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Summary 

In the present paper, a region-by region model for layered composites is presented. 
The model is compared with equivalent single layer, intermediate and layerwise models. 
It is shown that the region-by-region model is accurate as that of layerwise model and 
computationally very economic compared to layerwise model. The efficacy of this model 
is demonstrated through stress profiles for a domain with multi-material regions. 

Introduction 

Layered composites are increasingly used in Aerospace industry. Many 
dimensionally reduced models have been proposed in literature for the study of these 
structures[1], [2]. The computational cost for these models is independent of number of 
layers. A major drawback of these models is that the transverse stresses obtained using 
these models are not accurate. The equilibrium based post-processing approach is used to 
extract these stress components. This approach is quite effective in most cases. For 
domains with unsymmetry in layup, existing delamination, ply damage these models are 
ineffective. Layerwise models are often used to alleviate this issue. But this approach is 
compute intensive. 

Generally, the strong three-dimensional effects are localized[] in the vicinity of 
boundaries (boundary layer), vertices (vertex singularities), edge (edge singularities), 
parts of laminae (damage) and local interfaces (delaminations). In these cases beyond 
local neighborhood of the regions of unsmooth behavior, the solution can be effectively 
represented using any of the families of dimensionally reduced models. Hence, it will be 
desired to enrich the approximation only in the regions where the solution is unsmooth. 
This is achieved in this paper by the proposed region-by-region model. As shown in this 
paper, this approach leads to tremendous saving in computational cost and gives accurate 
representation of the state of stress everywhere in the domain. 

Plate Model Formulation 

The displacement component lu , for an element in the thl  layer, is given as  
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where xyp  and 
u
zp  are the in-plane and transverse approximation order (for 

component 
lu ) and ( )yxN j ,  and ( )zM k  are in-plane and transverse approximation 

functions, respectively. Similarly the other components 
lv  and 

lw  can be expressed. The 
layerwise model is denoted by LMpxypz

upz
vpz

w . In intermediate model some of the layers 
are lumped together while in the vicinity of the critical layer the layers are left as such. 
The Intermediate model is denoted by IMpxypz

upz
vpz

w . For equivalent single layer model 
all the layers are lumped together to form a single layer. It is to be noted that in all the 
transverse lumped layers (individual layers in case of layerwise model) the order of 
transverse approximation for a displacement component is same. 

Constrained Approximation 

In this section the concept of constrained approximation will be discussed. The ideas 
are generalization of the concept introduced in [9]. In order to fix ideas let us consider a 
one-dimensional example. Let us take on interval (0, L) with one element, as shown in 
Fig. 1 (a). Let us also assume that piecewise linear basis functions (i.e. p=1) are defined 
over this mesh. 

Let 
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Be the representation of a function over this domain. Here, M1 (z) are the linear basis 
functions defined as shown in Fig. 1(a). Let us now subdivide this element into two equal 
sub-elements, let the function v (z), given above, be represented in terms of the piecewise 
linear basis functions (as shown in Fig. 1(b)). 

As 
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Where, )(1 zM  are the piecewise linear basis functions defined over the new mesh. 

Since both equations 5 and 6 represent the same function, the coefficients 1a  can be 
expressed in terms of the coefficients ja . It is obvious that 

( ) 2321211 ;2/; aaaaaaa =+==              (4) 

Similarly, the representation of v(z) over any finer mesh can be obtained in terms of 
the representation over the coarser mesh, with the new fine mesh coefficients 



ja constrained by the values of the coefficients ia for the coarser mesh. This can be 
easily extended to any p-order approximation defined over the coarser and fine meshes. 
As shown below, the transverse representation of the finite element solution is defined 
over a group. However, the basic building block in the analysis is the individual three-

dimensional element D3τ . Hence, the approach given above will be employed to 
represent the element degrees of freedom in terms of the group degrees of freedom. 

The region-by-region model is denoted by RRMpxypz
upz

vpz
w . 

This approach is generalization of the planar constrained approximation approach of[4] 
and the h-d approach of[5], given for homogeneous materials. 

Domain with Multi-material Region 

Let us take the rectangular domain of Figure 1(e). The dimension of the plate are 
a=100 mm, b=10 mm and t=0.508 mm. The plate is clamped along the edge x= 0 and is 
subjected to a uniform transverse load of intensity q0=1N/mm2. The plate has four lamina 
with [165/-165/165-165] in the region .0,2/0 byax ≤≤≤≤  the material properties for 
each lamina are as given in[6]. In the region ,0,2/ byaxa ≤≤≤≤  the plate has a 
bottom layer of epoxy (with E11=E22=E33=4600MPa, 36.0231312 === ννν  for 

02/ ≤≤− zt . For ,0≥z  two [165/-165] lamina with material properties given in[5] are 
present (see Figure 1(d), (e)). The plate essentially mimics a L-shaped domain in two-
dimensions for this domain the exact solution will have an edge singularity along the line 
given by x=a/2, z=0. To solve this problem we will use LM3332, EQ3332 models and 
the region-by-region schemes given by: 

1. RR-U (Figure 2(c)): EQ3112 in region 1, LM3332 model in region 2 and IM3332 
model in region 3. 

Fig. 1 (a), (b) Linear constrained approximations (c), (d), (e) Beam geometry and 
meshing 



2. RR-G (Figure 2(d): EQ3112 in region 1, LM3332 model in region 2, with 
geometrically graded sublaminae near z=0 and IM3332 model in region 3. 

For the IM3332 model, the epoxy layer is taken as one layer and the top two [165/-165] 
layers are lumped into a second equivalent layer. 

Remark: The two-dimensional mesh is as shown in Figure 2(e), with geometrically 
graded elements in the vicinity of the line x=a/2. This along with RR-G scheme leads to 
needle shaped elements in the vicinity of the singular edge. Elsewhere, the reduced 
models are used. 

Displacement Analysis: 

The normalized displacement components, along a cutting line given by y=b/2, z=0, is 
plotted in Figure 2(a), (b), (c). The normalization of the displacement components is done 
as ( )( )321

3
22 ,,/),,( uuutSEwvu = . 

 
From the figure we observe that: 

1. The LM3332, EQ3332 and RR-U strategies give almost identical displacement 
profiles. 

2. The displacements have a sharp change at x=a/2. This is because the effective 
flexural rigidity reduces significantly beyond 2/ax = . The sharp gradient in the 
solution in the vicinity of x=a/2 is apparent. 

From the displacement profiles, all the models seen to be very good. However, the state 
of stress will be domainantly three-dimensional in nature in the vicinity of the singular 
edge the equivalent (or dimensionally reduced) models will not work. In order to 
demonstrate this, we study the variation of the stress components next. 

Stress Analysis: 

The through thickness variation of the stresses components is given for the point: 
),50,1.50( z . The direct transverse stress zzσ  obtained using EQ3332, LM3332 and RR-

U models are shown in Figure 3(a) while the post-processed transverse stresses are 
shown in Figure 3(b). 

Fig. 2 u, v and w  displacement variation 



 
From the figures we observe that: 

1. The RR-U strategy gives stress values that are very close to those obtained by the 
LM3332 model. 

2. The stress component, obtained by the EQ3332 model is quantitatively and 
qualitatively different from those obtained by the LM3332 model 

3. The directly computed transverse stress is far from zero (desired value) at the top 
and bottom of the laminate. With post-processing the violation reduces 
significantly. However, the EQ3332 model is still different from the LM3332 
model. 

Here, the LM3332 model was our benchmark since the EQ3332 model cannot take care 
of unsmooth ness in the z-direction; it gave significantly different results, as compared to 
the LM3332 model. The RR-U scheme was very accurate. 

The LM3332 model gives transverse representation layer by layer. In order to resolve the 
unsmoothness in the solution better, graded sublaminae were used in the RR-G model in 
the vicinity of the singular edge. The RR-G strategy is compared with the RR-U strategy 
in Figures 3(c). 

From the figure we observe that: 

1. Some changes in the stress profiles are observed when the RR-G model is used. 

2. For RR-G strategy, a reduction in the jumps in the direct transverse stresses is 
observed at interlaminar interfaces. 

3. The post-processed transverse stress is obtained by both the RR-G and RR-U 
strategies are close. 

The number of unknowns for LM3332, EQ3332, RR-U and RR-G models are 47915, 
15059, 26899 and 33411, respectively. Thus, the layerwise model is compute intensive 
and region-by-region model is quite cheaper as compared to layerwise model. 

Fig. 3 Variation of zzσ  (a) Direct stress (b) equilibrium Stress (c) Equilibrium 
stresses with and without graded mesh 



The example clearly demonstrates the ineffectiveness of the EQ models. It further 
demonstrates the effectiveness of the RR-U and RR-G strategies. Here the singular 
behaviors may be weak and hence the difference between the RR-G and RR-U strategies 
is small. However, coupled with suitable a posteriori error estimators (for modeling and 
discritization error), the RR-G strategy will be effective in resolving any of the three-
dimensional singular behavior. 

Conclusion 

1. The layerwise model is very accurate but compute intensive. 

2. The concept of region-by-region model is implemented successfully. The concept 
allows for enriched approximation along with sublayer concept in the z-direction. 

3. In the case of material dissimilarity, singularity the region-by-region model can 
effectively capture these three-dimensional effects. 

4. The region-by-region model is as accurate as layerwise model and computational 
cheaper than the layerwise model. 
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