initiation point
of view, randomness plays a vital role as in some scenarios fibre ar-
rangements sometimes restrict the initiation of damage as the fibres are
sitting on the path of the initiation of damage.

5.5. Master RVE

In this study, the effect of the variation in the local volume fraction
on the effective elastic properties at different positions inside the RVE
due to the random distribution of the fibres is noticed. Here, two RVE
models are considered. In the first RVE model, we fixed the window size
and then this window is moved throughout the RVE to estimate the
effective properties. In the second RVE model, different sizes of the
window are considered and they are moved throughout the RVE to
estimate the effective properties. Here, the notion of homogenization
convergence has been studied to eliminate the geometrical periodicity
requirement when the size of RVE is sufficiently large. The numerical
studies realize the multiscale nature of the convergence of overall
material properties as the unit cell size is increased. Here, initially the
master RVE of dimension approximately ( d1.1442 ), where d is the dia-
meter of the fibre, is modeled with cubic domain and periodicity. To
analyze the local behaviour or to do a detailed analysis of the compo-
site, we sectioned the master RVE into a number of sub samples called
super frames.

5.5.1. Model RVE 1
For the model RVE 1, the master RVE domain was divided into 16

equal cuboidal domains as shown in Fig. 26. The boundaries of the
super frames intersect the fibres but the connectivity between the super
frames is maintained. Here, three cases studied are: estimation of ef-
fective properties (i) for single super frame, (ii) combination of 4 super
frames and (iii) combination of 9 super frames. Finally, the percentage
change of each super frame is compared with the whole RVE model. In
Case (i) Model, a single RVE of 50 fibres is modeled into 16 windows of
single super frame and named as A to P. These are shown in Fig. 26. It
can be seen that some of the super frames have fibre rich regions while
some of them are matrix rich regions and due to this there is a variation
in the fibre volume fraction in each super frame.

The effects of variation of volume fraction, matrix and fibre rich
regions and also the randomness in the fibre distribution on effective
properties are studied. We start the analysis by solving the master do-
main problem with displacement boundary conditions for all the six
load cases and estimate the effective elastic properties.

Case (i): Here, single super frames are considered for this study as
shown in Fig. 27. On account of single super frame, sixteen windows/
super frames are generated for the study of the effective properties.
Here, the window A has low fibre volume fraction as it is mostly
composed of matrix rich region. Also there are other windows with
fibre rich regions.

The results for effective properties of individual windows are given
in Table 25. It can be seen that the fibre volume fraction varies from
37% to 75%. For windows A to P, it can be seen that the window A has
matrix rich region with fibre volume fraction of 37%. The Young’s
modulus, E1 is 88.12 GPa, which is much less compared to values for
other windows. This is obviously due to lesser fibre volume fraction.
However, for Window B and G, the fibre volume fraction is much more,
i.e 75.08% and 73.82%, respectively and considered as a fibre rich
region as fibres are more clustered. For these two windows the effective
axial modulus is 173.84 GPa and 171.01 GPa, respectively which is
much more compared to other windows. It is noticed that for Windows
C to F and H to P, there is a variation in fibre volume fraction from
50.96% to 68.80%, due to which the effective axial modulus, E1 varies
from 116.43 GPa to 159.69 GPa. Thus, this study clearly brings out the
fact that volume fraction plays a vital role on the effective properties. It
has been noticed that the μ( ) fibre volume fraction is 59.73% and for
this the average value of E1 is 139.15 GPa, which is very close to the

Table 20
Variation of σRMS along the depth of RVEs with distorted fibre cross section for
different load cases.

(ε )xx(0), (ε )yy(0), (ε )zz(0), (ε )yz(0), (ε )xz(0), (ε )xy(0),

E2.45 05 E5.30 04 E1.01 05 E8.29 04 E6.45 05 E2.55 05

E3.03 05 E4.88 04 E3.92 04 E3.34 04 E1.95 05 E1.89 05

E2.52 05 E5.08 04 E3.18 04 E2.62 04 E2.12 05 E1.90 05

E3.34 05 E4.34 04 E3.84 04 E2.97 04 E2.03 05 E1.95 05

E2.47 05 E4.71 04 E3.34 04 E3.15 04 E2.22 05 E1.89 05

E1.52 05 E5.65 04 E3.67 04 E3.07 04 E3.50 05 E3.25 05

E2.89 05 E4.87 04 E3.79 04 E3.39 04 E2.28 05 E2.43 05

E1.14 06 E5.04 04 E4.00 04 E3.68 04 E3.16 05 E3.56 05

E3.70 05 E4.98 04 E4.48 04 E3.81 04 E2.96 05 E2.43 05

μ( )
E3.15 05 E3.90 03 E2.30 04 E1.84 04 E1.52 05 E6.61 04

σ( )
85.06 7.83 51.25 48.16 51.17 27.25

ζ( )
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experimental value. However, all the other μ( ) effective property values
are more than the experimental values. For all the super frames, i.e
from window A to P σ( ) is less than 2.2 for all the μ( ) effective prop-
erties except for E1 which is about 22.49. This means the longitudinal
modulus, E1 significantly depends on the local volume fraction and the
random distribution of the fibres.

In Case (ii) combination of 4 super frames are considered for this
study as shown in Fig. 28(a)–(d). On account of combination of 4 super
frames, 9 RVE models are generated for the study of effective proper-
ties. The first 4 sets of RVEs are modeled at the four corners of master
RVE. And the other RVEs are modeled at the edges and centre of the
master RVE as shown in Fig. 28(e)–(i). Observations are made for the
prediction of elastic constants of these RVEs with the effect of local

volume fraction. The effective properties are reported in Table 26. For
these combinations of super frames the fibre volume fraction varies
from 55% to 67%. The fibre volume fraction for window HIOP is about
55.91% which is the lowest of all the windows and for this window the
Young’s modulus, E1 is 130.65 GPa. On the contrary, it is noticed that
for window CFGH, E1 is 155.69 GPa as the fibre volume fraction is
about 67.02%. Thus, fibre rich or matrix rich regions play a vital role in
prediction of effective properties.

In addition to the μ( ) values, the standard deviations σ( ) of all the
super-frames with different combinations are estimated. σ( ) for all the
RVEs with different combination of windows are less than 1, except for
E1 which is 7.63. This is as expected because the E1 is dominated by the
volume fraction. Thus, the variation in volume fraction reflects directly

Fig. 22. Variation of σRMS of RVE with random arrangement (RVE 1 – distorted fibre cross section) for different loadcases (a) macro strain (ε xx(0), ), (b) macro strain
(ε yy(0), ), (c) macro strain (ε zz(0), ), (d) macro strain (ε yz(0), ), (e) macro strain (ε xz(0), ) and (f) macro strain (ε xy(0), ).

Fig. 23. Representative volume elements with 50 fibres of elliptical cross-section. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5, (f) RVE 6, (g) RVE 7 and (h)
RVE 8.
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in the variation of E1. However, ζ( ) is less than 6% for all the effective
properties.

In Case (iii) combination of 8 super frames are considered as shown
in Fig. 29. On account of combination of 8 super frames, four model
RVEs are generated for the study of effective properties. All the 4 sets of
RVEs are modeled at the four corners of master RVE as shown in
Fig. 29(a)–(d). Observations are made for the predicted elastic con-
stants from these RVEs with the effect of local volume fraction. In ad-
dition to the μ( ) values the standard deviations in the values of effective
properties for all the super-frames with different combinations are
calculated.

The predicted effective properties are given in Table 27 and the
fibre volume fraction varies from 61% to 64% but the μ( ) value is about
62.51% with σ( ) of 1.28. The average values for all the properties are
less than the experimental values. σ( ) is less than 1 for all properties but
for E1, it is 2.89. ζ( ) is less than 3% for all the properties except for ν23

which is 6.37%.

5.5.2. Model RVE 2
This section is devoted to examine the effects of RVE size selection

on the macroscopic mechanical behaviours of general heterogeneous
media. Here, we divided another master RVE model into thirty-two sub-
divisions and estimated the effective properties. The RVE is shown in
Fig. 30.

Here, the master RVE is sectioned into 32 combinations of more
finer divisions compared to master Model RVE 1. It is divided unequally
as shown in Fig. 30. For studying the effect of local volume fraction,
square sections are considered as shown in Fig. 31. Here, three cases are
considered: (i) windows at the interior of the master RVE, (ii) windows
near the boundary edges of the master RVE and (iii) windows gradually
increasing the size from interior of the master RVE to the full master
RVE. It can be easily seen here that the super frames have fibre rich and
matrix rich regions resulting in a variation of the fibre volume fraction
in super frames. Here, it is studied that how this variation of volume
fraction and randomness in the fibre arrangement affect the effective
properties.

Case (i): Considering the windows/super frames at the interior of
the master RVE, four RVEs are modeled as shown in Fig. 31. The results
for their effective properties are given in Table 28. It can be seen that
for these RVEs the fibre volume fraction varies from 50% to 64%. It is
noticed that window AE is composed of less number of fibres and there
is presence of matrix rich region as shown in Fig. 31(a). This can be also
noticed from the Table 28. The super frame has volume fractions of
50.64%, which is less than other super frames. Due to low fibre volume
fraction for window AE the effective property E1 is also less, i.e.
118.76 GPa, compared to other RVEs.

For window DH and CG the fibre volume fraction is more compared
to remaining four windows as these are the fibre rich regions. Due to
this E1 and E2 have higher value compared to other windows. However,
the μ( ) values of all the effective properties are more compared to the
experimental value as well as those of RVE with single fibre. This is
mainly due to the effect of local fibre volume fraction and random ar-
rangements of fibre distribution. σ( ) is less than 2 for all the properties,

Table 21
Effective properties of RVE models with fifty fibres of elliptical cross-section
(see Fig. 23).

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

RVE 1 135.94 9.26 9.19 5.52 5.31 3.57 0.25 0.25 0.28
RVE 2 135.94 9.15 9.09 5.48 5.29 3.62 0.25 0.25 0.29
RVE 3 136.31 9.21 9.23 5.27 5.23 3.58 0.25 0.25 0.28
RVE 4 136.39 9.26 9.22 5.50 5.29 3.59 0.25 0.25 0.28
RVE 5 136.48 9.27 9.27 5.41 5.34 3.58 0.25 0.25 0.28
RVE 6 135.91 9.16 9.19 5.27 5.42 3.58 0.25 0.25 0.29
RVE 7 135.93 9.18 9.28 5.12 5.58 3.55 0.25 0.25 0.28
RVE 8 135.93 9.26 9.25 5.35 5.31 3.54 0.25 0.25 0.28

μ( ) 136.11 9.22 9.22 5.37 5.35 3.58 0.25 0.25 0.28
σ( ) 0.24 0.05 0.06 0.14 0.11 0.03 0.00 0.00 0.00
ζ( ) 0.18 0.54 0.65 2.61 2.06 0.84 0.00 0.00 0.00

Fig. 24. Elastic constants with respect to experimental value with 50 fibres of elliptical cross-section. (a) Longitudinal modulus E1, (b) Transverse modulus E2, (c)
Inplane shear modulus G12, (d) Transverse shear modulus G23, (e) Inplane Poisson’s ratio ν12, (f) Transverse Poisson’s ratio ν23.
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except E1 which is 17.15. This means that E1 is significantly affected by
this fibre distribution and local fibre volume fraction effect.

Case (ii): Here, the windows/superframes near the boundary edges
of the master RVE are considered. Four RVEs are modeled as shown in
Fig. 32. The results for effective properties of these RVEs are given in
Table 29. It can be seen that the fibre volume fraction varies from 57%
to 64% and the mean μ( ) fibre volume fraction is about 62.91%. The E1

value for window AEIJT, as shown in Fig. 32 (a), is 134.84 GPa and
much less than other RVE models as it has the presence of matrix rich
region within this window. σ( ) for E1 is 8.27, which is much higher
compared to the other effective properties. For other properties it is less
than 1 as given in Table 29. ζ( ) is approximately 6% for E E,1 2 and G12
whereas for the other properties it is less than 3%.

Case (iii): The windows/superframes with gradually increasing in
the size from the interior of the master RVE to the full size of the master
RVE are modeled as shown in Fig. 33. The results for their effective
properties are reported in Table 30. Here, the fibre volume fraction
varies from 58% to 62% with the increase in the window size main-
taining the aspect ratio of the window to a constant.

The effective axial modulus, E1 for the window ABCD is 137.17 GPa
which is very close to the full RVE window, i.e. 139.10 GPa as the
volume fractions are almost same for both the windows. μ( ) value of the
effective properties are higher than the experimental values and also
RVE with single fibre. σ( ) for E1 is 3.99 but for the other properties it is
less than 1. ζ( ) for all the properties are less than 10% and from the
Table 30 we can conclude that the longitudinal modulus, E1 has sig-
nificant effect due to the randomness and local volume fraction.

From this study it is clearly seen that by narrowing the window size
for RVE the significant amount of variation in volume fraction is ob-
served. As the window size is increased to the master RVE the volume
fraction and the effective properties approaches to that of master RVE.
Thus, the selection of RVE size for master RVE plays an important role.
In this study the Young’s modulus E1 is significantly affected due to
large variation in the volume fraction.

6. Conclusion

In the present study, a statistical representation of unidirectional
fibre reinforced composite material at microscale through a re-
presentative volume element with random fibre distribution has been

Table 22
Percentage change φ( )SF in the effective properties of the RVEs with 50 fibres (elliptical cross section) with respect to the RVE model with single fibre.

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

RVE 1 2.60 2.91 3.69 −17.45 −12.88 −16.41 0.83 −0.48 −9.72
RVE 2 2.60 4.13 4.74 −16.59 −12.62 −18.13 0.63 −0.20 −12.92
RVE 3 2.33 3.46 3.26 −12.13 −11.17 −16.90 0.28 0.28 −9.57
RVE 4 2.28 2.89 3.41 −17.04 −12.51 −17.25 0.75 −0.04 −9.57
RVE 5 2.21 2.81 2.87 −15.11 −13.60 −16.77 0.52 0.28 −8.64
RVE 6 2.62 4.02 3.63 −12.15 −15.27 −16.86 −0.12 0.48 −10.73
RVE 7 2.61 3.79 2.78 −8.87 −18.69 −15.69 −0.59 0.99 −8.68
RVE 8 2.61 2.97 3.07 −13.72 −12.84 −15.49 0.36 −0.08 −8.60

Table 23
Percentage change φ( )EXP in the effective properties of RVEs with 50 fibres of
elliptical cross section with respect to the experimental result [16].

Model E1 E2 G12 G23 ν12 ν23

RVE 1 1.49 15.74 −0.48 9.09 10.64 28.90
RVE 2 1.49 16.80 0.25 7.75 10.46 26.83
RVE 3 1.22 16.22 4.07 8.71 10.14 29.00
RVE 4 1.17 15.73 −0.13 8.44 10.57 29.00
RVE 5 1.10 15.65 1.53 8.81 10.36 29.60
RVE 6 1.51 16.71 4.05 8.74 9.79 28.25
RVE 7 1.50 16.51 6.86 9.65 9.36 29.58
RVE 8 1.50 15.80 2.71 9.81 10.21 29.63

Table 24
Variation of σRMS along the depth of RVEs with elliptical fibre cross section for
different loadcases.

(ε xx(0), ) (ε yy(0), ) (ε zz(0), ) (ε yz(0), ) (ε xz(0), ) (ε xy(0), )

E1.95 05 E4.45 04 E3.01 04 E3.72 04 E2.94 05 E1.97 05

E2.04 04 E4.96 04 E3.15 04 E3.11 04 E1.86 05 E2.11 05

E1.46 05 E4.53 04 E2.93 04 E2.75 04 E1.79 05 E2.00 05

E1.11 04 E4.13 04 E3.54 04 E3.23 04 E2.07 05 E2.02 05

E1.03 04 E4.15 04 E2.71 04 E2.91 04 E2.00 05 E2.70 05

E1.79 05 E3.74 04 E2.96 04 E2.61 04 E2.36 05 E2.03 05

E3.07 05 E3.48 04 E4.06 04 E3.01 04 E2.17 05 E1.78 05

E1.79 04 E4.05 04 E2.67 04 E2.67 04 E1.87 05 E2.35 05

E1.11 05 E4.19 04 E3.13 04 E3.00 04 E2.13 05 E2.12 05

μ( )
E1.12 05 E4.66 03 E4.63 03 E3.63 03 E3.74 04 E2.83 04

σ( )
101.34 11.12 14.80 12.08 17.54 13.34

ζ( )
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developed. Image processing technique has been used to estimate the
scatter, i.e. to estimate the fibre distribution. The fibre distribution in
the composite microstructure SEM image has been considered to re-
construct the three dimensional RVE models. The modified algorithm
using MATLAB has been proposed to generate statistically equivalent
fibre distribution which is similar to the real scenario as the fibre dis-
tribution is obtained from a micrograph. Geometric periodicity is im-
plemented while developing the RVE to ensure the continuity of the
fibres across the neighbouring RVEs. Mathematical theory of homo-
genization has been implemented for the prediction of effective stiff-
ness. The influence of spatial distribution of heterogeneities on the
overall behaviour of the heterogeneous material has been investigated.
Here, a comprehensive study is carried out to estimate the effective
properties of RVEs having 1, 12, 20 and 50 fibres considering the effect
of random fibre distribution. Further, RVEs with fibres randomly dis-
tributed in a periodic unit cell but with different fibre cross sections are
modeled. Fibre waviness is not incorporated in this work, however it is

noticed [32] that the effect of waviness was not significant in RVE with
single fibre. Finally, the effects of the variation in the local volume
fraction on the effective elastic properties due to the random distribu-
tion of the fibres are also carried out. A good prediction of the inplane
mechanical properties is achieved by using homogenization method
with respect to experimental values. It is noticed that the effective
property values obtained from three dimensional micromechanics are
in good agreement with the experimental results taken from world wide
failure exercise [17] except for E2 and ν23.

The major conclusions that can be drawn from this study are:

1. RVE with single fibre predicts inplane effective properties that are in
good agreement with experimental results except E2 which has a
variance of 14%. Further for random RVE with fifty fibres the dis-
crepancy remains. This difference may be outcome of the experi-
mental process adopted to get E2, and hence needs to be looked at
carefully.

Fig. 25. Variation of σRMS of RVE with random arrangement (RVE 1 – elliptical fibre cross section) for different load cases. (a) Macro strain (ε xx(0), ), (b) macro strain
(ε yy(0), ), (c) macro strain (ε zz(0), ), (d) macro strain (ε yz(0), ), (e) macro strain (ε xz(0), ) and (f) macro strain (ε xy(0), ).

Fig. 26. Master RVE model 1. (a) Master RVE with different super-frames – front view, (b) Master RVE with different super-frames – isometric view.

S. Koley, et al. Composite Structures 225 (2019) 111141

22



Fig. 27. RVEs with single superframes for master RVE - model 1. (a) Window A, (b) Window B, (c) Window C, (d) Window D, (e) Window E, (f) Window F, (g)
Window G, (h) Window H, and (i) Window I, (j) Window J, (k) Window K, (l) Window L, (m) Window M, (n) Window N, and (o) Window O and (p) Window P.

Table 25
Effective properties of Master RVE with single super frame.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window A 37.05 62.95 88.12 12.46 11.21 5.32 4.36 4.91 0.29 0.30 0.54
Window B 75.08 24.92 173.84 15.52 18.44 5.97 8.41 5.65 0.30 0.28 0.34
Window C 68.23 31.77 158.41 16.29 17.79 6.49 7.43 4.93 0.29 0.29 0.35
Window D 64.84 35.16 150.77 15.90 12.94 7.26 5.33 5.67 0.28 0.30 0.52
Window E 57.05 42.95 133.21 14.87 16.37 5.47 6.55 4.91 0.30 0.29 0.38
Window F 59.48 40.52 138.70 15.50 16.38 5.60 6.29 4.46 0.30 0.29 0.37
Window G 73.82 26.18 171.01 16.30 16.65 7.21 7.30 5.80 0.29 0.29 0.42
Window H 66.56 33.44 154.64 15.61 16.74 6.20 6.86 5.34 0.30 0.29 0.38
Window I 50.39 49.61 116.43 13.80 13.40 5.26 5.09 4.72 0.30 0.30 0.43
Window J 52.76 47.24 123.54 12.71 14.61 4.96 6.00 5.16 0.30 0.29 0.41
Window K 68.80 31.20 159.69 16.30 15.66 6.98 6.30 5.57 0.29 0.29 0.42
Window L 54.70 45.30 127.90 14.72 15.09 5.75 6.08 4.77 0.29 0.29 0.40
Window M 54.90 45.10 128.36 15.16 13.61 5.99 5.47 5.12 0.29 0.30 0.48
Window N 64.56 35.44 150.15 13.78 17.77 5.44 7.98 5.45 0.30 0.28 0.36
Window O 56.54 43.46 132.05 13.86 16.85 5.08 6.75 4.72 0.30 0.29 0.35
Window P 50.96 49.04 119.49 14.22 12.92 5.87 5.17 5.34 0.29 0.30 0.49

μ( ) 59.73 40.27 139.15 14.82 15.41 5.93 6.34 5.16 0.29 0.29 0.42
σ( ) 9.93 9.93 22.49 1.23 2.09 0.73 1.11 0.40 0.00 0.01 0.06
ζ( ) 16.62 24.65 16.16 8.33 13.59 12.29 17.46 7.80 1.66 2.17 14.93
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Fig. 28. RVEs with combination of four superframes for master RVE – model 1. (a) Window ABCD, (b) Window EFJK, (c) Window GLMN, (d) Window HIOP, (e)
Window CDHI, (f) Window FGKL, (g) Window BCEF, (h) Window GHNO and (i) Window CFGH.

Table 26
Effective properties of Master RVE with the combination of four super frames.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window ABCD 61.30 38.70 142.79 15.17 15.11 6.27 6.39 5.30 0.29 0.29 0.43
Window EFJK 59.52 40.48 138.79 14.86 15.79 5.77 6.31 5.03 0.30 0.29 0.40
Window HIOP 55.92 44.08 130.65 14.42 14.99 5.61 5.98 5.03 0.30 0.29 0.41
Window GLMN 62.00 38.00 144.36 15.01 15.83 6.11 6.72 5.30 0.29 0.29 0.41
Window CDHI 62.32 37.68 145.06 15.47 15.23 6.31 6.18 5.17 0.29 0.29 0.42
Window FGKL 64.20 35.80 149.33 15.71 15.98 6.40 6.51 5.16 0.29 0.29 0.40
Window CFGH 67.02 32.98 155.69 15.95 16.91 6.38 6.97 5.14 0.29 0.29 0.38
Window BCEF 64.96 35.04 151.04 15.57 17.25 5.89 7.18 4.99 0.30 0.29 0.36
Window GHNO 65.52 34.48 151.97 14.90 17.05 5.99 7.23 5.34 0.30 0.29 0.38

μ( ) 62.48 37.52 145.52 15.24 16.02 6.09 6.61 5.17 0.29 0.29 0.40
σ( ) 3.36 3.36 7.63 0.48 0.86 0.28 0.45 0.13 0.00 0.00 0.02
ζ( ) 5.37 8.95 5.24 3.18 5.40 4.64 6.74 2.46 0.65 0.84 5.41

Fig. 29. RVEs with combination of eight superframes for master RVE – model 1. (a) Window ABCDEFGHI, (b) Window BCEFGHJKL, (c) Window CFGHKLMNO and
(d) Window CDFGHINOP.
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Table 27
Effective properties of Master RVE with the combination of eight super frames.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window ABCDEFGHI 61.30 38.70 142.79 15.21 15.57 6.09 6.41 5.16 0.29 0.29 0.41
Window BCEFGHJKL 64.06 35.94 149.00 15.34 16.44 6.08 6.82 5.19 0.30 0.29 0.36
Window CDFGHINOP 61.62 38.38 143.52 15.09 15.74 6.05 6.47 5.17 0.29 0.29 0.42
Window CFGHKLMNO 63.06 36.94 146.77 15.31 16.32 6.09 6.73 5.14 0.29 0.30 0.41

μ( ) 62.51 37.49 145.52 15.24 16.02 6.09 6.61 5.17 0.29 0.29 0.40
σ( ) 1.28 1.28 2.89 0.11 0.43 0.02 0.20 0.02 0.00 0.00 0.03
ζ( ) 2.05 3.42 1.99 0.73 2.67 0.30 2.97 0.38 0.30 1.65 6.37

Fig. 30. Master RVE model 2. (a) Master RVE with the effect of local volume fraction (front view), (b) Master RVE with the effect of local volume fraction (isometric
view).

Fig. 31. RVEs with windows at the interior of the master RVE – model 2. (a) Window AE, (b) Window BF, (c) Window CG and (d) Window DH.

Table 28
Effective properties of different windows at the interior of the RVE.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window AE 50.64 49.36 118.76 13.34 14.38 5.20 6.26 5.06 0.30 0.29 0.44
Window DH 68.11 31.89 158.14 15.88 15.21 6.67 6.34 5.36 0.29 0.29 0.43
Window BF 59.15 40.85 137.95 13.27 15.05 5.40 6.61 5.34 0.30 0.29 0.42
Window CG 64.59 35.41 150.20 15.58 14.76 6.64 6.07 5.40 0.29 0.29 0.44

μ( ) 60.62 39.38 141.56 14.52 14.85 5.98 6.32 5.29 0.29 0.29 0.43
σ( ) 7.61 7.61 17.15 1.41 0.37 0.79 0.22 0.16 0.01 0.00 0.01
ζ( ) 12.55 19.32 12.14 9.69 2.47 13.15 3.55 2.97 1.79 1.00 2.94
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2. The out of plane properties show significant difference, mainly in
ν23. ν23 shows a variance of 30% with the experimental results for
the RVE with fifty fibres. It could be the effect of free edges and
effect of inter ply boundary layers that changes the observed ex-
perimental values. Again, this could be an outcome of the particular
experiment used to obtain ν23.

3. As the RVE becomes more statistically homogeneous with the in-
clusion of more randomly distributed fibres, (along with cross

section variations), the properties approach the experimental values
with improved transverse properties. However, the difference in
computed and experimental values of transverse properties
E ν G, ,2 23 23 does not go down and points to a need to relook at how
these properties are obtained experimentally. Interestingly, experi-
mental results mentioned in the literature [17] are mostly two di-
mensional, note that the micromechanical analysis in this study is
three dimensional.

Fig. 32. RVEs with windows near the boundary of the master RVE – model 2. (a) Window AEIJT, (b) Window BFKLM, (c) Window CGNOP and (d) Window DHQRS.

Table 29
Effective properties of different windows near the boundary of the RVE.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window AEIJT 57.77 42.23 134.84 14.07 15.05 5.62 6.48 5.21 0.30 0.29 0.42
Window DHQRS 66.36 33.64 154.19 15.75 16.01 6.43 6.82 5.27 0.29 0.29 0.40
Window CGNOP 63.19 36.81 147.05 15.82 15.34 6.56 6.26 5.25 0.29 0.29 0.42
Window BFKLM 64.33 35.67 149.61 14.49 15.47 6.02 6.69 5.50 0.29 0.29 0.42

μ( ) 62.91 37.09 146.42 15.03 15.47 6.16 6.56 5.30 0.29 0.29 0.42
σ( ) 3.67 3.67 8.27 0.88 0.40 0.43 0.25 0.13 0.00 0.00 0.01
ζ( ) 5.83 9.89 5.56 5.88 2.58 6.92 3.76 2.47 0.90 0.53 2.16

Fig. 33. RVEs with windows gradually increasing the window size of master RVE model 2. (a) Window ABCD, (b) Window ABCDEFGH, (c) Window ABST and (d)
Window FULL RVE.

Table 30
Effective properties of the windows from interior to the whole RVE.

Window Volume fraction Effective properties

Vf Vm E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

Window ABCD 58.80 41.20 137.17 14.33 15.17 5.88 6.37 5.24 0.29 0.29 0.41
Window ABCDEFGH 60.62 39.38 141.26 14.52 14.87 5.98 6.33 5.29 0.29 0.29 0.43

Window AB..ST 62.91 37.09 146.42 15.03 15.48 6.16 6.56 5.31 0.29 0.29 0.42
Window FULL RVE 59.66 40.34 139.10 14.58 14.89 6.02 6.28 5.33 0.29 0.29 0.42

μ( ) 60.50 39.50 140.99 14.62 15.10 6.01 6.38 5.29 0.29 0.29 0.42
σ( ) 1.77 1.77 3.99 0.30 0.28 0.12 0.13 0.04 0.00 0.00 0.01
ζ( ) 4.58 6.77 8.36 9.19 7.03 9.99 7.27 7.15 0.52 0.65 1.98
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The other conclusions that can be drawn are listed as:

1. In particular, the percentage change of predicated G23 reduces from
22% (RVE with single fibre) to 10% (RVEs with 50 fibres). A similar
trend is seen for other shear moduli, suggesting that randomness
gives a more realistic representation of micro-structure.

2. The percentage change for transverse Poisson’s ratio ν23 reduces
from 35% (RVE with single fibre) to 30% (RVEs with 50 fibres).

3. For the RVE with random fibre distribution, shielding effect of
neighbouring fibres is accounted for, which is missing in the single
fibre RVE.

4. For the master RVE it is seen that the effect of volume fraction plays
a vital role in predicted effective properties. The fibre rich and
matrix rich regions have a significant effect of the predicted effec-
tive properties and the axial modulus, E1 significantly changes with
the change in local volume fraction.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.compstruct.2019.111141.
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