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Abstract

The design of laminated composite based components requires a detailed analysis of the response of the structure when subjected to
external loads. For the analysis of laminated composite plates, several plate theories have been proposed in the literature. Generally,
these plate theories are used to obtain certain global response quantities like the buckling load. However, the use of these theories to
obtain local response quantities, i.e. point-wise stresses; interlaminar stresses and strains, can lead to significant errors.

In this paper, a detailed study of the quality of the point-wise stresses obtained using higher-order shear deformable, hierarchic and
layerwise theories is done for a plate under transverse loading. The effect of equilibrium based post-processing on the transverse stress
quantities is also studied. From the detailed study it is observed that the layerwise theory is very accurate. However, for all the models
proper mesh design is required to capture boundary layer effects, discretization error, etc. Using focussed adaptivity, and post-processed
state of stress, accurate representation of the local state of stress can be obtained, even with the higher-order shear deformable theories.
Using this approach, the first-ply failure load is obtained with the Tsai–Wu criterion. It is observed that use of an adaptive procedure
leads to significantly lower failure loads as compared to those given in the literature.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Thin layered (or laminated) structures made of compos-
ite laminates are increasingly used in the manufacture of
structural components. The enhanced strength to weight
ratios make composites especially attractive for aerospace
applications. With an increasing demand to maximize
payload carrying capabilities of aerial vehicles, shape and
topology optimization of structural components has
become an important thrust area. All the optimization
problems posed in this context are constrained approxima-
tion problem with constraints on failure load, maximum
transverse deflection, buckling load, natural frequency,
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etc. In order to obtain an acceptable optimally designed
component, from a computational analysis, it becomes
imperative to estimate the constraint quantities accurately,
at each step of the design process.

One important aspect of the response of laminated
structures that a designer considers is the onset of failure
in a laminated structure. Onset of failure in composite lam-
inated plates requires the local stress state to be known in
the structure, particularly near structural details; at inter-
lamina interface and in the individual lamina. Accurate
prediction of the local stress state becomes important for
a reliable estimate of the failure load, which may be crucial
for a safe design of the component.

Analysis of thin laminated domains is generally done
using dimensionally reduced plate models. Several plate
theories have been proposed in the literature (see [1–22]
for example). The goal is generally to give a higher-order
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representation of the transverse shear terms, as in [1–11]; or
to design families of plate theories with guaranteed conver-
gence to the three-dimensional solutions in some norm (see
[13,14]). However, not much can be said about the accu-
racy of the local stress state and displacements. In general,
for thin domains severe boundary layers and corner singu-
larities may exist. Due to the presence of these, the stress
‘‘hot-spots’’ are likely to occur in the vicinity of boundaries
and corners (see [25–30]). Resolution of these effects effec-
tively, is essential in order to accurately obtain the desired
local stress state. One of the goals of this study is to deter-
mine the quality of the local state of stress, obtained using
various families of plate models commonly used in engi-
neering practice. A detailed comparison will be done with
respect to the exact three-dimensional elasticity solutions
given in [37,38], for both symmetric and anti-symmetric
stacking of the laminae. The values of the in-plane stresses
obtained directly from the finite element computations will
be compared to the three-dimensional elasticity solution.
The effect of model order and in-plane approximation
order, on the accuracy of these stresses will be demon-
strated. For the transverse stress components, the values
obtained from the finite element solution directly, and
those obtained using the equilibrium approach of post-pro-
cessing, will be compared to the exact ones. Another major
goal of the study is to show that without proper mesh
design, i.e. use of meshes obtained using an adaptive refine-
ment procedure (which also resolves the boundary-layer
effect and effect of singularities), the computed local stres-
ses obtained by using the popular plate models, can be sig-
nificantly different from the exact ones. Further, the study
aims at clearly demonstrating the need for proper mesh
design in the computation of critical failure loads.

Finally, this study aims to obtain reliable values of the
first-ply failure load, using the available models, and com-
pare them with those given in [42]. It will be demonstrated
that depending on the applied boundary conditions, stack-
ing sequence and ply orientation, the reliable values of the
first-ply failure load can be significantly lower than those
obtained using the commonly used meshes and polynomial
approximations.

2. Plate models

2.1. Brief review

The system of partial differential equations of three-
dimensional elasticity is generally intractable analytically,
especially for a layered medium. The development of clas-
sical theories was motivated to alleviate these problems by
reducing the dimension for analysis. For example, in case
of plates and shells reduction from three to two dimension
reduces the computational cost and enables the handling of
a large class of problems.

In the following paragraphs we give a brief review of
some of the plate theories used for homogeneous and lam-
inated plates. Traditionally, for the plate and shell like thin
structures, several plate theories have been proposed. These
can be broadly classified as

(1) shear deformable theories;
(2) hierarchic plate theories and
(3) layer-by layer theories.
2.1.1. Shear deformable theories

These are essentially the variants of the classical plate
theory. In the classical plate theory the displacement compo-
nents have linear transverse representation. This theory does
not take into account the transverse shear deformations
and transverse normal stress. Reissner [1] and Mindlin [2]
improved the classical theory by adding effects of transverse
shear and influence of rotary inertia, shear on flexural
motions, respectively. Further, Reissner [3,4] improved it
by considering non-homogeneous construction of plate.
The variants of Reissner–Mindlin theory are called first-

order shear deformable theories.
The theories which were originally proposed for homoge-

neous isotropic plates were then applied for layered plates.
Classical laminate theory is a direct application of classical
plate theory to laminates. The classical laminate theory
smears out the effect of individual lamina across the thick-
ness direction of the laminate. In this theory it is assumed
that the laminate is in plane stress state; the individual lam-
ina are linear elastic and there is perfect bonding between
the layers. As in classical plate theory, the transverse shear
deformations and transverse normal stress is ignored.

Reissner and Stavsky [5] improved the classical laminate
theory by adding bending and stretching coupling for
unsymmetric laminates. Whitney and Pagano [6] further
studied these laminates by adding shear and rotary effects.
They found that the unsymmetrically laminated plates
exhibit the same bending–extensional coupling phenome-
non found in classical laminated plate theory based on
Kirchhoff assumptions. Further, they found that the deflec-
tions of the plate are dependent upon the shear correction
factor and inaccuracies in calculating stresses for low span
to depth ratios are not alleviated. Whitney [7] attempted to
give shear correction factors for orthotropic laminates
under the action of static load using the procedure similar
to given by Reissner [1].

When the transverse variation of the displacement com-
ponents is represented by using polynomial of degree n

then the model is called as nth-order shear deformable

theory or higher-order shear deformable theory (HSDT).
Whitney and Sun [8] have developed second-order shear

deformable theory for laminated composites. The governing
equations for the unsymmetrically laminated plates showed
the coupling phenomenon between all of the deformation
modes present in the theory. Further they observed
improved results for extensional motion compared to ear-
lier existing laminated plate theories.

Lo et al. gave a third-order shear deformation theory for
the analysis of both homogeneous [9] and laminated [10]
plates. This theory does not require the shear correction
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factor. Reddy [11] proposed similar displacement field as in
[9] and also imposed the condition of parabolic distribution
of the transverse shear strains through thickness of the
plate to satisfy the zero transverse shear stress on the top
and bottom face of the plate.

2.1.2. Hierarchic plate theories

In these, the displacement components have a zig-zag or
hierarchic representation through the thickness. The
hierarchic plate models are a sequence of mathematical
models, the exact solutions of which constitute a converg-
ing sequence of functions in an appropriate norm. The con-
struction of hierarchic models for homogeneous isotropic
plates and shells was given by Szabó and Sharmann [12]
and later for laminated plates by Babuška et al. [13], and
Szabó et al. [14]. The solutions of the lower order models
are embedded in the highest order model and these models
can be adapted according to the requirement.

In these models the displacement field is given as prod-
uct of functions that depend upon the variables associated
with the plate, plate middle surface, and functions of the
transverse variable. The transverse functions are derived
on the basis of the degree to which the equilibrium
equations of three-dimensional elasticity are satisfied. The
Fourier transform of the equations of motion is performed
which results in two-point boundary value problems for the
transverse functions. These are characterized by the geo-
metric parameters and wave vector. These functions are
expanded in powers of wave vector around zero. The trans-
verse functions are obtained by solving equations obtained
by substituting the expanded functions into the trans-
formed form of equations of motion.

2.1.3. Layer-by-layer theories

In these theories, the individual lamina have continuous
through thickness representation of displacements.

Srinivas [15] assumed the displacement field to be piece-
wise linear across the thickness. Also the effects of trans-
verse shear deformations and rotary inertia are included.

Di Sciuva [16] assumed the displacement field to be
piecewise linear for in-plane components while the trans-
verse displacement is constant throughout the laminate
thickness. Also the static and geometric continuity condi-
tion at the interface was enforced. The effects of shear
and rotary inertia were also included in the formulation.
Further, an anisotropic, multi-layered shear-deformable
rectangular plate element was developed in [17]. This plate
element was shown to be very efficient in predicting the
response of thick and thin laminated plates.

Toledano and Murakami [18] proposed a model for
arbitrary laminate configuration. The displacement field
was as in Di Sciuva’s model and continuity of interlaminar
stresses was enforced. Since the transverse displacement is
constant through laminate thickness, the transverse shear
strains are constant in a layer but different in each layer.
The shear stresses were assumed to be quadratic functions
of the local thickness coordinates across each layer. The
governing equations were derived using Reissner’s new
principle [19]. In all these theories no shear correction fac-
tor was applied.

Bhaskar and Vardan [20] proposed a model using piece-
wise displacement representation for symmetric laminates
under unsymmetric loading. The transverse variation of
the in-plane displacement components is represented by a
polynomial of degree three multiplied by the Heaviside unit
step function. The transverse displacement was given as a
quadratic or higher-order variation with respect to the
transverse coordinate. Also the zero shear condition on
the free surfaces of the plate, displacement compatibility
as well as transverse shear continuity at the interface was
enforced.

Barbero and Reddy [21] proposed a model with piece-
wise smooth approximation of the displacement compo-
nents. The transverse displacement is constant through
the laminate thickness.

Ahmed and Basu [22] proposed a model in which all the
displacement components are represented as product of in-
plane and out-of-plane approximating functions of same
order. The hierarchic approximating functions were used.

A more detailed survey of the plate theories used in
literature is available in Kapania and Raciti [23] and
Ugrimov [24].

2.2. Plate models in present study

The generic representation of the displacement field for
the plate models is given as

uðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

8><
>:

9>=
>; ¼ ½/ðzÞ�Uðx; yÞ ð1Þ

where

½/ðzÞ� ¼
/1ðzÞ 0 /3ðzÞ 0 0 /6ðzÞ 0 0 � � �
0 /2ðzÞ 0 /4ðzÞ 0 0 /7ðzÞ 0 � � �
0 0 0 0 /5ðzÞ 0 0 /8ðzÞ � � �

2
64

3
75

ð2Þ

and

fUðx; yÞg ¼ fU 1ðx; yÞU 2ðx; yÞU 3ðx; yÞ � � �U 8ðx; yÞ � � � gT

ð3Þ
Note that U1(x,y),U3(x,y),U6(x,y), . . . are the in-plane

components of displacement terms u(x,y,z). Similarly,
U2(x,y),U4(x,y),U7(x,y), . . . are the in-plane compo-
nents of displacement terms v(x,y,z). The in-plane compo-
nents of transverse displacement w(x,y,z) are given by
U5(x,y),U8(x,y), . . . The components Ui(x,y) are approxi-
mated using triangular elements with order of approxima-
tion pxy (pxy = 2,3 in this study). The transverse functions
are given in terms of the normalized transverse coordinate
ẑ ¼ ð2=tÞz (where t is the thickness of the laminate), with z

measured from the middle of the laminate (see Fig. 1).
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Fig. 1. Plate configuration. (a) Rectangular laminated plate with layers li, top and bottom faces R+ and R�, respectively, and thickness t, (b) material
directions and (c) location of origin of z-axis.
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For the higher-order shear deformable model (HSDT)
the functions /ðẑÞ are given as

/1ðẑÞ ¼ /2ð̂zÞ ¼ /5ðẑÞ ¼ 1; /3ðẑÞ ¼ /4ðẑÞ ¼ z;

/6ðẑÞ ¼ /7ð̂zÞ ¼ /8ðẑÞ ¼ /11ðẑÞ ¼ 0;

/9ðẑÞ ¼ /10ðẑÞ ¼ z3; /11þiðẑÞ ¼ 0; i ¼ 1; 2; . . .

Remark. The HSDT model used here is similar to one
proposed by Reddy [11]. The in-plane displacement com-
ponents have cubic representation and transverse compo-
nent is constant in laminate thickness. The quadratic term
of in-plane displacement components drop out when the
zero shear condition on the top and bottom face (i.e.
z ¼ � t

2) of the plate is enforced.

For the hierarchic family of the plate models the trans-
verse functions /ðẑÞ are given as

/1ðẑÞ ¼ /2ð̂zÞ ¼ /5ðẑÞ ¼ 1; /3ðẑÞ ¼ /4ðẑÞ ¼ ẑ;

/6ðẑÞ ¼
h
2
fuðẑÞ � uð0Þg; /7ð̂zÞ ¼

h
2
fwðẑÞ � wð0Þg;

/8ðẑÞ ¼
h
2
fqðẑÞ � qð0Þg

where

/ðẑÞ ¼
Z ẑ

�1

Q44 � Q45

Q44Q55 � Q2
45

d�̂z;

wðẑÞ ¼
Z ẑ

�1

Q55 � Q45

Q44Q55 � Q2
45

d�̂z; qð̂zÞ ¼
Z ẑ

�1

1

Q33

d�̂z

where Qij are the coefficients of the global constitutive rela-
tion, in the global xyz-coordinate system. For other trans-
verse functions see [14]. The sequence of models are defined
by number of /is retained in the definition of Eq. (2). This
number is denoted as m here. A hierarchic model is then
denoted by HRpxyMm. Thus, HR3M5 denotes the hierar-
chic model with pxy = 3 and 5-field model. The HSDT
model is denoted HSDTpxy. E.g. HSDT3 denotes HSDT
model with pxy = 3.
The layerwise model used in this paper is adapted from
[22]. The present layerwise plate model is an improvement
over the model given in [22], as the original layerwise model
had same order transverse representation for all three
displacement components, whereas the present layerwise
model can have different approximation in transverse direc-
tion for individual displacement components. The different
approximation for displacement components is used as sug-
gested by Schwab [31], for a single lamina, to take into
account the bending and membrane actions. The displace-
ment component ul, for an element in the lth layer, is given as

ulðx; y; zÞ ¼
Xnxy
j¼1

Xpuzþ1

k¼1

uljkN
l
jðx; yÞMl

kðzÞ ð4Þ

where nxy = (pxy + 1)(pxy + 2)/2 for triangular in-plane ele-
ments (see Fig. 1); pxy and puz are the in-plane and transverse
approximation order (for component ul) and Nj(x,y) and
Mk(z) are in-plane and transverse approximation functions,
respectively. Similarly the other components vl andwl can be
expressed. The in-plane approximation order pxy is the same
for u, v and w. The transverse approximation orders for u
and v displacement components will be the same, while that
for the component w can be different. Hierarchic basis func-
tions will be used for in-plane and transverse representations
of the solution components. In this study, pxy = 2 or 3 and
puz , p

v
z ¼ 1; 2; 3 and pwz ¼ 0; 1; 2; 3 will be used. The layerwise

model is denoted by LMpxyp
u
z p

v
zp

w
z . E.g. LM3112 denotes

layerwise model with pxy = 3, puz ¼ 1; pvz ¼ 1; pwz ¼ 2.
The solution of the plate problem is decomposed into a

membrane and a bending part by Schwab [31]. For the
membrane part the in-plane displacement components
have symmetric representation, whereas, the transverse dis-
placement has anti-symmetric representation. (0,0,1),
(2,2,1), (2,2,3) etc. are the transverse representations of
displacement components for membrane part in increasing
model order. For the bending part, the in-plane displace-
ment components have anti-symmetric representation,
whereas, the transverse displacement has symmetric repre-
sentation. (1,1,0), (1,1,2), (3,3,2) etc. are the transverse
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representations of displacement components for bending
part in increasing model order. When the problem is dom-
inated both by membrane and bending actions then the
representations of displacements has to be chosen to satisfy
both membrane and bending requirements. In this case
(1,1,1), (2,2,2), (3,3,3) etc. representations are used. The
authors have developed this capability and implemented
it successfully in this study.

Remark. The higher-order shear deformation model and
hierarchic model do not enforce transverse stress continuity
at the interfaces. In the layerwise model the continuity of
transverse stress and zero transverse stress on top and
bottom faces of laminate can be enforced. Although, in the
present layerwise model these conditions are not imposed,
it will be shown through numerical examples that the
transverse shear stress components show much smaller (it
is close to zero in most of the examples studied) jumps than
those computed by using higher-order shear deformable
and hierarchic models, and the stresses are close to zero on
top and bottom faces of the laminate.
3. Finite element formulation

For a given lamina l the constitutive relationship, in the
principal material directions is given as

f�rðlÞg ¼ ½CðlÞ�f��ðlÞg ð5Þ

where f�rðlÞg ¼ frðlÞ
11 rðlÞ

22 rðlÞ
33 rðlÞ

23 rðlÞ
13 rðlÞ

12g
T are the stress

components for the layer, and f��ðlÞg ¼ f�ðlÞ11 �
ðlÞ
22 �

ðlÞ
33 �

ðlÞ
23

�
ðlÞ
13 �

ðlÞ
12g

T are the strain components for the layer. Here, 1,
2 and 3 correspond to the three principal material direc-
tions (see Fig. 1a). The constitutive relationship in the glo-
bal xyz-coordinates (for each lamina) can be obtained as

frðlÞg ¼ ½QðlÞ�f�ðlÞg ð6Þ

with frðlÞg ¼ frðlÞ
xx rðlÞ

yy rðlÞ
zz rðlÞ

yz rðlÞ
xz rðlÞ

xy g
T and f�ðlÞg ¼

f�ðlÞxx �ðlÞyy �ðlÞzz �ðlÞyz �ðlÞxz �ðlÞxy g
T; [Q(l)] can be obtained from [C(l)]

by transformation from the principal material coordinates
to global xyz-coordinates. The potential energy, P, for the
structure is given by

P ¼ 1

2

Z
V
frgTf�gdV �

Z
Rþ[R�

qwds ð7Þ

where V is the volume enclosed by the plate domain, R+

and R� are the top and bottom faces of the plate (see
Fig. 1) and q(x,y) is the applied transverse load on these
faces.

The solution to the problem, uex, is the minimizer of the
total potential, P, and is obtained from the solution of the
following weak problem (see [14]):

Find uex 2 H0(V) such that

Bðuex; vÞ ¼ FðvÞ 8ðvÞ 2 H 0ðVÞ ð8Þ
where H 0ðVÞ ¼ fU¼ ½/�U jUðuÞ<1 and MU¼ 0 on CDg.
Here, C = CN [ CD is the lateral boundary of the plate with
Dirichlet part CD and Neumann part CN. Note that in this
study Dirichlet means the part of lateral boundary where
geometric constraints are imposed, while Neumann stands
for the stress-free parts of the lateral boundary. Further, M
depends on the type of Dirichlet conditions on the edge, i.e.
clamped; soft simple-support; hard simple-support etc.

Hence, we have

Bðuex; vÞ ¼
X
l

Blðuex; vÞ

¼
X
l

Z
V l

frðlÞðuexÞgTf�ðlÞðvÞgdV l ð9Þ

and

FðVÞ ¼
Z
Rþ[Rþ

qv3 ds ð10Þ

where Vl is the volume of the lth lamina in the laminate; v3
is the transverse component of the test function v.

4. Error estimator for local quantity of interest

In the analysis of laminates for first-ply failure the accu-
rate computation of state of stress at a point is essential.
When the finite element analysis is employed, the issue of
modeling error (error due to model employed in the analy-
sis of laminate, as compared to three-dimensional elastic-
ity) and discretization error becomes important. Adaptive
methods for the control of discretization error are available
in the literature (see [32,33]). These are based on control of
energy norm of the error, kekX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðeÞ

p
(where UðeÞ is

the strain energy of the error). This does not guarantee that
the quantity of interest is also accurate. In [34] it was
shown that the error in the quantity of interest can be given
in terms of error in the solution of auxillary problem.

Various smoothening based a posteriori error estimation
techniques for laminated composites have been proposed
by the authors for the local quantity of interest [35]. Fur-
ther, estimation and control of the error in the quantity
of interest and ‘‘one shot’’ adaptive approach for the con-
trol of discretization error was proposed in [36]. In the
present study the issue of control of modeling error will
not be addressed. In the following sections a summary of
error estimation for local quantity of interest and one shot
adaptivity are given from [36].

4.1. Definition of error estimator

The variational formulation in (10) is used to obtain the
finite element solution uh 2 H0

hðVÞ, where H0
hðVÞ ¼

fu ¼ ½/�U; Ui 2 S
pxy
s ; i ¼ 1; 2; 3; . . . jUðuÞ < 1; MU ¼

0 on CDg.
Letting x2D be the plate mid surface with boundary

ox2D, we define S
pxy
s as the set of globally continuous piece-

wise polynomials of order pxy over each element s
(s 2 x2D):

Bðuh; vhÞ ¼ FðvhÞ 8vh 2 H0
hðVÞ ð11Þ
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Note that uh = [/]Uh is the representation of uh, following
(1). The error in the solution can be given as e = uex � uh.
An approximation to the error can be given as e* = u* � uh
where u� 2 S

pxyþk
s is obtained for each element s as de-

scribed below (see [35] for details). In all the numerical
examples k = 2 has been employed.

For an element s let Ps be the patch of elements in a one-
layer neighborhood of s, as shown in Fig. 2.

Over the patch Ps, define

u� ¼
u�

v�

w�

8><
>:

9>=
>; ¼ ½/�U�

where

U �
i ¼

XNDOF

j¼1

Aijqjðx; yÞ

with NDOF = (pxy + 1 + k)(pxy + 2 + k)/2; qj(x,y) as the
monomials of order 6pxy + k (see [35] for details) defined
in terms of the local coordinates x̂ ¼ x� xsc; ŷ ¼ y � ysc.
Here xsc, y

s
c are the centroidal coordinates for the element s.

The coefficients Aij are obtained by minimizing
J ¼ 1

2

R
APs

jU� �Uhj2 dA where AP s is the area of the patch
Ps (where AP s � x2D). This definition is called the L2 pro-
jection based error estimator (see [35] for details).

4.2. Auxillary problem

Let us consider the domain of Fig. 1. Let us further
assume that we are interested in the value of stress compo-
nent rxx in the topmost layer, for all points in the element s
(shown shaded in Fig. 1a).

In order to accurately obtain the point-wise information
in s, we will let rðlÞ

xx;avg ¼ 1
vls

R
vls
rxx dv as the quantity of inter-

est. Here V l
s ¼ Astl is the volume enclosed by the element s

in the lth layer. Hence,

rðlÞ
xx;avg ¼

1

Astl

Z zl

z¼zl�1

Z
As

ðrxx dAÞdz ð12Þ

with tl as the thickness of the lth layer; zl�1 and zl as the
lower and upper z coordinate for the lth layer; As is the
area of element s (or group of elements).
Remark. In this study, the quantity of interest used is the
stress component which contributes maximum to the
failure index for the Tsai–Wu criterion.

Corresponding to rðlÞ
xx;avg we define the following auxil-

lary problem:
Find G 2 H0(V) such that

BðG; vÞ ¼ rðlÞ
xx;avgðvÞ ¼ FðvÞ 8v 2 H0ðVÞ ð13Þ

Letting Gh 2 H0
hðVÞ be the finite element solution for G, we

have

BðGh; vhÞ ¼ rðlÞ
xx;avgðvhÞ ¼ FðvhÞ 8vh 2 H0

hðVÞ ð14Þ

Note that uh and Gh can be solved for simultaneously (see
[36] for details). Multiple regions can be handled
simultaneously.

4.3. Estimators for error in quantity of interest

From the previous section we have

BðG; uex � uhÞ ¼ FðuexÞ �FðuhÞ ¼ Fðuex � uhÞ ¼ FðeÞ
ð15Þ

From the orthogonality property of the error in the finite
element solution, we have

jBðG�Gh; uex � uhÞj ¼ jFðeÞj ð16Þ
which implies (see [36])

jFðeÞj 6 keukkeGk ð17Þ
where eu = e stands for the error in the actual solution and
eG stands for the error in the auxillary problem.

4.4. Definition of a posteriori error estimators for local

quantity of interest

Replacing eu with the estimate e�u and eG with the esti-
mate e�G, we can get many definitions of the estimators
(see [36]), for the error in the quantity of interest. Here
we employ

Estimator (E):

jFðeÞjE ¼
X
s

jBðe�u; e�GÞj ð18Þ
4.5. One-shot adaptivity for quantity of interest

We let u
ðpxyÞ
h , G

ðpxy Þ
h be the finite element solutions of

the order pxy for uex and G. Thus, we can approximate

error eu as eu � e
ðpxyþ1Þ
u ¼ u

ðpxyþ1Þ
h � u

ðpxy Þ
h and hence FðeÞ �

Fðeðpxyþ1Þ
u Þ. It can be shown that Fðeðpxyþ1Þ

u Þ ¼P
sBðeðpxyþ1Þ

G ; e
ðpxyþ1Þ
u Þ.

Letting s be the element of interest and P, the one-layer
neighborhood of s, the total error can be partitioned into
two parts as follows:

jFðeÞj 6 jF1ðeÞj þ jF2ðeÞj
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where

F1ðeÞ ¼
X
s2P

Bðeu; eGÞ; F2ðeÞ ¼
X
s2P 0

Bðeu; eGÞ ð19Þ

where P 0 is the set of elements lying outside P. Following
[27], F1ðeÞ is the local part of the error and F2ðeÞ is the
‘‘pollution’’ in the quantity of interest (i.e. far-field
influence).

The goal of the adaptive process is to refine the given
mesh selectively such that the total error is below the spec-
ified tolerance, i.e.

jFðeÞj 6 gjFðuhÞj ð20Þ

where FðuhÞ is the computed value of the desired quantity
of interest; jFðeÞj ¼ jFðeÞjE is obtained using definition
E for the error. Following [33], we will define rs ¼ hd

h as
the ratio of the desired (hd) to the actual mesh size (h) of
the element s. The desired mesh size is obtained by
minimizing

X
s

1

r2s

subject to constraint (20). Thus, we define the new objective
function (to be minimized) as

J ¼
X
s

1

r2s
þ k1

X
s2P

v2d;s �Fd;1

 !
þ k2

X
s2P 0

v2d;s �Fd;2

 !

ð21Þ

where vd;s ¼ jBðêu; êGÞj is the desired contribution to the
total error from element s; êu; êG are the desired errors in
the element s; k1 and k2 are Lagrange multipliers;
Fd;1 ¼ g1jFðuhÞj and Fd;2 ¼ g2jFðuhÞj are the desired
errors in the region P and P

0
, respectively (here g = g1 + g2).

Minimizing J with respect to rs, k1 and k2 we get

rs ¼
F

1=pxy
d;1

ð
P

s2Pv
4=ðpxyþ2Þ
a;s Þ1=pxy � v2=ðpxyþ2Þ

a;s

; s 2 P ð22Þ

rs ¼
F

1=2pxy
d;2

ð
P

s2P 0v
2=ðpxyþ1Þ
a;s Þ1=2pxy � v1=ðpxyþ1Þ

a;s

; s 2 P 0 ð23Þ

Using the computed values of rs, the desired mesh sizes can
be computed. The mesh can be locally refined several times
based on the desired mesh size.

Remark. In this study g1 = g2 = 5% is taken.
5. Tsai–Wu failure criterion

It is a complete polynomial criterion and is an extension
of the criterion used for anisotropic materials (see [41]).

The Tsai–Wu criterion is given by

FITW ¼ F iri þ F ijrirj P 1 ð24Þ
where Fi and Fij are the strength tensor terms and ri are the
stress components and

F 1 ¼
1

X T

� 1

XC

; F 2 ¼
1

Y T

� 1

Y C

; F 3 ¼
1

ZT

� 1

ZC

;

F 11 ¼
1

X TXC

; F 22 ¼
1

Y TY C

; F 33 ¼
1

ZTZC

;

F 44 ¼
1

R2
; F 55 ¼

1

S2
; F 66 ¼

1

T 2
;

F 12 ¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X TXCY TY C

p ; F 13 ¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X TXCZTZC

p ;

F 23 ¼ � 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y TY CZTZC

p ð25Þ

where X, Y and Z are the strengths in 1, 2 and 3 directions,
respectively. Subscript T denotes tensile strength, and C de-
notes compressive strength. R, S and T are shear strengths
in 23, 13 and 12 planes, respectively.

6. Numerical results

One of the major goals of this paper is to do a critical
analysis of various families of plate models, with respect
to the quality of the point-wise stresses obtained using
the models. The effect of in-plane approximation order,
model order and type will also be investigated here.
Numerical experiments are conducted with the plate mod-
els to compare the transverse deflection and stress profiles
for numerous ply orientations, stacking sequences and
boundary conditions under transverse loadings. Here sym-
metric and antisymmetric laminates are considered. Three
types of transverse loadings are considered, namely, uni-
form pressure, sinusoidal and cylindrical bending. The
results are compared with available exact solutions for
these problems (see [37–40]).

The numerical results are arranged in two sections. In
the first section, the effect of the plate models on the accu-
racy of point-wise data, i.e. transverse deflection and all the
stress components at a point, is addressed. The stress com-
ponents are either computed directly using the constitutive
equations of (6), or the equilibrium equations are used to
obtain the transverse normal and shear stresses.

From the equilibrium equations, the component rxz at
any z location from bottom face of the laminate is com-
puted as

rxzjz ¼ �
Z z

z¼�t
2

ðrxx;x þ sxy;yÞdz ð26Þ

For the right-hand side quantities the constitutive equa-
tions are used. Similar procedure for the components syz
and rzz is used. In order to extract rzz, the sxz,x and syz,y
are computed directly from the finite element solution,
using the constitutive equations.

In the second section, the effect of the models and dis-
cretisation on the accuracy of first-ply failure load is
addressed.



Table 3
Comparison of transverse displacement (�w) for [0/90/0], rectangular
laminate (b = 3a) under sinusoidal loading, SSSS

S Exact [37] LM2332 HSDT2 HR2M11

2 8.170 8.16 (0.12) 8.044 (1.54) 8.027 (1.75)
4 2.820 2.820 (0.00) 2.644 (6.24) 2.705 (4.07)
10 0.919 0.918 (0.11) 0.866 (5.76) 0.897 (2.39)
20 0.610 0.609 (0.16) 0.593 (2.78) 0.602 (1.31)
50 0.520 0.520 (0.00) 0.516 (0.76) 0.517 (0.57)
100 0.508 0.507 (0.19) 0.504 (0.78) 0.505 (0.59)

Table 4
Comparison of transverse deflection (w*); square [0/90/0] laminate under
sinusoidal loading, SSSS

S Exact [38] LM3332 HSDT3 HR3M11

2 11.767 11.770 (�0.03) 12.137 (�3.14) 10.949 (6.95)
4 4.491 4.491 (0.00) 4.382 (2.43) 4.318 (3.85)
10 1.709 1.709 (0.00) 1.165 (5.50) 1.682 (2.70)
20 1.189 1.189 (0.00) 1.164 (2.50) 1.182 (0.70)
50 1.031 1.031 (0.00) 1.017 (1.35) 1.028 (0.29)
100 1.008 1.008 (0.00) 0.995 (1.26) 1.006 (0.19)

Middle layer has twice the thickness of each of the outer layer.
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6.1. Effect of model on accuracy of point-wise data

In this section, the problems considered in [37–40] are
taken. These problems are posed over rectangular domains,
and exact solutions are given in [37–40]. The exact solutions
have no singularities and weak boundary layer (if it exists).
Hence, the asymptotics, in the finite element solution, is
obtained with relatively crude uniform meshes. These prob-
lems become good benchmark to test for accuracy of plate
models.

6.1.1. Comparison of transverse deflections

The goal of this numerical experiment is to compare the
value of transverse displacement components obtained
using various models, and in-plane discretisation, with
the exact three-dimensional elasticity results reported in
[37,38], for [0/90/0] laminate sequence with material prop-
erties as given in Table 1. The plate has dimension a along
x-axis and b along y-axis, and is subjected to transverse
sinusoidal loading of the form:

qðx; yÞ ¼ q0ðx; yÞ sin
px
a

� �
sin

py
b

� �
All edges of the plate are simply supported (see Table 2

for all BCs used). The transverse deflection at ða
2
; b
2
; 0Þ is

reported in Tables 3 and 4. The mesh used for these com-
putations is shown in Fig. 3.

In this study the following cases have been studied:
Case 1: Rectangular plate with dimensions b = 3a with

all the lamina of equal thickness. The transverse deflection
is normalized as �w ¼ 100E22w

q0S
4t

where S ¼ a
t ; �z ¼ z

t. The models

used are HSDT2, HR2M11 and LM2332. The transverse
deflection for this case is given in Table 3.

Case 2: Square plate with cross-ply laminae, such that
outer laminae with orientation 0� are of equal thickness
and total thickness of 0� layers is equal to total thickness
of 90� laminae. The transverse deflection is normalized
as w� ¼ p4Qw

12q0S
4t
, where Q = 4G12 + [E11 + E22(1 + 2m23)]/

(1 � m12m21). Here HSDT3, HR3M11 and LM3332 models
are used. The transverse deflections for this case are given
in Table 4. Numbers in parenthesis show the % error with
respect to exact solution.
(a) (b)

Fig. 3. Uniform meshes used for computing the transverse deflections. (a)
Mesh for rectangular laminate and (b) mesh for square laminate.

Table 1
Material properties for graphite/epoxy [37–40]

Property E11 E22 G12 G23 m12 = m23
Values 25 · 106 psi 106 psi 0.5 · 106 psi 0.2 · 106 psi 0.25

Table 2
Boundary conditions

Boundary Along x = 0, a Along y = 0, b

Clamped (C) u = v = w = 0 u = v = w = 0
Hard simple supported (S) v = w = 0 u = w = 0
Free (F) u,v,w5 0 u,v,w 5 0
From these tables we observe that

1. The LM2332 and LM3332 models predicts the trans-
verse deflection accurately for all the aspect ratios. The
error in the values ranges from 0% to 0.2%.

2. The HSDT2, HSDT3 and HR2M11, HR3M11 models
are far from the exact one for the aspect ratios up to
S = 10. The error for this aspect ratios ranges from
1.5% to 7%.
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3. For the HSDT2, HSDT3 and HR2M11, HR3M11 mod-
els with aspect ratios S > 10 the displacement is close to
exact. The error is 0.1–4%. The hierarchic models are
closer to the exact one, as compared to the HSDT
models.

Case 3: Problem considered is same as in case 1, except
that b = a and model used is LM3332. The variation of

normalised in-plane displacement, �u ¼ E22uð0;b2;�zÞ
q0tS

3 , is shown

in Fig. 4. From this figure it can be seen that the displace-
ment is anti-symmetric and as S increases the transverse
variation of the displacement tends to a straight line. For
small S, the effect of transverse shear is prominent and this
leads to nonlinear warping of the normal (see [40]). From
this result it is obvious that the HSDT and hierarchic mod-
els will capture the displacement field better for thin plates.
For moderately thick to thick plates, the conventional
higher-order shear deformable theories will not be able to
compute the piecewise behavior of u (or v), as these models
use smooth transverse representation of u, v and w.

6.1.2. Comparison of stresses

Here, various stress components for symmetric and anti-
symmetric laminates, under cylindrical bending, are com-
u
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Fig. 4. Variation of in-plane displacement for [0/90/0], square laminate
under sinusoidal loading, all edges simple supported, pxy = 3.
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pared with the exact values (for three-dimensional analysis)
given in [39,40]. For the analysis, all cases use HSDT2,
HR2M5, HR2M8, HR2M11 and LM2332 models.

Case 1: In this case [0/90/0] laminate is considered. All
the laminae are of equal thickness. The cylindrical loading
is of the form qðx; yÞ ¼ q0 sinðpxa Þ. The laminate is infinite
along y-axis and simply supported along the edges x = 0,
a. The normalized stress components

ð�rxx; �rzz;�sxzÞ ¼
1

q0
rxx

a
2
;�z

� �
; rzz

a
2
;�z

� �
; sxzð0;�zÞ

� �

obtained directly from the finite element solution are
shown in Figs. 5 and 6 for S = 4. The stress components
obtained using the equilibrium approach of post-process-
ing are shown in Fig. 7.

Case 2: In this case, [165/�165] laminate under cylindri-
cal loading, as in case 1 above, is considered. All the lam-
inae are of equal thickness. The normalized stress
components �rxx ¼ 1

q0S
2 rxxða2 ;�zÞ and �sxz ¼ 1

q0S
sxzð0;�zÞ are

shown for S = 10 in Figs. 8 and 9.
Case 3: The problem description is same as given in case

1 of previous subsection. The exact point-wise values of the
stress components at various points and for different S are
available from [37]. These are compared with the values
obtained using the LM2332 model in Table 5. The reported
normalised stress components are

ð�rxx; �ryy ;�sxyÞ ¼
1

q0S
2

rxx
a
2
;
b
2
;�z

� �
; ryy

a
2
;
b
2
;�z

� �
; sxyð0; 0;�zÞ

� �

and

ð�sxz;�syzÞ ¼
1

q0S
sxz 0;

b
2
;�z

� �
; syz

a
2
; 0;�z

� �� �

Remark. In Tables 5 and 7, for the transverse shear stresses
(�sxz and �syz) for given S, the first row gives the value at
�z ¼ 0. In the second row the maximum values and in the
third row their location quoted in parenthesis, is reported.
–
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From the results it is observed that

1. The in-plane stress components are accurately predicted
by all higher-order models.

2. The transverse shear stress components computed
directly from finite element solution is accurate for the
LM2332 model whereas, those obtained by HSDT2
and HR2M5, HR2M8 and HR2M11 models are signifi-
cantly different both qualitatively and quantitatively.

3. Using the equilibrium approach of post-processing leads
to more accurate transverse stress components for all the
models.

4. The LM2332 model predicts accurately the point-
wise values of the stress components for all the values
of S.

Case 4: The problem description is same as in case 1 of
previous subsection. The plate is square and sandwiched
with face sheets of material as given in Table 1 and thick-
ness of each face sheet as t

10
. The core material is trans-

versely isotropic in z-direction and the material properties
are as given in Table 6. The point-wise values of the stress
components for various S, obtained with LM2332 model
are reported in Table 7. Normalisation of stresses is same
as in case 3.
From this table it is observed that

1. The LM2332 model predicts all the stress components
accurately.

2. The stress component rxx has sharp gradient in the
face sheets (see [37] for more details). Even this fea-
ture has been captured accurately by the layerwise
model.

6.2. Effect of models on accuracy of predicted failure load

Following [42] the laminates considered are [0/90]S and
[�45/45/�45/45]. The plate is either clamped on all edges
or hard simple supported. The top face of the plate is sub-
jected to uniform transverse load q(x,y) = q0. The plate
dimensions are a = 228.9 mm (9 in.), b = 127 mm (5 in.).
The material properties and lamina thickness used in these
computations are given in Table 8. The first ply failure load
is nondimensionalised as

FLD ¼ q0
E22

S4

In computing the local state of stress, the equilibrium
based post-processing is used to get the transverse stresses.
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The results obtained from the present analysis using
HSDT2, HR2M5, HR2M8, HR2M11 and LM2332 are
compared with those reported in [42].

The computed failure load depends on the accuracy of
the lamina level stress. In general, there is no a priori infor-
mation about the quality of the local stress. Hence, an
adaptive approach with the capability to estimate discreti-
sation error in the local stresses and refine mesh accord-
ingly to bring the error down to acceptable tolerance, is
desired. For the fixed model, the focussed adaptive
approach is employed to recompute the failure load.
Here, the stress component contributing maximum to the
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Fig. 9. Comparison of transverse shear stress distribution (sxz) for [165/�165] laminate under cylindrical bending, S = 10, FSFS, pxy = 2. (a) LM2332
model with direct stress, (b) HSDT2 and HR2M5, HR2M8 and HR2M11 models with direct stress, (c) LM2332 model with equilibrium approach and (d)
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Table 5
Comparison of stresses for three-layered, rectangular (b = 3a), cross-ply laminate, SSSS

S �rxxða2 ; a2 ;�0:5Þ �ryyða2 ; a2 ;� 1
6Þ
a �sxzð0; b2 ; 0Þ �syzða2 ; 0; 0Þ �sxyð0; 0;�0:5Þ

Exact LM3332 Exact LM3332 Exact LM3332 Exact LM3332 Exact LM3332

2 2.13 2.13 0.230 0.229 0.257 0.257 0.0668 0.0671 �0.0564 �0.0564
�1.62 �1.62 �0.268 �0.267 0.455 0.466 0.0673 0.0673 0.0548 0.0548

(0.3) (0.3) (�0.03) (0.03)

4 1.14 1.14 0.109 0.109 0.351 0.351 0.0334 0.0338 �0.0269 �0.0269
�1.10 �1.10 �0.119 �0.119 0.387 0.390 0.0281 0.0281

(0.27) (0.27)

10 0.726 0.727 0.0418 0.0418 0.420 0.420 0.0152 0.0161 �0.0120 �0.0120
�0.725 �0.727 �0.0435 �0.0435 0.420 0.420 0.0123 0.0123

(�0.03) (�0.03)

20 0.650 0.652 0.0294 0.0295 0.434 0.435 0.0119 0.0139 �0.0093 �0.0093
�0.650 �0.652 �0.0299 �0.0300 0.0093 0.0093

50 0.628 0.631 0.0259 0.0259 0.439 0.445 0.0110 0.0158 �0.0084 �0.0085
�0.628 �0.631 �0.0259 �0.0260 0.0084 0.0085

100 0.624 0.632 0.0253 0.0253 0.439 0.462 0.0108 0.0195 �0.0083 �0.0084
�0.624 �0.632 �0.0253 �0.0253 0.0083 0.0084

a The maximum values indicated for �ryy occur in the central layer.

Table 6
Material properties for sandwich plate [37]

Property Exx = Eyy Ezz Gxz = Gyz Gzz mxz = myz = mxy
Values 0.04 · 106 psi 0.5 · 106 psi 0.06 · 106 psi 0.016 · 106 psi 0.25
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Table 7
Comparison of stresses for three-layered, square, sandwich plate, SSSS

S �rxx a
2 ;

a
2 ;� 1

2

� �
�rxx a

2 ;
a
2 ;� 1

2:5

� �
�ryy a

2 ;
a
2 ;� 1

2

� �
�sxz 0; b2 ; 0
� �

�syz a
2 ; 0; 0
� �

�sxy 0; 0;� 1
2

� �
Exact LM3332 Exact LM3332 Exact LM3332 Exact LM3332 Exact LM3332 Exact LM3332

2 3.278 3.234 �2.220 �2.174 0.4517 0.4506 0.185 0.185 0.1399 0.1403 �0.2403 �0.2385
�2.653 �2.693 1.668 1.705 �0.3919 �0.3956 0.320 0.318 0.1402 0.1404 0.2338 0.2358

(0.44) (0.44) (�0.08) (0.08)

4 1.556 1.556 �0.233 �0.233 0.2595 0.2596 0.239 0.239 0.1072 0.1078 �0.1437 �0.1437
�1.512 �1.517 0.196 0.202 �0.2533 �0.2536 0.1481 0.1483

10 1.153 1.154 0.628 0.626 0.1104 0.1105 0.300 0.299 0.0527 0.0535 �0.0707 �0.0708
�1.152 �1.142 �0.629 �0.626 �0.1099 �0.1100 0.0717 0.0718

20 1.110 1.112 0.810 0.808 0.0700 0.0702 0.317 0.317 0.0361 0.0376 �0.0511 �0.0511
�1.110 �1.112 �0.810 �0.808 �0.0700 �0.0701 0.0511 0.0514

50 1.099 1.103 0.867 0.866 0.0569 0.0573 0.323 0.326 0.0306 0.0358 �0.0446 �0.0449
�1.099 �1.103 �0.867 �0.866 �0.0569 �0.0573 0.0446 0.0449

100 1.098 1.106 0.875 0.879 0.0550 0.0556 0.324 0.337 0.0297 0.0422 �0.0437 �0.0442
�1.098 �1.106 �0.875 �0.879 �0.0550 �0.0556 0.0437 0.0442

Table 10
First-ply failure loads; all edges clamped, [�45/45/�45/45] laminate under
uniform transverse loading, pxy = 2

Model FLD Coordinates Layer Location FITW Max. r

x y

Ref. [42] 39,354.8 �115.00 �125.00 1 Bottom –
HSDT2a 31,463.7 107.51 0.56 4 Top 1.00 r22
HSDT2b 31,463.7 112.71 0.14 4 Top 1.82
HSDT2c 23,377.6 112.71 0.14 4 Top 1.00
HR2M5a 31,486.1 107.51 0.56 4 Top 1.00 r22
HR2M5b 31,486.1 112.71 0.14 4 Top 1.82
HR2M5c 23,383.7 112.71 0.14 4 Top 1.00
HR2M8a 31,403.1 107.51 0.56 4 Top 1.00 r22
HR2M8b 31,403.1 112.71 0.14 4 Top 1.82
HR2M8c 23,350.7 112.71 0.14 4 Top 1.00
HR2M11a 31,672.2 121.38 126.43 4 Top 1.00 r22
HR2M11b 31,672.2 116.18 126.85 4 Top 1.75
HR2M11c 23,955.1 116.18 126.85 4 Top 1.00
LM2332a 32,549.2 107.51 0.56 1 Bottom 1.00 r22

Table 9
First-ply failure loads; all edges clamped, [0/90]S laminate under uniform
transverse loading, pxy = 2

Model FLD Coordinates Layer Location FITW Max. r

x y

Ref. [42] 19,050.9 �5.00 �65.00 1 Bottom –
HSDT2a 17,172.8 107.51 0.563 4 Top 1.00 r22
HSDT2b 17,172.8 112.71 0.14 4 Top 1.85
HSDT2c 12,612.9 112.71 0.14 4 Top 1.00
HR2M5a 17,180.3 107.51 0.56 4 Top 1.00 r22
HR2M5b 17,180.3 112.71 0.14 4 Top 1.85
HR2M5c 12,612.7 112.71 0.14 4 Top 1.00
HR2M8a 17,175.3 107.51 0.56 4 Top 1.00 r22
HR2M8b 17,175.3 112.71 0.14 4 Top 1.85
HR2M8c 12,612.0 112.71 0.14 4 Top 1.00
HR2M11a 16,531.3 107.51 0.56 4 Top 1.00 r22
HR2M11b 16,531.3 112.71 0.14 4 Top 1.80
HR2M11c 12,322.5 112.71 0.14 4 Top 1.00
LM2332a 17,123.6 107.51 0.56 4 Top 1.00 r22

Table 8
Material properties for T300/5208 graphite/epoxy (Pre-preg) [42]

Property Value

E11 132.5 GPa
E22 = E33 10.8 GPa
G12 = G13 5.7 GPa
G23 3.4 GPa
m12 = m13 0.24
m23 0.49
XT 1515 MPa
XC 1697 MPa
YT = ZT = YC = ZC 43.8 MPa
R 67.6 MPa
S = T 86.9 MPa
Ply thickness, ti 0.127 mm
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Tsai–Wu first-ply failure criterion is used as the quantity of
interest. In Tables 9–12 the first-ply failure loads are given.
In these tables

1. The superscript a shows all the values of failure loads
and corresponding failure index obtained using mesh
shown in Fig. 10a.

2. The superscript b shows the value of the failure index
obtained with the same load as in a and the adapted
mesh (e.g. see Fig. 10b).

3. The superscript c shows the first-ply failure load for the
adapted mesh. The initial mesh and final adapted mesh
for HSDT and hierarchic models for a representative
problem are shown in Fig. 10.

Note that the first-ply failure load for layerwise model is
computed using only the initial mesh.

From the results we observe that:

1. For the initial mesh, the failure loads predicted by all the
models are lower than those obtained by [42] (rows with
superscript a).



Table 12
First-ply failure loads; all edges simple supported, [�45/45/�45/45]
laminate under uniform transverse loading, pxy = 2

Model FLD Coordinates Layer Location FITW Max. r

x y

Ref. [42] 32,513.5 �115 �65 4 Top –
HSDT2a 25,802.4 138.28 66.13 4 Top 1.00 r22
HSDT2b 25,802.4 136.99 73.26 4 Top 1.08
HSDT2c 24,729.1 136.99 73.26 4 Top 1.00
HR2M5a 25,807.7 90.62 60.86 4 Top 1.00 r22
HR2M5b 25,807.7 91.91 53.73 4 Top 1.09
HR2M5c 24,729.5 91.91 53.73 4 Top 1.00
HR2M8a 25,687.1 90.62 60.86 4 Top 1.00 r22
HR2M8b 25,687.1 91.91 53.73 4 Top 1.08
HR2M8c 24,727.7 91.91 53.73 4 Top 1.00
HR2M11a 30,791.5 31.22 0.56 1 Bottom 1.00
HR2M11b 30,791.5 0.25 0.96 4 Top 1.39 r22
HR2M11c 26,173.7 0.25 0.96 4 Top 1.00
LM2332a 31,078.2 1.20 107.16 4 Top 1.00 r22

Table 11
First-ply failure loads; all edges simple supported, [0/90]S laminate under
uniform transverse loading, pxy = 2

Model FLD Coordinates Layer Location FITW Max. r

x y

Ref. [42] 11,646.5 �5.00 �5.00 4 Top –
HSDT2a 9948.9 115.46 46.18 4 Top 1.00 r22
HSDT2b 9948.9 117.91 62.67 4 Top 1.07
HSDT2c 9620.2 117.91 62.67 4 Top 1.00
HR2M5a 9951.1 119.20 50.27 4 Top 1.00
HR2M5b 9951.1 117.91 62.67 4 Top 1.07 r22
HR2M5c 9623.1 117.91 62.67 4 Top 1.00
HR2M8a 9949.1 115.46 46.18 4 Top 1.00 r22
HR2M8b 9949.1 117.91 62.67 4 Top 1.07
HR2M8c 9620.5 117.91 62.67 4 Top 1.00
HR2M11a 10,055.6 115.65 43.66 4 Top 1.00 r22
HR2M11b 10,055.6 117.91 62.67 4 Top 1.05
HR2M11c 9786.7 117.91 62.67 4 Top 1.00
LM2332a 11,954.4 115.65 43.66 1 Bottom 1.00 r22
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2. The locations predicted by all the models are either close
to one obtained by [42] or are corresponding symmetric
points.

3. Failure loads predicted by the HSDT2 and HR2M5,
HR2M8, andHR2M11 models are close while those pre-
dicted by LM2332 are slightly higher than these.

4. For the failure load obtained using uniform mesh, the
failure index computed using the adapted mesh is 88%
more. This is due to the increased flexibility of the
numerical solution for the adapted mesh.

5. With the adapted mesh the error in the failure load com-
putations can be close to 40%.

6. The failure locations for the HSDT2 model and
HR2M5, HR2M8, and HR2M11 models are in the same
region before and after the use of discretization error
control (see Fig. 11).

It is obvious that a suitably refined mesh, along with
proper post-processed values of the transverse stresses, is
necessary to obtain reliable values of the first-ply failure
load.

6.2.1. A study of the reasons for change in calculated

failure loads

The failure loads obtained in this study are, in general,
significantly lower than those reported in the literature.
In all the cases considered, failure initiates at a point near
a boundary edge. It is well-known that (see [25–30]) the
solution near the boundary, for thin domains, is affected
by the following factors:

1. Boundary layer effect: Due to the imposed boundary
constraints and material characteristics, the exact solu-
tion to these problems may display a strong boundary-
layer effect. The boundary layer can be represented as
(see [29]) ui(x,y) = vi(x,y)e

�aq/t where a > 0, t is thick-
ness of laminate, q is distance from edge.

2. Regularity of solution: For certain boundary constraints,
the parameter t effects the regularity of the solution for
certain models (see [27]).

3. Effect of corner singularities: Due to reentrant corners in
the domain, the solution has a ra(log r)b type representa-
tion in the vicinity of the corner (r is scaled distance
from corner, which may depend on 1/t).

4. Effect of locking: For t! 0, the finite element solution
converges at a suboptimal rate. Using higher pxy and
suitably higher model (e.g. HR2M8) leads to relatively
‘‘locking free’’ approximation.

5. Discretisation error: As low order elements are used
(pxy = 2 or 3), discretisation error can be significant.

6. Choice of representation of failure index: The polynomial
representation of failure index makes it sensitive to
changes in values of certain stress components.

In order to demonstrate the boundary-layer effect, let
us take the [30/�30/30] square laminated plate with
a = 38.1 mm, S = 10, 100; with material properties of
Table 8. Uniformly distributed transverse load of intensity
q0 = 0.01 MPa is applied. For this plate, we plot the
variation of �uðx; b

2
; 0Þ ¼ uðx; b

2
; 0ÞE22=ðtS3Þ and �wðx; b

2
; 0Þ ¼

wðx; b
2
; 0ÞE22=ðtS3Þ for HR3M8 and LM3112 and LM3332

approximations, when the plate is clamped on all edges.
The problem is solved using a uniform and geometri-
cally graded mesh, as shown in Fig. 12. Note that following
[29], only one layer of graded refinement with mesh
size O(pxyt) is required, but here several graded layers are
taken as an ‘‘overkill’’. From Fig. 13, it can be observed
that

1. The boundary layer in �uðx; y; zÞ is sharp for S = 100
(thin plate) and has a sharp gradient at a point close
to the boundary.

2. All models capture the location of the peak point, but
show different intensities (values) at this point. For lower
models, the boundary layer may be less pronounced as
compared to the exact three-dimensional one.



Fig. 12. Graded mesh for boundary layer computation.

(a) (b)

(c) (d)

Fig. 10. Adapted mesh for all edges clamped [�45/45/�45/45]S laminate under uniform load, all edges clamped pxy = 2. (a) Initial mesh, (b) HR2M5
model, (c) HR2M11 model and (d) HSDT2 model.

(a) (b)

Fig. 11. Region of failure for [�45/45/�45/45] laminate, all edges clamped. (a) Failure region with initial mesh and (b) failure region with adapted mesh.
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3. The uniform mesh completely misses the sharp bound-
ary layer and hence gives a different displacement profile
everywhere.

4. �wðx; y; zÞ does not have any boundary layer effect, while
�vðx; y; zÞ behaves similar to �uðx; y; zÞ and hence �vðx; b

2
; 0Þ

is not plotted here.
5. For thicker plates (S = 10) the boundary layer is less

pronounced.

From the observations, it is clear that with uniform
meshes, the boundary layer in the solution (if it exists) will
not be captured (for thin domains), hence leading to signif-
icantly different representation of stress at the boundary.
Further, a suitably higher model should be used at the
boundary to capture the boundary layer profile.
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Fig. 13. Displacement variation for [30/�30/30] laminate, all edges clamped. (a) S = 100, (b) S = 100, (c) S = 10 and (d) S = 10.
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Fig. 14. Displacement and stress variation for [�45/45/�45/45] laminate, all edges simple supported. (a) v displacement variation, (b) w displacement
variation and (c) r22 variation.
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Let us also take the [�45/45/�45/45] laminate, simply
supported on all edges. S = 450 is taken (as given in previous
section), and load corresponds to failure load obtained ear-
lier. The problem is solved using HR2M8 and HR3M8. In
this case uðx; b

2
; 0Þ is zero, hence displays no boundary layer

effects. vðx; b
2
; 0Þ varies as shown in Fig. 14a. The plot of

wðx; b
2
; 0Þ is given in Fig. 14b. In Fig. 14c r22ðx; b2 ; t2Þ (on top

face of plate) is plotted. From the figures it can be seen that

1. In this case, boundary layer does not play a role.
2. Predominantly, the quality of the solution depends on

some effects of locking (as seen by the changes in w

and r22) and mostly on discretisation error.
3. For low order elements, i.e. pxy = 2 or 3, as is popularly

used, the coarse mesh solution may be ‘‘stiffer’’ (espe-
cially at the boundary) resulting in higher predicted fail-
ure load.

As shown in [36], the a posteriori error estimator overesti-
mates actual error when the boundary layer is not resolved
and when locking exists. This leads to over refinement of
the mesh in the desired region, and thus a significant
improvement of the numerical solution. This is apparent
from the local stress values reported in Tables 13 and 15.
The focussed adaptivity is based on control of error in a
region and hence leads to suitable refinement of the mesh
in the regions contributing significantly to the local error.
This is the reason why the adaptive meshes used in this
study give significantly lower failure loads.
Table 13
Stress values at failure points for HSDT2 with initial load, CCCC

Quantity Unadapted mesh Adapted mesh

Initial point Final point Initial point Final point

r11 �226.90527 �228.78367 �282.84943 �300.01144
r22 �43.53871 �43.80961 �55.05408 �57.88164
r33 2.86241 1.45395 1.21977 4.92509
s23 0.00524 0.00155 0.02052 0.00030
s13 0.00753 0.00236 0.08155 0.02122
s12 �23.01129 �23.17125 �28.98974 �30.55400

Table 14
Contribution to failure index for HSDT2 with initial load, CCCC

Contribution
due to term

Unadapted mesh Adapted mesh

Initial point Final point Initial point Final point

F1 �0.01606 �0.01619 �0.02090 �0.02124
F2 0.00000 0.00000 0.00000 0.00000
F3 0.00000 0.00000 0.00000 0.00000
F11 0.02003 0.02035 0.03391 0.03501
F22 0.98811 1.00044 1.68029 1.74636
F33 0.00427 0.00111 0.00081 0.01264
F44 0.00000 0.00000 0.00000 0.00000
F55 0.00000 0.00000 0.00000 0.00000
F66 0.07012 0.07109 0.11913 0.12362
F12 �0.14066 �0.14272 �0.23868 �0.24726
F13 0.00925 0.00474 0.00523 0.02104
F23 0.06496 0.03321 0.03682 0.14859
Index 1.00000 0.97203 1.61661 1.81879
It should be noted that the effect of the regularity of the
solution will also be resolved by the adapted mesh.

In order to study the effect of adaptivity on the location
of failure point and the value of failure load, we carried out
a detailed study for [�45/45/�45/45] clamped laminate for
the HSDT2 model with equilibrium stresses. In the study
the following terms are used:

1. Initial load: the load for the first-ply failure with initial
mesh.

2. Final load: the load for the first-ply failure with adapted
mesh.

3. Initial point: the point (in xy-plane) for the first-ply fail-
ure with initial mesh and initial load.

4. Final point: the point (in xy-plane) for the first-ply fail-
ure with adapted mesh and final load.

The stress values at these two failure points for the initial
mesh and final adapted mesh with initial load and final
load applied, and the term-wise contribution to the failure
index is given in Tables 13–16.

From the results it is observed that

1. The component which contributes maximum to the fail-
ure index in all cases is r22.

2. In all the cases the largest component among all the
stress components is r11, but its contribution to the fail-
ure index is small (as compared to r22) as strength in
fibre direction is the highest.
Table 15
Stress values at failure points for HSDT2 with final load, CCCC

Quantity Unadapted mesh Adapted mesh

Initial point Final point Initial point Final point

r11 �168.59107 �169.98673 �219.36488 �222.90911
r22 �32.34935 �32.55064 �42.18489 �43.00617
r33 2.12678 1.08028 0.92427 3.65935
s23 0.00390 0.00115 0.00215 0.00022
s13 0.00560 0.00176 0.01141 0.01577
s12 �17.09743 �17.21628 �22.28501 �22.70168

Table 16
Contribution to failure index for HSDT2 with final load, CCCC

Contribution
due to term

Unadapted mesh Adapted mesh

Initial point Final point Initial point Final point

F1 �0.01193 �0.01203 �0.01553 �0.01577
F2 0.00000 0.00000 0.00000 0.00000
F3 0.00000 0.00000 0.00000 0.00000
F11 0.01105 0.01124 0.01872 0.01933
F22 0.54548 0.55229 0.92761 0.96408
F33 0.00235 0.00061 0.00044 0.00698
F44 0.00000 0.00000 0.00000 0.00000
F55 0.00000 0.00000 0.00000 0.00000
F66 0.03871 0.03925 0.06576 0.06824
F12 �0.07765 �0.07878 �0.13176 �0.13650
F13 0.00511 0.00262 0.00288 0.01162
F23 0.03586 0.01833 0.02033 0.08202
Index 0.54898 0.53353 0.88845 1.00000
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3. For the adapted mesh, the in-plane stress values increase
significantly (up to 40%) when compared to the stresses
obtained for the initial mesh.

4. For the adapted mesh, the critical value of r22 is
obtained for a smaller load.

5. The contribution of the transverse stress components is
small.

6. The cross-terms, e.g. F12r1r2, play an important role in
the determination of the failure load.

7. The sign and magnitude of the individual stress compo-
nents leads to a shift in the location of the failure point.

From the above observations it can be concluded that the
discrepancy in the obtained value of the failure load can
be significant if the error in the solution is not controlled.
Further, the local stress values lead to varying contribu-
tion of the stress components to the failure index. Due
to this, the initial point is no longer the initiation point
for failure. Note that the failure point for the adapted
mesh lies in the vicinity of the initial point. Hence, for
the final failure load, the failure index at the initial point
is close to one.

In order to account for this shift in the location of the
failure point (possibly due to the mesh and the model), it
is more useful to demarcate the failure regions, for exam-
ple, the region for which the failure index is greater than
0.8. Such a region is shown in Fig. 11 with gray shading.
Adaptivity can then be done with respect to the error in
the average values of rmax (maximum contributor to FITW)
in this region. From Fig. 11b, it can be noted that the size
of the failure region shrinks as the mesh is refined (here
adaptivity was done with respect to the region near the
edge y = 0). This is because the boundary layer is resolved
better with the refined mesh.
Remark. Calculation of failure load makes no sense for
domains which have corner or edge singularities, i.e. points
where stresses are infinite. This is true for domains with re-
entrant corners, change in boundary conditions. When the
solution has such singularities, the adaptive mesh will give
suitable refinements near the singular points, leading to
large stresses at these points. This will cause the failure
point to shift to the singular point, and the computed
failure load will decrease monotonically with mesh refine-
ment. In the examples considered in this study, this shift
was not observed.

7. Conclusions

A comprehensive study of the point-wise quality of the
stress components, obtained using various plate models,
has been done for laminated plates under transverse load-
ing. The issue of accurate computation of first-ply failure
load has also been studied. From this study it can be con-
cluded that
1. The point-wise displacement obtained using the HSDT
and hierarchic models are not very accurate for thick
laminates. The accuracy improves as the plate becomes
thinner. This is because of the more pronounced shear
effects in thicker laminates, leading to a piecewise higher-
order polynomial behavior of the exact solution. The lay-
erwise theory accurately captures this behavior for all
cases.

2. The HSDT and hierarchic models are more reliable for
thin plates while for thicker plates these models can give
significant errors.

3. The layerwise model accurately captures the local state
of stress for all laminated composite plates, for different
plate thicknesses.

4. The in-plane stress components computed by all the
models are accurate, for almost all the cases.

5. The transverse stress components computed by direct
use of finite element data for layerwise model are in
good agreement with exact one.

6. The transverse stress components computed by direct
use of finite element data for HSDT and hierarchic mod-
els are significantly different, qualitatively and quantita-
tively. The equilibrium approach of post-processing
gives more accurate transverse stress terms, for both
symmetric and antisymmetric laminates.

7. Computed failure load is sensitive to the mesh, order of
approximation and model used. Proper mesh design is
necessary to ensure that local transverse stresses are
computed accurately.

8. The primary contributors to the error in the computed
failure load are the boundary layer, locking effect and
discretisation error (as low order elements are used).
Adaptivity resolves these and hence the failure load
can go down by 40%. Hence, from design point of view,
proper mesh design is essential.

9. Identification of failure zones (e.g. regions with
FITW > 0.9) may be a more useful information from
design point of view.
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[27] Babuška I, Li L. The h–p version of the finite element method in the
plate modelling problem. Commun Appl Numer Meth 1992;8: 17–26.
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