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Abstract

Accurate computation of the critical response quantities for laminated composite structures has become essential,

especially from the design and design certification point of view. Worst case scenario analysis (corresponding to the load

envelope) of the structure require computation of local quantities of interest. In such a situation, control of both

modelling error and discretisation error for the quantities of interest is required.

In this study, for a fixed plate model, a novel adaptive procedure is presented, based on a posteriori estimation of the

error in the quantity of interest. This focussed adaptive procedure involves prediction of the desired optimal mesh sizes

in the neighborhood of the region of interest and away from the region of interest, based on an a priori estimate of the

error in the quantity of interest. The final desired mesh is obtained in one shot. It is found that the error estimator, for

the quantity of interest is reasonably robust. Further, the adaptive procedure is very effective in controlling the local

error to within the specified tolerances.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Composites are increasingly employed in the manu-

facture of lightweight components. Thin plate or shell

type members are often used in aircraft wing, fuselage or

auxillary devices. The inherent heterogeneity in the

material properties makes the analysis and design of

these components more challenging.

Often, in the analysis or design of laminated struc-

tures the critical quantities have to be evaluated accu-

rately, for the given load envelope. The critical

quantities of interest are maximum stress, deflection,

buckling load, first ply failure load, etc. Shape and

topology optimization procedures employ these criti-

cal quantities as constraint data (see [1] for example).

Obviously, accurate evaluation of the critical data

is essential for the success of the optimization proce-

dure.

Adaptive methods are available in the literature (see

[9–11]), for the control of the discretisation error. Often,

these are based on the control of the energy norm of the

error, jjejjX which is given by jjejjX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðeÞ

p
(where

UðeÞ is the strain energy of the error). This does not

guarantee that the particular data of interest is also ac-

curate (i.e. error is within desired tolerances). Often,

critical stress or strain data can have significant error

eventhough the energy norm is within acceptable toler-

ances.

In [6,8] it was shown that the error in the quantity of

interest can be given in terms of error in the solution of

an auxillary problem. The focus of [5,6] was to control

the ‘‘pollution’’ error in the quantity of interest.

The goal of the current study is to develop a simple

procedure for the estimation and adaptive control of the

error in the quantities of interest. The aim is to construct

a ‘‘one-shot’’ adaptive approach for the control of the

discretisation error, for laminated plates. The important

issue of control of modelling error (i.e. error in the plate

model as compared to three dimensional elasticity) will

not be discussed here. Simultaneous control of model-

ling as well as discretisation error will be the subject of a

subsequent paper.
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2. Plate formulation

Several plate models are available in the literature

(see [2,3]). For the laminated plates, we employ the

model given in [2]. For this model, we have

uðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

8<
:

9=
; ¼ ½/ðzÞ�Uðx; yÞ ð1Þ

where

and

U ¼ fU1ðx; yÞ U2ðx; yÞ U3ðx; yÞ � � � U11ðx; yÞ � � � gT

ð3Þ

Note that U1ðx; yÞ, U3ðx; yÞ, U6ðx; yÞ, U11ðx; yÞ, . . . are the
in-plane components of the displacement term uðx; y; zÞ.
Similarly, U2ðx; yÞ, U4ðx; yÞ, U7ðx; yÞ, U10ðx; yÞ, . . . are the
in-plane components for the displacement term vðx; y; zÞ.
The in-plane components of the transverse displacement

wðx; y; zÞ are given by U5ðx; yÞ, U8ðx; yÞ, U11ðx; yÞ, . . . In
this study only the first eight terms in the expansion will

be used (i.e. eight-field model), for which the transverse

functions are given in terms of the normalized transverse

coordinate ẑz ¼ ð2=tÞz (where t is the thickness of the

laminate), as (see [2] for details)

/1ðẑzÞ ¼ /2ðẑzÞ ¼ /5ðẑzÞ ¼ 1; /3ðẑzÞ ¼ /4ðẑzÞ ¼ ẑz
t
2

/6ðẑzÞ ¼
t
2
fuðẑzÞ 
 uð0Þg; /7ðẑzÞ ¼

t
2
fwðẑzÞ 
 wð0Þg

/8ðẑzÞ ¼
t
2
fqðẑzÞ 
 qð0Þg

where

uðẑzÞ ¼
Z ẑz


1

Q44 
 Q45

Q44Q55 
 Q2
45

d�̂zẑzz;

wðẑzÞ ¼
Z ẑz


1

Q55 
 Q45

Q44Q55 
 Q2
45

d�̂zẑzz; qðẑzÞ ¼
Z ẑz


1

1

Q33

d�̂zẑzz

where Qij are the coefficients of the global constitutive

relation, in the global xyz-coordinate system.

For a given lamina l the constitutive relationship, in

the principal material directions is given as

f�rrðlÞg ¼ ½CðlÞ�f���ðlÞg ð4Þ

where f�rrðlÞg ¼ frðlÞ
11 rðlÞ

22 rðlÞ
33 rðlÞ

23 rðlÞ
13 rðlÞ

12 g
T

are the

stress components for the layer, and f���ðlÞg ¼
f�ðlÞ11 �

ðlÞ
22 �

ðlÞ
33 cðlÞ23 cðlÞ13 cðlÞ12g

T
are the strain components for

the layer. Note that here the subscripts 1, 2, 3 corre-

spond to the three principal material directions. The

constitutive relationship in the global xyz-coordinates
(for each lamina) can be obtained by the usual trans-

formation to get

frðlÞg ¼ ½QðlÞ�f�ðlÞg ð5Þ

with frðlÞg ¼ frðlÞ
xx rðlÞ

yy rðlÞ
zz rðlÞ

yz rðlÞ
xz rðlÞ

xy g
T
and the strain

f�ðlÞg ¼ f�xx �yy �zz cyz cxz cxyg
T
, and ½QðlÞ� can be ob-

tained from ½CðlÞ� by transformation from the principal

material coordinates to the global xyz-coordinates.

The potential energy, P, for the structure is given by

P ¼ 1

2

Z
V
frg � f�gdV 


Z
Rþ[R


qwds ð6Þ

where V is the volume enclosed by the plate domain, Rþ

and R
 are the top and bottom faces of the plate and

qðx; yÞ is the applied transverse load on these faces (see

Fig. 1).

The solution to the problem, uex, is the minimizer of

the total potential P, and is given as

Find uex 2 H0ðV Þ such that

Bðuex; vÞ ¼ F ðvÞ 8v 2 H0ðV Þ ð7Þ

where H0ðV Þ ¼ fu ¼ ½U�UjUðuÞ < 1 and ½M�U ¼ 0 on

CDg. Here C ¼ CN [ CD is the lateral boundary of the

plate with the Dirichlet part CD and Neumann part CN.

Note that in this study Dirichlet means the parts of the

lateral boundary where geometric constraints are im-

posed, while Neumann stands for the stress-free parts of

the lateral boundary. Further, [M] depends on the type

of Dirichlet condition on the edge, i.e. clamped; soft

simple-support; hard simple-support etc.

Fig. 1. A laminated plate with top and bottom surfaces Rþ and

R
.

½/ðzÞ� ¼
/1ðzÞ 0 /3ðzÞ 0 0 /6ðzÞ 0 0 /9 0 0 � � �
0 /2ðzÞ 0 /4ðzÞ 0 0 /7ðzÞ 0 0 /10ðzÞ 0 � � �
0 0 0 0 /5ðzÞ 0 0 /8ðzÞ 0 0 /11ðzÞ � � �

2
4

3
5 ð2Þ
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Hence, we have

Bðuex; vÞ ¼
X
l

Blðuex; vÞ

¼
X
l

Z
Vl

frðlÞðuexÞg � f�ðlÞðvÞgdV

and

F ðvÞ ¼
Z
Rþ[R


qv3 ds ð8Þ

where Vl is the volume of the lth lamina in the laminate;

v3 is the transverse component of the test function v.

3. Definition of error estimator

The variational formulation (8) is used to obtain

the finite element solution uh 2 H0
hðV Þ, where H0

hðV Þ ¼
fu ¼ ½U�U;Ui 2 Sp

s ; i ¼ 1; 2; 3; . . . jUðuÞ < 1; ½M�U ¼ 0

on CDg. Letting x2D be the plate mid surface with

boundary ox2D, we define Sp
s as the set of globally

continuous piecewise polynomials of order p over each

element s (s 2 x2D). Thus, we have

Bðuh; vhÞ ¼ F ðvhÞ 8vh 2 H0
hðV Þ ð9Þ

Note that uh ¼ ½/�Uh is the representation of uh, fol-

lowing (1). The error in the solution can be given as

e ¼ uex 
 uh. An approximation to the error can be given

as e� ¼ u� 
 uh where u� 2 Spþk
s is obtained for each

element s as described below (see [4] for details). In all

the numerical examples k ¼ 2 has been employed.

For an element s let Ps be the patch of elements in a

one-layer neighborhood of s, as shown in Fig. 2.

Over the patch Ps, define

u� ¼
u�

v�

w�

8<
:

9=
; ¼ ½/�U�

where

U �
i ¼

XNDOF

j¼1

Aijqjðx; yÞ

with NDOF ¼ ðp þ 1þ kÞðp þ 2þ kÞ=2; qjðx; yÞ as the

monomials of order 6 p þ k (see [4] for details) defined

in terms of the local coordinates x̂x ¼ x
 xs
c, ŷy ¼ y 
 ys

c .

Here xs
c, y

s
c are the centroidal coordinates for the element

s. The qjðx; yÞ can be given as

q1ðx; yÞ ¼ 1; q2ðx; yÞ ¼ x̂x; q3ðx; yÞ ¼ ŷy;

q4ðx; yÞ ¼ x̂x2; q5ðx; yÞ ¼ x̂xŷy; q6ðx; yÞ ¼ ŷy2; . . . ð10Þ

The coefficients Aij are obtained by minimizing

J ¼ 1
2

R
APs

jU� 
Uhj2 dA where APs is the area of the patch

Ps (where APs � x2D). This definition is called the L2

projection based error estimator (see [4] for details).

4. The auxillary problem

Let us consider the domain of Fig. 3. Let us further

assume that we are interested in the value of stress

Fig. 2. Element s with the patch Ps consisting of elements

fsðPÞi gi¼0;1;...;11.

Fig. 3. (a) Laminated plate with initial mesh T and element of interest s. (b) Lamina with material coordinates l, t (or 1, 2).
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component rxx in the topmost layer, for all points in the

element s (shown shaded in Fig. 3).

In order to accurately obtain the pointwise infor-

mation in s, we will let rðlÞ
xx;avg ¼ 1

vls

R
vls

rxx dv as the

quantity of interest. Here vls ¼ Astl is the volume en-

closed by the element s in the lth layer. Hence,

rðlÞ
xx;avg ¼

1

Astl

Z zl

z¼zl
1

Z
As

ðrxx dAÞdz ð11Þ

with tl as the thickness of the lth layer; zl
1 and zl as the
lower and upper z coordinate for the lth layer; As is the

area of element s.

Remark. Using the average stress in an element, as the

quantity of interest, is allowable. This is because control

of error in the average stress will ensure accurate values

of the pointwise stresses, for all points in the element s.
Further, taking the average over the layer ensures that

the stress at all points within the layer will be accurately

obtained. We could have taken a slice of the layer (in the

vicinity of the interface, for example), as the volume of

interest.

Corresponding to rðlÞ
xx;avg we define the following

auxillary problem:

Find G 2 H0ðV Þ such that

BðG; vÞ ¼ rðlÞ
xx;avgðvÞ ¼ FðvÞ 8v 2 H0ðV Þ ð12Þ

Letting Gh 2 H0
hðV Þ be the finite element solution for

G, we have

BðGh; vhÞ ¼ rðlÞ
xx;avgðvhÞ ¼ FðvhÞ 8vh 2 H0

hðV Þ ð13Þ

Note that letting the approximation for G to be of the

same order, p, as uh, the auxillary problem gives rise to

an additional load vector. Hence, any direct solver, with

capability to handle multiple load vectors, can be em-

ployed to solve for uh and Gh simultaneously. Further, it

should be noted that the same procedure can be carried

out for any stress component ri, or strain component

�i, displacement u etc. Simultaneously, all the desired

components can be solved for without increasing the

computational cost significantly.

5. Estimators for error in quantity of interest

From the previous section we have

BðG; uex 
 uhÞ ¼ FðuexÞ 
FðuhÞ ¼ Fðuex 
 uhÞ ¼ FðeÞ
ð14Þ

From the orthogonality property of the error in the

finite element solution, we have

jBðG
Gh; uex 
 uhÞj ¼ jFðeÞj ð15Þ

or

jFðeÞj ¼ jBðG
Gh; uex 
 uhÞj
6

X
s

jBðG
Gh; uex 
 uhÞj

6

X
s

jjeujjsjjeGjjs 6 jjeujjjjeGjj ð16Þ

where eu ¼ e stands for the error in the actual solution

and eG stands for the error in the auxillary problem.

Thus, we can see that the smoothness of both u and G

affect the measure of error in the quantity of interest.

6. Definition of a posteriori error estimators for local

quantity of interest

Replacing eu with the estimate e�u and eG with the

estimate e�G, we can get the following definitions of the

estimators, for the error in the quantity of interest:

(1) Estimator 1 (E1)

jFðeÞjE1
¼

X
s

Bðe�u; e�GÞ
�����

����� ð17Þ

(2) Estimator 2 (E2)

jFðeÞjE2
¼
X

s

jBðe�u; e�GÞj ð18Þ

(3) Estimator 3 (E3)

jFðeÞjE3
¼
X

s

jje�ujjjje�Gjj ð19Þ

Remark. Estimators E2 and E3 will be more conserva-

tive, as compared to E1. Note that in the definition E1,

the signs of the elemental contributions to the total error

can be different, leading to cancellations. However, from

the error estimation and adaptivity point of view, we

would like to control the intensity (or magnitude) of the

elemental contributions to the error in the quantity of

interest. This will ensure a uniform decrease in the

pointwise errors at a point, or in an element.

In the numerical results given below, we study the

quality of the a posteriori error estimates for the quan-

tity of interest (or focussed error estimators) for various

ply orientations and boundary conditions.

7. Numerical study of the quality of a posteriori error

estimators

The quality of the error estimator, for the quantity of

interest, has to be ascertained. In this study we will use

the L2 projection based estimators e�u and e�G (given by

definitions (9) and (10)). For this choice of the a poste-
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riori error estimator we have to determine the quality of

the three definitions of the focussed error estimators E1,

E2 and E3.

In order to study the reliability of the error estima-

tors, we let u
ðpÞ
h , G

ðpÞ
h be the finite element solutions of the

order p for uex and G. Thus, we can approximate error eu
as eu � eðpþ1Þ

u ¼ u
ðpþ1Þ
h 
 u

ðpÞ
h and henceFðeÞ � Fðeðpþ1Þ

u Þ.
It can be shown that Fðeðpþ1Þ

u Þ ¼
P

s Bðe
ðpþ1Þ
G ; eðpþ1Þ

u Þ.
With this definition of the ‘‘exact’’ error, we let the ef-

fectivity index for the quantity of interest jF be defined

as

jF ¼
jFðe�ÞjEi

jFðeÞjEi

i ¼ 1; 2; 3 ð20Þ

Letting s be the element of interest and P the one-layer

neighborhood of s, the total error can be partitioned

into two parts as follows:

jFðeÞj6 jF1ðeÞj þ jF2ðeÞj

where

F1ðeÞ ¼
X
s2P

Bðeu; eGÞ; F2ðeÞ ¼
X
s2P 0

Bðeu; eGÞ ð21Þ

where P 0 is the set of elements lying outside P . Following
[6], F1ðeÞ is the local part of the error and F2ðeÞ is the
‘‘pollution’’ in the quantity of interest (i.e. far-field in-

fluence). For each of these quantities, we can obtain the

effectivity indices jF1
and jF2

, by suitably modifying

definition (20).

Remark. The significant part of the true error can be

given in terms of the ðp þ 1Þ part of the error, when the

pollution (or far-field influence) is not significant (see

[7]). The far-field effect is significant when reentrant

corners are present in the domain.

Remark. Note that G is badly behaved in P . Hence, eG
does not converge locally. Thus, in P , eG is not ap-

proximated well by e
ðpþ1Þ
G . This means that in P , e�G (or

the estimated error) is not a reliable estimate of eG.

However, in the numerical procedure we employ e�G in-

stead of eG. It will be observed, in the numerical exam-

ples that the estimator is still reasonably robust.

We consider the following rectangular laminated

plate configuration:

length L ¼ 10 cm; breadth B ¼ 10 cm;

thickness t ¼ 1 cm (moderately thick plate) or t ¼ 1

mm (thin plate);

number of lamina, NLAY ¼ 4 (of equal thickness);

Ell ¼ 138 MPa; Ett ¼ 9:3 MPa; mlt ¼ 0:3; mtt ¼ 0:5;
Glt ¼ 4:6 MPa; Gtt ¼ 3:1 MPa;

loading: uniformly distributed transverse loading on

Rþ; qðx; yÞ ¼ 100 kPa.

Here l denotes the fibre direction, for a lamina, and t
denotes the transverse direction (see Fig. 3).

For the plate configuration we consider the following

boundary conditions:

clamped–clamped (CCCC): for x ¼ 0; L; y ¼ 0;B;
u ¼ v ¼ w ¼ 0,

clamped–free (CFCF): for x ¼ 0; L; u ¼ v ¼ w ¼ 0,

simply-supported (SSSS): for x ¼ 0; L; v ¼ w ¼ 0; for

y ¼ 0;B; u ¼ w ¼ 0.

Laminates with material orientation of ½0=90=90=0�
and ½
45=45=45=
 45� were considered in the numeri-

cal examples. Further, it should be noted that in all

the examples, the stress quantities have units of kPa.

Quadratic finite element approximations (p ¼ 2) are

employed throughout this study. The order of approxi-

mation, p, will be specifically mentioned wherever p
other than 2 is employed.

In Tables 1 and 2 we report the value of KF (for

total error) and KF2
(for pollution error) for a thin

plate. We observe that

Table 1

Quality of estimator for ½0=90=90=0�; plate dimension: 10� 10� 0:1

Quantity BC jF jF2
% error

E1 E2 E3 E1 E2 E3

rð1Þ
xx;avg ¼ 
96:05 CCCC 0.92 0.87 1.42 0.08 0.65 1.04 51.00

rð1Þ
xx;avg ¼ 
2038:78 CFCF 0.85 0.91 1.34 1.02 1.18 1.17 02.00

rð1Þ
xx;avg ¼ 
1930:34 SSSS 0.16 1.07 1.75 1.57 1.38 1.39 21.00

rð1Þ
yy;avg ¼ 230:97 CCCC 1.55 0.82 1.10 1.78 1.66 1.33 16.00

rð1Þ
yy;avg ¼ 
63:71 CFCF 1.83 1.35 1.31 1.48 1.39 1.33 10.00

rð1Þ
yy;avg ¼ 
304:66 SSSS 0.47 0.83 1.39 5.22 1.26 1.41 09.00

rð1Þ
xy;avg ¼ 113:17 CCCC 1.43 0.80 1.11 1.61 1.47 1.35 17.00

rð1Þ
xy;avg ¼ 
73:46 CFCF 2.17 1.22 1.31 1.58 1.39 1.34 0.003

rð1Þ
xy;avg ¼ 
191:74 SSSS 0.35 0.84 1.33 8.09 1.20 1.43 11.00
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(1) Estimator E1 is not reliable.

(2) Estimator E3 is very robust (1:046KF 6 2:05), but
estimator E2 can underestimate the error (especially

for the ½
45=45=45=
 45� laminate), with jF P 0:55.
(3) Estimator E1 is sensitive to the boundary condition.

For example, for SSSS underestimation is severe.

However, E2 and E3 are insensitive to the bound-

ary-condition type.

(4) In the region P 0, E1 is completely unreliable with

0.06 6 jF2
6 46:0. Estimators E2 and E3 are robust

in P 0.

(5) The error in the quantity of interest can be very high

(>50%), for the mesh shown in Fig. 3.

For the moderately thick plate (see Table 3), we note

that the error in the quantity of interest is small. Fur-

ther, as observed above for the thin plate, estimator E1 is

unreliable while E2 and E3 are robust.

Remark. Estimator E1 cannot be guaranteed to be reli-

able because Bðe�u; e�GÞ need not be of the same sign as

Bðeu; eGÞ in each element of the current mesh. Thus,

cancellation of error contributions from each element

will not be properly accounted for by the estimator. This

can result in discrepancies in the estimated error. Esti-

mator E2 is more reliable because the sign of Bðeu; eGÞ is
not important in its definition.

Remark. Estimators E2 and E3 do a reasonable job of

predicting the pollution error. Eventhough e�G will not be

reliable in region P , we find that the estimate (i.e. using

FðeÞ) is reasonably robust.

Since jFðeÞjE1
6 jFðeÞjE2

6 jFðeÞjE3
, it is important

to find out how severe the over-estimation of the error

can be when definition E2 and E3 are employed. In Ta-

bles 4 and 5 we report the ratios R1 ¼ jFðeÞjE2
=jFðeÞjE1

and R2 ¼ jF2ðeÞjE2
=jF2ðeÞjE1

, for the thin and thick

plate with ½0=90=90=0� stacking sequence. From Tables 4

and 5 we observe that

1. For the thin plate, where the error is significant, over-

estimation due to definition E2 of the error, is moder-

ate with R1 6 6.

2. For the thick plate also, in general, over-estimation

is moderate. For the case when R1 � 150, the actual

error is very small (<0.003%). Thus, the over-esti-

mated error also turns out to be very small.

3. The over-estimation depends on the plate thickness

and boundary-condition type.

4. In region P 0, the over-estimation can be severe

(R2 > 15 can be observed).

It should be noted that Tables 4 and 5 correspond to

ratios of quantities computed using the ‘‘exact’’ errors.

Table 2

Quality of estimator for ½
45=45=45=
 45�; plate dimension: 10� 10� 0:1

Quantity BC jF % error

E1 E2 E3

rð1Þ
xx;avg ¼ 
1880:40 SSSS 1.52 0.93 1.37 01.500

rð1Þ
yy;avg ¼ 
119:18 SSSS 0.06 0.69 1.17 79.400

rð1Þ
xy;avg ¼ 
97:99 SSSS 0.08 0.73 1.19 47.700

rð1Þ
xx;avg ¼ 1020:91 CCCC 0.71 0.68 1.18 25.800

rð1Þ
yy;avg ¼ 189:55 CCCC 45.43 0.87 1.04 05.000

rð1Þ
xy;avg ¼ 115:04 CCCC 5.24 0.85 1.08 04.200

rð1Þ
xx;avg ¼ 
994:24 CFCF 3.39 1.15 1.34 12.700

rð1Þ
yy;avg ¼ 
313:20 CFCF 0.28 0.55 1.09 32.900

rð1Þ
xy;avg ¼ 
176:08 CFCF 0.46 0.56 1.13 27.900

Table 3

Quality of estimator for ½0=90=90=0�; plate dimension: 10� 10� 1

Quantity BC jF jF2
% error

E1 E2 E3 E1 E2 E3

rð1Þ
xx;avg ¼ 
2:26 CCCC 3.52 1.47 2.04 0.04 0.72 1.17 1.000

rð1Þ
xx;avg ¼ 
20:71 CFCF 30.69 1.07 1.75 0.59 0.74 1.18 0.003

rð1Þ
xx;avg ¼ 
14:87 SSSS 1.04 1.25 2.07 13.85 1.14 1.33 0.300

rð1Þ
yy;avg ¼ 2:76 CCCC 1.02 1.22 1.99 0.98 1.05 1.72 2.000

rð1Þ
yy;avg ¼ 
0:71 CFCF 0.04 1.28 2.01 0.61 1.54 1.95 0.800

rð1Þ
yy;avg ¼ 
3:34 SSSS 0.26 1.17 2.05 6.09 1.05 2.06 0.800

rð1Þ
xy;avg ¼ 0:97 CCCC 1.08 1.46 1.36 0.72 0.89 1.90 2.000

rð1Þ
xy;avg ¼ 
1:16 CFCF 0.13 1.41 1.59 0.51 1.36 1.85 0.300

rð1Þ
xy;avg ¼ 
2:34 SSSS 0.05 1.23 1.55 12.49 1.21 2.05 0.700
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From the result we note that the over-estimation for the

total error, as well as pollution, can be significant when

definition E2 is employed. However, since the goal of the

adaptive process (to be discussed below) is to uniformly

control the intensity of the contribution (from various

elements) to the quantity of interest, definitions E2 and

E3 are appropriate measures of the error.

8. One-shot adaptivity for quantity of interest

In the previous section we presented the a posteriori

error estimators for the quantity of interest. Here, we

will give an adaptive procedure by which the desired

optimal mesh can be obtained from an initial mesh

computation directly. It will be shown in the subsequent

section that the desired optimal mesh indeed leads to

reduction of the error within specified tolerances.

Following [5], we can partition the contribution to

the total error, FðeÞ, into two parts FðeÞ ¼ F1ðeÞþ
F2ðeÞ, as defined by (21). Following [8], we observe that

the auxillary function G is unsmooth in P hence

jF1ðeÞj6
X
s2P

jjeujjjjeGjj6Chp ð22Þ

where jjeGjj does not converge at all (i.e. with a rate h0).
Beyond P , the auxillary function is well behaved and

hence

jF2ðeÞj6
X
s2P 0

jjeujjjjeGjj6Ch2p ð23Þ

Thus, we have

jFðeÞj6Chp ð24Þ

Remark. Using definition E2 will ensure that the ele-

ments with higher intensity of contribution to total error

are refined. This guarantees accuracy of pointwise quan-

tities in a neighborhood of the region of interest. This is

crucial in first-ply failure computation as location of the

point also changes with the mesh, till convergence is

achieved.

Remark. When reentrant corners are present in the do-

main, or when the plate model locks, the global part of

the error, F2ðeÞ, may be dominant and the rate of

convergence can be much lower. However, for the

adaptive strategy we will adopt the ideal a priori esti-

mates.

The goal of the adaptive process is to refine the given

mesh selectively such that the total error is below the

specified tolerance, i.e.

jFðeÞj6 g jFðuhÞj ð25Þ

where FðuhÞ is the computed value of the desired

quantity of interest; jFðeÞj ¼ jFðeÞjE2
is obtained using

definition E2 for the error. Following [9], we will define

rs ¼ ðhd=hÞ as the ratio of the desired ðhdÞ to the actual

mesh size ðhÞ of the element s. The desired mesh should

have the least number of elements, of all possible me-

shes. Hence, following [9], we minimize

X
s

1

r2s

subject to constraints (22) and (23). Thus, we define the

new objective function (to be minimized) as,

J ¼
X

s

1

r2s
þ k1

X
s2P

v2
d;s

 

Fd;1

!
þ k2

X
s2P 0

v2
d;s

 

Fd;2

!

ð26Þ

where vd;s ¼ jBðêeu; êeGÞj is the desired contribution to the

total error from element s; êeu, êeG are the desired errors in

the element s; k1 and k2 are Lagrange multipliers;

Fd;1 ¼ g1jFðuhÞj and Fd;2 ¼ g2jFðuhÞj are the desired

errors in the region P and P 0, respectively (here

g ¼ g1 þ g2). Using (22) and (23) v2
d;s can be given in

terms of the actual error v2
a;s (where v2

a;s ¼ jBðeu; eGÞj in
the element s), as

Table 4

Over-estimation (definition E2) for ½0=90=90=0�; plate dimen-

sion: 10� 10� 0:1

Quantity BC R1 R2

rð1Þ
xx;avg ¼ 
96:05 CCCC 5.85 1.42

rð1Þ
xx;avg ¼ 
2038:78 CFCF 1.82 3.07

rð1Þ
xx;avg ¼ 
1930:34 SSSS 1.65 8.66

rð1Þ
yy;avg ¼ 230:97 CCCC 1.92 1.95

rð1Þ
yy;avg ¼ 
63:71 CFCF 2.75 2.78

rð1Þ
yy;avg ¼ 
304:66 SSSS 3.23 17.28

rð1Þ
xy;avg ¼ 113:17 CCCC 1.88 1.75

rð1Þ
xy;avg ¼ 
73:46 CFCF 4.04 3.71

rð1Þ
xy;avg ¼ 
191:74 SSSS 2.34 32.02

Table 5

Over-estimation (definition E2) for ½0=90=90=0�; plate dimen-

sion: 10� 10� 1

Quantity BC R1 R2

rð1Þ
xx;avg ¼ 
2:26 CCCC 9.49 1.24

rð1Þ
xx;avg ¼ 
20:71 CFCF 149.35 18.54

rð1Þ
xx;avg ¼ 
14:87 SSSS 6.27 207.46

rð1Þ
yy;avg ¼ 2:76 CCCC 1.72 1.81

rð1Þ
yy;avg ¼ 
0:71 CFCF 2.17 8.84

rð1Þ
yy;avg ¼ 
3:34 SSSS 2.44 14.19

rð1Þ
xy;avg ¼ 0:97 CCCC 2.23 1.28

rð1Þ
xy;avg ¼ 
1:16 CFCF 2.54 7.52

rð1Þ
xy;avg ¼ 
2:34 SSSS 2.47 31.97
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For s 2 P ; v2
d;s ¼ rpsv

2
a;s

For s 2 P 0; v2
d;s ¼ r2ps v2

a;s

Thus, (26) becomes

J ¼
X

s

1

r2s
þ k1

X
s2P

rps v
2
a;s

 

Fd;1

!

þ k2

X X
s2P 0

r2ps v2
a;s

 

Fd;2

!
ð27Þ

Minimizing J with respect to rs, k1 and k2 we get

For s 2 P ,

rs ¼
F

1=p
d;1

ð
P

s2P v4=ðpþ2Þ
a;s Þ1=pv2=ðpþ2Þ

a;s

ð28Þ

For s 2 P 0,

rs ¼
F

1=2p
d;2

ð
P

s2P 0 v
2=ðpþ1Þ
a;s Þ1=2pv1=ðpþ1Þ

a;s

ð29Þ

Using the computed values of rs, the desired mesh sizes

can be computed. The mesh can be locally refined sev-

eral times based on the desired mesh size. This leads to a

final adaptively refined mesh.

Remark. The partition of the contribution to the error

from P and P 0 is based on the user. The final mesh de-

pends on the choice of g1 and g2. In order to keep both

contributions of the same order, we choose g1 ¼
g2 ¼ g=2.

9. Numerical examples using one-shot focussed adaptivity

The adaptive procedure given above can be employed

to selectively refine the initial mesh, in order to get the

desired mesh (with error in the quantity of interest

within the specified tolerance) in one shot. The compu-

tation has to be redone on the final mesh in order to

obtain the quantity of interest. Below, we will demon-

strate through numerical examples, for the thin plate,

the effectiveness of this two-mesh solution process.

Let us consider the laminate configuration (thin plate)

given previously. For this laminate, the ½0=90=90=0� and
½
45=45=45=
 45� stacking sequences are taken. For

the adaptive procedure we let the specified tolerance

for the error in the quantity of interest be g ¼ 3% error.

For the initial mesh shown in Fig. 3, we let rð1Þ
xx;avg and

rð1Þ
yy;avg (i.e. average stress components in the topmost

layer) be the quantity of interest, for the element s
shaded gray. In Fig. 4 we show the final meshes obtained

Fig. 4. One-shot adaptivity: definition E2 for the error; the final meshes obtained for various choices of quantities of interest, boundary

conditions and material orientations in each lamina (see Table 6 for the details).
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by the adaptive process, using definition E2 of the

pointwise error estimator. In Table 6 the details of the

material, quantity of interest, errors in the initial mesh

(kFðeÞkinit) and the final mesh (kFðeÞkfin), and the tol-

erance achieved (gachieved) are reported for the meshes

shown in Fig. 4. From the results we note that

(1) The final meshes in all the cases correspond to

an error within the specified tolerance (0:0136
gachieved 6 0:037).

(2) The final mesh depends strongly on the quantity of

interest, ply orientations and the boundary condi-

tions.

(3) The region of strong refinements is not restricted to

the local region of interest only. It can spread to a

larger part of the initial mesh, depending on the

quantity of interest, boundary conditions and mate-

rial orientation.

(4) Almost the full mesh requires further refinements.

As a check, the quality of the error estimator (using

definition E2) for the final mesh 6, was obtained. The

effectivity index was found to be jF ¼ 0:70. The true

error in the quantity was 1.368 kPa, i.e. an error of less

than 0.1%.

9.1. Effect of approximation order p

As observed above, for p ¼ 2, the mesh is refined

almost everywhere. This can be due to locking (which

can be severe for thin plates). Use of higher order ap-

proximations removes the effect of locking. In order to

see this numerically, we let p ¼ 3. In Table 7, we report

the errors, and gachieved.

The corresponding final meshes are shown in Fig. 5.

From Fig. 5 and Table 7, we observe that

(1) For p ¼ 3, the target tolerance of g ¼ 0:03 is

achieved with a much coarser mesh.

(2) The mesh refinement is localised mostly to the neigh-

borhood of the region of interest.

It should be noted that for the domains and bound-

ary conditions employed above, use of high p can lead to

very accurate results everywhere. For p ¼ 3, and the

problems considered, the locking effect is negligible. It

should further be noted that the boundary-layer from

boundaries not adjacent to the region of interest does

not effect the local quantity of interest significantly, for

the class of problems considered here.

Remark. For some of the cases in Tables 6 and 7, the

value of gachieved is much smaller than the desired value of

g ¼ 0:03 (for example mesh 3 of Table 6 and mesh 2 of

Table 7). This is because the g for the initial mesh was

close to the threshold. The desired mesh sizes for these

cases would be close to the original one (but smaller).

Thus the refinement process would refine all the elements

with a smaller (desired) mesh size, leading to an ‘‘over-

kill’’, or a much more accurate solution than desired.

9.2. Adaptivity for a domain with a cut-out

Generally composite panels, employed in practical

applications, have cut-outs (for window openings,

Table 7

Effect of order of approximation

Mesh Laminate Quantity jFðeÞjin jFðeÞjfin gachieved No. of DOFs

1 ½0=90=90=0� (SSSS) rð1Þ
xx;avg 24.4 24.4 0.016 625� 8 (1520� 8)

2 ½0=90=90=0� (SSSS) rð1Þ
yy;avg 10.2 0.8 0.003 967� 8 (1429� 8)

3 ½
45=45=45=
 45� (CFCF) rð1Þ
xx;avg 70.9 20.0 0.024 1330� 8 (2264� 8)

Definition E2 for error in quantity; average stress in the topmost layer, in the element s (shown shaded gray in Fig. 3); errors in the

initial and final (adaptively refined) meshes for p ¼ 3. The quantities in parentheses in the last column correspond to the final mesh for

p ¼ 2.

Table 6

One-shot adaptivity for control of error in quantity of interest

Mesh Laminate Quantity jFðeÞjinit jFðeÞjfin jFðuhÞj gachieved

1 ½0=90=90=0� (SSSS) rð1Þ
xx;avg 649.56 39.32 1558.36 0.025

2 ½0=90=90=0� (SSSS) rð1Þ
yy;avg 86.77 9.67 283.01 0.034

3 ½0=90=90=0� (CFCF) rð1Þ
yy;avg 18.03 0.75 57.66 0.013

4 ½
45=45=45=
 45� (SSSS) rð1Þ
xx;avg 331.83 44.69 1933.11 0.023

5 ½
45=45=45=
 45� (CFCF) rð1Þ
yy;avg 97.61 9.43 421.05 0.022

6 ½
45=45=45=
 45� (CFCF) rð1Þ
xx;avg 613.09 31.31 834.63 0.037

Definition E2 for the error in quantity; average stress in the topmost layer, in the element s (shown shaded gray in Fig. 3); errors in the

initial and final (adaptively refined) meshes.
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inspection bays, or for weight saving). In order to study

the effect of cut-outs on the adaptive process, we consider

the domain of Fig. 6, with a triangular cut-out. For this

domain, the initial mesh is as shown in Fig. 6. As detailed

in Table 8, the final meshes were obtained for various

combinations of quantities, boundary conditions and ply

orientations. Results for both p ¼ 2 and 3 have been re-

ported, for the element s shown shaded gray in Fig. 6 for

the topmost layer (i.e. l ¼ 1). From Table 8 we note that

(1) For p ¼ 2 the desired tolerance is achieved with sig-

nificantly higher number of degrees of freedom, as

compared to p ¼ 3.

(2) Even for p ¼ 3, the given initial mesh was not suffi-

cient, leading to a significantly refined final mesh.

(3) The final meshes are very sensitive to the quantity

of interest, ply orientations, and boundary condi-

tions.

(4) Refinement near the corners of the cut-out depends

on the quantity of interest, boundary condition

and the ply orientations. Refinements near the cut-

out can be significant even for p ¼ 3. This is because

of stress concentrations arising at the corners of the

cut-outs.

(5) The desired levels of refinement is not the same at

each of the corners of the cut-out. The desired level

depends on the quantity, material orientation and

boundary conditions.

(6) The value of gachieved is generally higher than 0:03.

The higher final tolerance is due to the fact that the

corners in the cut-out cause a suboptimal rate of con-

vergence of the finite element solution. Thus, the desired

mesh sizes, obtained using the optimal rate of conver-

gence, are higher than the true one. However, a further

iteration of the refinement process will lead to the de-

Fig. 5. One-shot adaptivity: definition E2 for error in quantity; average stress in the topmost layer, in the element s (shown shaded gray

in Fig. 3); the final meshes obtained for various choices of quantities of interest, boundary conditions and material orientations in each

lamina (see Table 7 for the details); p ¼ 3.

Fig. 6. One-shot adaptivity: the initial mesh for domain with

cut-out; element of interest s shown shaded gray.

Table 8

One-shot adaptivity for a domain with a cut-out

Mesh p Laminate Quantity jFðeÞjin jFðeÞjfin gachieved No. of DOFs

1 2 ½0=90=90=0� (SSSS) rð1Þ
yy;avg 85.4 2.46 0.021 4096� 8

2 2 ½0=90=90=0� (CCCC) rð1Þ
xx;avg 94.0 5.7 0.041 2673� 8

3 2 ½
45=45=45=
 45� (CFCF) rð1Þ
yy;avg 126.1 15.9 0.031 1777� 8

4 3 ½0=90=90=0� (SSSS) rð1Þ
yy;avg 31.7 4.7 0.041 2088� 8

5 3 ½0=90=90=0� (CCCC) rð1Þ
xx;avg 29.0 6.1 0.045 1821� 8

6 3 ½
45=45=45=
 45� (CFCF) rð1Þ
yy;avg 18.3 7.6 0.015 1422� 8

Effect of order of approximation; definition E2 for error in quantity; average stress in the topmost layer, in the element s (shown shaded

gray in Fig. 6); errors in the initial and final (adaptively refined) meshes for p ¼ 2, 3.
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sired mesh. Note that, inspite of the restrictive as-

sumption on the rate of convergence, the mesh obtained

is always close to the desired one. Hence, the one-

shot adaptive refinement procedure is very effective

(Fig. 7).

10. Conclusions

The goal of this study was to develop an adaptive

finite element procedure, based on a posteriori error

estimation and adaptive refinement of the mesh, for

accurate computations of critical local quantities of in-

terest for laminated composite plates. From the results,

we conclude that

(1) The estimation of the error in the local quantity of

interest requires computation of the solution corre-

sponding to an auxillary problem. This leads to an

additional load-vector for the standard finite ele-

ment computations.

(2) The estimates of the error in the local quantity can

be obtained using the standard a posteriori error es-

timators available in the literature.

(3) Employing a L2-recovery based error estimator,

quick and reliable estimates of the error in the quan-

tity of interest can be obtained.

(4) The adaptive algorithm employs the partitioning of

the contribution to the total error, in the quantity

of interest, into local and far-field components.

The local contribution converges at the rate of hp

and the far-field (or pollution) part converges at

the rate of h2p (in the absence of locking and re-

entrant corners).

(5) The final (optimal) meshes obtained by employing

the a priori convergence rates for the local and far-

field parts of the error were close to the desired ones,

i.e. the total error in the quantity of interest was

close to the specified tolerance, even for domains

with cut-outs.

(6) The meshes obtained depend strongly on the bound-

ary conditions, material orientation and the quantity

of interest.

(7) The desired meshes require strong refinements in the

vicinity of the local region of interest, and significant

refinements elsewhere for p ¼ 2. The strong refine-

ments can spread to a large part of the mesh, depend-

ing on various factors. This leads to the proper

Fig. 7. One-shot adaptivity: definition E2 for error in quantity; average stress in topmost layer for element shown shaded gray in Fig. 6;

the final meshes obtained for various choices of quantities of interest, boundary conditions and material orientations in each lamina

(see Table 8 for the details). Meshes 1, 2 and 3 correspond to p ¼ 2; the corresponding final meshes for p ¼ 3 are given by meshes 4, 5

and 6 respectively.
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global–local approach for accurate computation of

critical local quantities of interest.

(8) Generally, the boundary layer effect was not signif-

icant for the local quantity of interest, for the class

of problems studied here. The adaptive procedure

is capable of resolving these effects through proper

refinement of the desired boundaries.

(9) For higher p (i.e. p ¼ 3), the desired tolerance can

be achieved with a coarser mesh, as compared to

that for p ¼ 2.

(10) In the presence of cut-outs, refinement near the cor-

ners of the cut-out are required, especially for the

corners closer to the region of interest. However,

the level of refinement is strongly influenced by

the choice of the quantity of interest, material,

boundary conditions and approximation order.
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