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Abstract: In this paper families of equivalent single layer, intermediate and layerwise plate models are presented. The
equivalent single layer models are accurate when used with equilibrium based postprocessing in the regions where
three dimensional effects are less pronounced. Although, the layerwise model is very accurate pointwise with respect
to all the stress components, this model is computationally expensive when number of layers are large. A novel
regionwise modeling strategy is developed where any model can be put in any region of the domain. It is seen that by
using layerwise model in the region where solution is predominantly three-dimensional in nature and a lower model
elsewhere, same accuracy as layerwise model everywhere is achieved at significant lower computational cost.

Key words. equivalent single layer; intermediate; layerwise; regionwise model, pointwise stress, equilibrium based
postprocessing, composite laminates

INTRODUCTION

The laminated structures are finding wide applications in manufacturing of critical components used in aerospace,
marine and automobile industry. These structures are generally thin. Several dimensionally reduced models or 2D
models have been proposed in the literature. These models (popularly known as plate models) are based on either
the displacement based (see [1]-[2]) or mixed formulations. In this study, plate models based on the displacement
formulation are dealt.

The attractive feature is that the computational cost does not depend on the number of layers. Some of the zig-zag
models have also shown to be convergent to the three-dimensional elasticity solution with respect to the strain energy
(energy norm). These models focus on representing the transverse shear effects more accurately, by enriching the
representation field in the z-direction. Another important issue has been that of shear locking in the case of thin plates.
Several “locking free” shear deformable models have been proposed in the literature [1].

A major drawback with these models has been that the transverse stresses, obtained using these models, are not accu-
rate. An equilibrium based postprocessing approach can be (see [3]) used to extract the transverse stress components
accurately. This approach is quite effective in most cases. However, for domains with unsymmetry in layup, existing
delamination, ply level damage and re-entrant corners, the dimensionally reduced models are ineffective. In order to
handle these situations a more refined analysis is desired. Layerwise models (for example see [3]) and intermediate
models are often used to resolve this issue. In the layerwise models, the standard plate models are applied layerwise,
and continuity of displacement (and transverse shear stresses in some cases) is imposed at the interlaminar interfaces.
The intermediate model is based on using the dimensionally reduced models piecewise (eg. lump all laminae above
and below a delamination separately). The use of these models leads to enhanced resolution of the local effects, but it
also increases the size of the problem to be solved. In [3], a generalized layerwise model is given which is based on use
of one-dimensional hierarchic basis functions in the transverse and the planar directions. These models allow for use
of different approximation orders in the transverse and planar directions. Thus, the transverse order of approximation
can be raised for each layer. These models are essentially three-dimensional models and have been shown to be very
accurate with respect to any pointwise quantity of interest.

Generally, the strong three-dimensional effects are localized in the vicinity of boundaries (boundary-layer), vertices
(vertex singularities), edges (edge and vertex edge singularities), free edges, parts of lamina/laminae (damaged lamina)



and local interfaces (interlaminar delamination). An example of such a situation is shown in Figure 1. In these cases,
beyond a local neighborhood of the regions of unsmooth behavior (eg. in the vicinity of damaged zone boundaries),
the solution can be effectively represented using any of the families of dimensionally reduced models. Hence, the
approximation is required to be enriched only in the regions where the solution is unsmooth. This is achieved in this
paper by the proposed regionwise modeling approach. The novelty has been to give a generalized computationally
implementable procedure to incorporate models of any complexity in any region of interest. As shown in this paper,
this approach leads to tremendous savings in computational cost and gives accurate representation of the state of stress
in the region of interest. This approach is a generalization of the planar constrained approximation approach of [4] and
the h— d approach of [5], given for homogeneous materials.
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Figure 1. General scenario in laminated composites

PLATE MODELS

Analysis of thin laminated structures is based on using predefined director functions in the z-direction, with the dis-
placement field given as a series in terms of products of the director functions and planar functions. Various families of
plate models can be defined based on the specific definitions of the director functions. The plate models employed in
this study belong to the families of plate models given below. These models are developed by authors in [3].

1. LAYERWISE MODEL S(L M) This is the most general three-dimensional representation of the displacement field.
Each lamina is taken as a separate group and the director functions are defined as the one dimensional basis functions
defined over the lamina. From Figure 2(a), it can be seen that the representation of the displacement field is given by:
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where n; = ny and ng depend on the order of approximation p: = p2, p3 and the number of laminae (or layers) nl in
the laminate. Hence, here the number of unknowns increases with the number of laminae. Members of this family of
models will be represented by LM pyyp2pZps.

2. EQUIVALENT MODELS (EQ) These are conventionally the most popular plate models, with CLPT and HSDT
models as special cases. The director functions are polynomials defined over the full thickness as shown in Figure 2(b).
Members of this family of models will be represented by EQprp%p§p§.

3. INTERMEDIATE MODEL S(IM) Generally, the critical local quantities of interest are desired in particular lamina
or at the interface of two laminae. In this case, the equivalent models cannot be used. The intermediate models are
based on defining the director functions for a group of laminae and not the full laminate. The director functions for an
intermediate model is shown in Figure 2(c). Members of this family of models will be represented by IM pxyp%pgpg’.

REGIONWISE MODEL

1. MOTIVATION In a structural component, the “hot-spot” are generally localized in the vicinity of structural details,
boundaries of the domain (faces and edges), re-entrant corners, cut-outs, existing delaminations and ply-failure zones.
The solution is unsmooth in the vicinity of these details, while it is very smooth in the remaining part of the domain
(see Figures 1 and 3). In order to get an accurate representation of the solution everywhere, it is desirable to use an
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Figure 2: Director approximations over layerwise, equivalent and intermediate models

enriched approximation model (LM or IM with sublaminae if desired) only in the vicinity of the “hot-spot”, while in
the rest of the domain, a lower order model will suffice. In this study, pyy is uniform over the whole domain, while the
approximation enrichment is done by using either a higher value of p, and/or a more refined model, e.g. IM or LM.
Thus it is important to build the capability to put any desired model in a specified region, rather than doing an overkill
by using a higher model everywhere in the domain (which will be computationally very expensive). This concept has
been introduced through the regionwise modeling approach described in this section.

Figure 3: A typical plate domain with cut-outs

2. CONCEPT OF REGIONS Let us consider the domain given in Figure 3, with the two circular cut-outs shown.
In the vicinity of the cut-outs and the outer boundaries of the domain (shown grey shaded in Figure 3), the solution
is expected to be unsmooth, have severe boundary layer effect, and possibly be three-dimensional in nature locally.
Hence along with a refinement of the mesh, enrichment of the model will also be desired in the shaded regions. Thus,
the domain is divided into multiple regions (three regions shown by different shades of grey). The plate model is then
fixed for each region. For example, for the domain of Figure 3, Epryp%p§p§ may be used in the unshaded region;
I M pyy p2p2p3 may be used in the lighter grey region and LM pyyp2pZp3 may be used in the region shaded dark grey.

3. CONCEPT OF GROUPS Let the laminate have nl layers, or laminae (this also includes the sublaminae). Since
all the models given above have the same representation in terms of the one-dimensional hierarchic basis functions
defined over groups of laminae, it is advantageous to define a generic representation of the group structure. The base
two-dimensional mesh Top (with nelop number of elements) is made first over the projected two-dimensional surface.
In this study, meshes of triangles are used. Using the base two-dimensional mesh, the three-dimensional mesh Tsp of
prismatic elements is made over the whole domain, layer by layer. Hence the number of elements in Tzp is nelop x nl.
Each two-dimensional element 1op C Top is assigned the set of all the nl three-dimensional elements 13p C Tsp, whose
projection on the plane is Top. This set is denoted as Pyop. For each element 15p, the type of model to be used
through the thickness is then specified. The model is fixed by the regionwise allocation described above. Note that two
contiguous two-dimensional elements may have the same or different models by this strategy. For the element Top we
specify the number of groups ngy,,. For each group g 1,,,i = 1,2, ..., N0y, , the three-dimensional elements T3p C P,
contained, are specified. Note that the group will contain one or more three-dimensional elements that are stacked on
top of each other. Illustrations of some possible groups is given in Figure 4, through a frontal view. The figure also
demonstrates the possible interfaces between neighboring groups. Note that in this study, case (g) is not considered.
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Figure 4: Grouping strategies for regionwise model

4. IMPOSITION OF CONSTRAINTS In this section the concept of constrained approximation will be discussed.
The ideas are generalization of the concept introduced in Demkowicz et al [4]. In order to fix ideas let us consider a
one-dimensional example. Let us take an interval (0,L) with one element, as shown in Figure 5(a). Let us also assume
that piecewise linear basis functions (i.e. p= 1) are defined over this mesh. Let
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be the representation of a function over this domain. Here, M;(z) are the linear basis functions defined as shown in
Figure 5(a). Let us now subdivide this element into two equal sub-elements, with % Over this new mesh of two
elements, let the function v(z), given above, be represented in terms of the piecewise linear basis functions (as shown
in Figure 5(b)) as
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where, I\7Ii(z) are the piecewise linear basis functions defined over the new mesh. Since both equations (2) and (3)
represent the same function, the coefficients a; can be expressed in terms of the coefficients a;. It is obvious that
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Similarly, the representation of v(z) over any finer mesh can be obtained in terms of the representation over the coarser
mesh, with the new fine mesh coefficients & constrained by the values of the coefficients a; for the coarser mesh.
This can be easily extended to any p-order approximation defined over the coarse and fine meshes. The transverse
representation of the finite element solution is defined over a group. However, the basic building block in the analysis
is the individual three-dimensional element t3p. Hence, the approach given above will be employed to represent the
element degrees of freedom in terms of the group degrees of freedom.

NUMERICAL RESULTS

The major goal of this paper is to present an approach through which the local three-dimensional state of stress can be
obtained in a laminated plate structure, in a designed region of interest, with optimal computational effort. The efficacy
of the proposed regionwise model is demonstrated by following two numerical examples. This modeling approach is
compared with EQ, LM and IM models.

1. ANTISYMMETRIC LAMINATE UNDER CYLINDRICAL BENDING In this case [165/ — 165] laminate is
considered. The cylindrical bending load is of the form Tsz(X,y) = gosin (%X) All the laminae are of equal thickness.



Here, we have taken t = 2nl (t = 2mmhere) and a = . Further, in the y-direction the plate is taken to be sufficiently
long with b = 20a. At x= 0, a the edge is point supported while at y = 0, b the edge is free. The normalised stress
Ty, is plotted at (0, Q,z). The regionwise scheme (RR) for this case is shown in Figure 6. In the darker region LM 3332
model is used. In the region shown by grey shading LM3112 model is used followed by the EQ3112 model in the
remaining region. The stress components for S= 4 are compared with exact solution of [6] and are shown in Figure 7.
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Figure 5: Constraint imposition
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The number of unknowns LM 3332, EQ3332 and regionwise scheme are given in Table 1.
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Figure 6: Regionwise scheme for transverse shear stress for [165/ — 165] laminate
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Figure 7: Comparison of transverse shear stress for [165/ — 165] laminate under cylindrical bending

Table 1: Number of unknowns

Model LM3332 | EQ3332 | RR
Unknowns | 11875 6875 | 4863

From the results it is observed that:



1. The stress components obtained directly by the LM3332 model are close to the exact values.

2. When the equilibrium based postprocessing is employed the LM 3332 and EQ3332 models give very good values
of transverse stress.

3. The stresses obtained both directly and with equilibrium based postprocessing using regionwise scheme are
close to the exact values.

2. DOMAIN WITH MULTI-MATERIAL Let us take the rectangular domain of Figure 8(c). The dimensions of
the plate are a= 100mm, b = 10mmand t = 0.254mm. The plate is clamped along all the edges and is subjected to
a uniform transverse load of intensity go = 1N/mn?. The plate has two lamina with [0/90] in the region 0 < x < &,
0 <y < b. The material properties for each lamina are as given in Table 2. In the region § <x<a,0<y< g the plate
has a bottom layer of epoxy (with E1; = Epx = Ezz3 = 4600MPa, v12 = V13 = V3 = 0.36) for —% <z<0.Forz>0,
lamina with 90° orientation with material properties given in Table 2 is present (see Figure 8(a)). The plate essentially
mimics a L-shaped domain in two-dimensions. For this domain the exact solution will have an edge singularity along
the line given by x= §, z= 0. To solve this problem we will use LM 3333, EQ3333 models and the regionwise schemes
given by:

EQ3333 LM3333 EQ 3333
|E—
X. (a) RR—U
. ‘ EQ333; LM3333 EQ3333 |
)RR
LX (c) Mesh

Figure 8. Beam geometry and mesh. (a) RR—U model with point 1 and 2, where through thickness variation is given,
(b) RR— G model and (c) the two-dimensional mesh

Table 2: Material propertiesfor T300/5208 Graphite/Epoxy (Pre-preg)

Property Value Property Value
E11 132.5 GPa Xt 1515 MPa
Ex» =Ez; | 10.8GPa Xc 1697 MPa
Gipp=G3| 57GPa | Y1 =Z1=Yc =27 | 43.8MPa
G 3.4GPa R 67.6 MPa
V12 = V13 0.24 S=T 86.9 MPa
Vo3 0.49 Ply thickness, t; 0.127 mm




1. RR—U (Figure 8 (a)): EQ3333 in region 1 and 3, LM3333 model in region 2.

2. RR— G (Figure 8 (b)): EQ3333 in region 1 and 3, LM3333 model in region 2, with geometrically graded
sublaminae (with factor q = 0.15) near z= 0.

Note that in the RR strategies the 3D model is used in the vicinity of the singular edge only. Elsewhere, lower models
are used. The two-dimensional mesh is as shown in Figure 8(c), with geometrically graded elements (with grading
factor g=0.15) in the vicinity of the line x= §. The energy norm of the discretization error for this mesh was 2.84%
(when the EQ3333 model is used everywhere).

The through thickness variation of the stress components is given for two points P; and P.. The equlibrium based
postprocessed stress 0 obtained with EQ3333, LM 3333 and RR— U model is shown in Figure 9. From the figures we
observe that:
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Figure 9: Transverse normal stress (equilibrium based post-processing) for beam without needle elements. (a) At
point 1 and (b) at point 2

1. All the stress components, obtained by the EQ3333 models, are quantitatively and qualitatively different from
those obtained by the LM 3333 model.

2. The RR—U strategy gives stress values that are very close to those obtained by the LM3333 model.

Here, the LM 3333 model was our benchmark. The pointwise stresses due to the RR— U scheme are very close those
obtained by the LM3333 model.

In order to resolve the unsmoothness in the solution better, graded sublaminae were used in the RR— G model in the
vicinity of the singular edge. The RR— G strategy is compared with the RR— U strategy in Figure 10. From the
figures we observe that the RR—U and RR— G strategy give postprocessed stresses very close (overlapping lines). The
example clearly demonstrates the ineffectiveness of the EQ models. It further demonstrates the effectiveness of the
RR—U and RR— G strategies. Note that with the RR— G strategy, the value of o, at the top reaches closer to the exact
value of 1. Further graded sublaminae and mesh has to be used in the vicinity of singular edge to get the pointwise
value of the transverse stress components at the given point more accurately. This can be achieved by using a suitable
a-posteriori error estimator for modeling error, along with the RR— G strategy.
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Figure 10: Transverse normal stress (equilibrium based post-processing) for beam with needle elements. (a) At point
1 and (b) at point 2

In Table 3, the number of unknowns for each of the solution strategies, is given. From the table it is clear that the
RR—U or RR— G strategy leads to significant savings in the computational cost as compared to the LM model.



Table 3: Number of unknows for domain with multi-material region

Model Throughout LM3333 | Throughout EQ3333 | RR—U | RR—G
Unknowns 50421 28812 38955 | 92757

CONCLUSIONS

In this study a new regionwise modeling approach was introduced. The major conclusions resulting from this study are

given below.

1. The layerwise model accurately captures the local state of stress.

2. The transverse stress components computed by direct use of finite element data for equivalent model are sig-
nificantly different both qualitatively and quantitatively. However, when these stresses are computed using
equilibrium based postprocessing approach they are in good agreement with exact one.

3. The concept of regionwise modeling, with different models in different regions of the domain has been proposed
and implemented successfuly.

4. The regionwise modeling approach is as accurate as layerwise model and computationally very economical.
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