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ABSTRACT In the present study a family of plate models available for the analysis of laminated 
structures is compared for the point-wise data like transverse deflection and local state of stress. Here, the 
plate models compared are Higher-order-Shear-Deformable (HSDT) model, Hierarchic model and 
Layerwise model. It is seen that all the models predict the deflections accurately. The local state of stress is 
computed using direct finite element data and equilibrium approach of post processing as well. It is seen for 
HSDT and hierarchic models that the state of stress computed using direct finite element data is 
significantly different from exact one, whereas for the layerwise model it is accurately predicted. With 
equilibrium approach of post processing the local state of stress is accurately predicted by all the models. 
Further, the effect on first-ply failure load using Tsai-Wu failure criterion by these approaches for the 
extraction of stresses is studies. Further, the effect of discretisation error control by one shot adaptive 
approach developed by authors have been studied for the first-ply failure loads. It is seen that the control of 
discretisation error together with equilibrium approach of post processing leads to significant reduction in 
failure loads. 
 
NOTATION 
 
x, y, z              Global coordinates 
u(x,y,z)          General displacement field 
pxy                  In-plane approximation order 
pz                   Transverse approximation order 
a,b                 Plate dimensions 
t                     Thickness of laminate 
S                    Aspect ratio 
q0                   Intensity of transverse loading 
 
INTRODUCTION 
 
Thin structures made of composite laminates are increasingly used in the manufacture of 
structural components. The enhanced strength to weight ratio makes composites 
especially attractive for aerospace applications. There is always demand to maximize the 
payload. All the problems posed in this context are constrained approximation problems 
with constraints on maximum transverse deflection, buckling load, failure load, natural 
frequency etc. It is imperative to estimate the constraint quantities accurately for an 
acceptable optimal design. 

Onset of laminate failure is an important aspect for a designer. Onset of failure in 
composite laminated plates requires the local stress state to be known in the structure, 
particularly near structural details; at interlamina interface and in the individual lamina. 
Accurate prediction of the local stress state becomes important for a reliable estimate of 
the failure load, which may be crucial for a safe design of the component. 

Several plate theories have been proposed in the literature (see Reddy ,1984-
Ahmed and Basu 1994). The goal is generally to give a higher order representation of the 



transverse shear terms, as in (Reddy, 1984) or to design families of plate theories with 
guaranteed convergence to the three-dimensional solutions in some norm (see Szabó et 
al. 1988-Actis et al. 1999). However, not much can be said about the accuracy of the 
local stress state and displacements. In the third type of plate models the individual 
lamina have continuous through thickness representation of displacements (see Ahmed 
and Basu, 1994). The goal of this study is to determine the quality of the local state of 
stress, obtained using various families of plate models commonly used in engineering 
practice. A detailed comparison will be done with respect to the exact three-dimensional 
elasticity solutions given in [Pagano and Hatfield, 1971-Pagano, 1970]. for both 
symmetric and anti-symmetric stacking of the laminae. The values of the in-plane 
stresses obtained directly from the finite element computations will be compared to the 
three-dimensional elasticity solution. The effect of model order and in-plane 
approximation order, on the accuracy of these stresses will be demonstrated. For the 
transverse stress components, the values obtained from the finite element solution 
directly, and those obtained using the equilibrium approach of post-processing, will be 
compared to the exact ones. Further, the study aims at clearly demonstrating the need for 
proper mesh design in the computation of critical failure loads. Another important goal of 
this study is to obtain reliable values of the first-ply failure load, using the available 
models, and compare them with those given in (Reddy and Reddy, 1992). It will be 
demonstrated that depending on the applied boundary conditions, stacking sequence and 
ply orientation, the reliable values of the first-ply failure load can be significantly lower 
than those obtained using the commonly used meshes and polynomial approximations.  
 
PLATE MODELS 
 
The system of partial differential equations of three dimensional elasticity is generally 
intractable analytically, especially for a layered medium. The development of classical 
theories was motivated to alleviate these problems by reducing the dimension for 
analysis. For example, in case of plates and shells reduction from three to two dimension 
reduces the computational cost and enables the handling of a large class of problems. 
Traditionally, for the plate and shell like thin structures, several plate theories have been 
proposed. These can be broadly classified as: 
 

(1) Shear deformable theories (HSDT); 
(2) Hierarchic plate theories and 
(3) Layerwise theories 

 
Shear Deformable Theory 
 
Here, one such theory due to (Reddy, 1984) is taken as representative theory from this 
group. It is a third order shear deformable theory. And imposes the condition of parabolic 
distribution of transverse shear strains through thickness of of the plate to satisfy the zero 
transverse shear stress on the top and bottom face of the plate. 
 
Hierarchic Plate Theory 
 
In these, the displacement components have a zig-zag or hierarchic representation 
through the thickness. The hierarchic plate models are a sequence of mathematical 



models, the exact solutions of which constitute a converging sequence of functions in the 
norm or norms appropriate for the formulation and objectives of analysis. The 
construction of hierarchic models for homogeneous isotropic plates and shells was given 
by Szabó and Sharmann, 1988 and later for laminated plates by Babuška et al., 1992 and 
Actis et al., 1999. The solutions of the lower order models are embedded in the highest 
order model and these models can be adapted according to the requirement. 

In these models the displacement field is given as product of functions that 
depend upon the variables associated with the plate, shell middle surface, and functions 
of the transverse variable. The transverse functions are derived on the basis of the degree 
to which the equilibrium equations of three-dimensional elasticity are satisfied. 
 
Layerwise Theory 
 
In these theories, the individual lamina has continuous through thickness representation 
of displacements. In the present study, the layer-by layer model proposed by Ahmed and 
Basu, 1994 is adapted. In this model, all the displacement components are represented as 
product of in-plane functions of same order and out-of-plane approximating functions of 
different order for ( )),vu  and w . 
 
MATHEMATICAL FORMULATION OF PLATE MODELS 
 
The generic representation of the displacement field for the plate models is given as: 
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and 

( ){ } ( ) ( ) ( ) ( ) ( ){ }TyxUyxUyxUyxUyxUyxU ,,,,,, 84321 L=            (3) 
 

Note that ( ) ( ) ( )LyxUyxUyxU ,,,,, 631 , ……are the in-plane components of 
displacement terms ),,( zyxu . Similarly, ( ) ( ) ( )LyxUyxUyxU ,,,,, 742  are the in-plane 
components of displacement terms ),,( zyxv . The in-plane components of transverse 
displacement ),,( zyxw are given by ( ) ( )LyxUyxU ,,, 85 .The transverse functions are 
given in terms of the normalized transverse coordinate ztz )/2(ˆ =  (where t  is the 
thickness of the laminate). 
 
For the higher order shear deformable model the functions ( )ẑφ  are given as: 



 
( ) ( ) ( ) ,1521 === zzz φφφ  ( ) ( ) ,43 zzz == φφ  
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Remark: The in-plane displacement components have cubic representation and transverse 
component is constant in laminate thickness. The quadratic term of in-plane displacement 
components drop out when the zero shear condition on the top and bottom face of the 
plate is enforced. 
 
For the hierarchic family of the plate models the transverse functions ( )ẑφ  are given as: 

{ } { } { };

)ˆ()ˆ();ˆ()ˆ();ˆ()ˆ(

)()ˆ()(;)()ˆ()ˆ(;)()ˆ()ˆ(

;ˆ)ˆ()ˆ(;)ˆ()ˆ()ˆ(

z
4
t

zz
4
t

zz
4
t

z

0-z
2
t

z0-z
2
t

z0-z
2
t

z
2
t

zzz1zzz

2

2

113

2

103

2

9

118227226

43521

ρφψφφφ

ρρφψψφϕϕφ

φφφφφ

===

===

=====

 

 
where 
 

∫∫∫ −−−
===

zzz
zd

Q
zzd

QQQ
QQ

zzd
QQQ

QQ
z

ˆ

1 13
1

ˆ

1 2
455544

4555
2

ˆ

1 2
455544

4544
2 ˆ1)ˆ(;ˆ

-
-

)ˆ(;ˆ
-

-
)ˆ( ρψϕ  

 
Where Qij are the coefficients of the global constitutive relation, in the global xyz -
coordinate system. For other transverse functions see Actis et al., 1999. 
 

The present layerwise plate model is an improvement over the model given In 
Ahmed and Basu, 1994, as the original layerwise model had same order transverse 
representation for all three displacement components, whereas the present layerwise 
model can have different approximation in transverse direction for individual 
displacement components. The different approximation for displacement components is 
used as suggested by Schwab, 1996, for a single lamina, to take into account the bending 
and membrane actions. The displacement component lu , for a prismatic element (i.e. 
triangular in-plane projection) in the thl  layer, is given as 
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where xyp  and u

zp  are the in-plane and transverse approximation order (for component 
lu ) and ( )yxN j ,  and ( )yxM k ,  are in-plane and transverse approximation functions, 

respectively. Similarly the other components lv  and lw  can be expressed. The transverse 
approximation orders for u  and v  displacement components will be the same, while that 
for the component w  can be different. Hierarchic basis functions will be used for in-
plane and transverse representations of the solution components. The transverse 



approximation functions are shown in fig. 1. In this study, 2=xyp  or 3; u
zp , 1=v

zp , 2, 3; 

,0=w
zp  1, 2, 3 will be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FINITE ELEMENT FORMULATION 
 
For a given lth lamina, the constitutive relationship in principal material directions is 
given as: 
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and 3 denotes the three principal material directions. The constitutive relationship in 
global xyz coordinates can be obtained by usual transformations. 
 
The potential energy, Π, for the laminate is given by 
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Where V is the volume enclosed by the plate domain, R+ and R- are the top and bottom 
faces of plate and q(x,y) is the transverse applied load. The solution to this problem uex is 
the minimizer of the potential energy Π. 
 
 

Fig. 1 Transverse approximation functions for 
single lamina in layerwise model 



 
 
ERROR ESTIMATOR FOR LOCAL QUANTITY OF INTEREST 
 
In the analysis of laminates for first-ply failure the accurate computation of state of stress 
at a point is essential. When the finite element analysis is employed, the issue of control 
of modeling error (error due to model employed in the analysis of laminate, as compared 
to three dimensional elasticity) and discretization error becomes important. Adaptive 
methods for the control of discretization error are available in literature (see Verfürth, 
1996). These are based on the control of energy norm of the error, ( )eue 2|||| =Ω  (where 

∪(e) is the strain energy norm of the error). This does not guarantee that the pointwise 
quantity of interest is also accurate. Various smoothening based a-posteriori error 
estimation techniques for laminated composites have been proposed by the authors for 
the local quantity of interest (see Mohite and Upadhyay, 2002). Further, estimation and 
control of the error in the quantity of interest and “one shot” adaptive approach for the 
control of discretization error was proposed in (Mohite and Upadhyay, 2003). Further, 
this approach is used for accurate computation of critical local quantities in (Mohite and 
Upadhyay, 2004). In the present study the issue of adaptive control of modeling error will 
not be addressed. The procedure given in (Mohite and Upadhyay, 2003) is used here. The 
quantity of interest is the stress component, which contributes maximum to the Tsai-Wu 
first ply failure index (Tsai and Wu, 1971). 
 
TSAI-WU FAILURE CRITERION 
 
It is a complete polynomial criterion and is an extension of the criterion used for 
anisotropic materials (see Tsai and Wu, 1971). 
 
The Tsai-Wu criterion is given by 
 

1≥+= jiijiiTW FFFI σσσ                (6) 
 
where iji FF ,  are the strength tensor terms and iσ  are the stress components. 
 
NUMERICAL RESULTS 
 
One of the major goals of this paper is to do a critical analysis of various families of plate 
models, with respect to the quality of the point-wise stresses obtained using the models. 
The effect of in-plane approximation order, model order and type will also be 
investigated here. All the models are subjected to rigorous numerical studies to compare 
the transverse deflection and stress profiles for numerous ply orientations, stacking 
sequences and boundary conditions under transverse loadings. In the present study, three 
types of transverse loadings are considered, namely, uniform pressure, sinusoidal and 
cylindrical bending. 
 



The numerical results are arranged in two sections. In the first section, the effect of the 
plate models on the accuracy of point-wise data, i.e. transverse deflection and all the 
stress components at a point, is addressed. The stress components are either computed 
directly using the constitutive equations, or the equilibrium equations are used to obtain 
the transverse normal and shear stresses. 
 
In the second section, the effect of the analysis models on the accuracy of first-ply failure 
load is addressed. 
 
Effect of Model on Accuracy of Point-wise Data 
 
Comparison of Transverse Deflections 
 
The goal of this numerical experiment is to compare the value of transverse displacement 
components obtained using various models, and in-plane discretization, with the exact 
three-dimensional elasticity results reported in (Pagano and Hatfield, 1972), for cross-ply 
laminate sequence with material properties given in table 1. The plate has dimension a  
along x -axis and b  along y -axis, and is subjected to sinusoidal loading of the form 
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All edges of the plate are simply supported (see table 2 for all BC’s used). The transverse 
deflection at ⎟

⎠
⎞

⎜
⎝
⎛ 0,

2
,

2
ba  is reported in tables 3 and 4. Note that in all the computations the 

layerwise model uses (3,3,2) model (unless specified), that is, transverse approximation 
for u  and v  is cubic and quadratic for w . For the hierarchic family 11 field model is 
used, while for the HSDT model (3,3,0) approximation is used. 
 
Table 1 Material Properties for (Pagano, 1972-Pagano, 1970). 
 
Property E1 E2 G12 G23 υ 12=υ 23 

Value 25×106 psi 106 psi 0.5×106 psi 0.2×106 psi 0.25 
 
Table 2 Boundary conditions 
 

Boundary Condition At y=0 and y=b At x=0 and x=a 
 Soft Simple Support v=w=0 u=w=0 

Clamped u=v=w=0 u=v=w=0 
Free u, v, w≠0 u, v, w≠0 

 
In this study following case has been studied: 
 
Square plate with cross ply laminae, such that outer laminae with orientation o0  and total 
thickness of o0  laminae is equal to total thickness of o90  laminae. Also laminae with 



same orientation have equal thickness. In this study, 7 and 9 layered laminate is used. The 

transverse deflection is nondimensionalised as 
tSq

Qww 4
0

4
*

12
π

= , where 

( )[ ] ( )211223221112 1/214 ννν −+++= EEGQ . Here, 3=xyp  is used for all models. Numbers in 
parenthesis show the % error with respect to exact solution. 
 

Table 3:Non-dimensional transverse deflection ( )*w  for 7 layered cross-ply laminate. 

S Exact [12] Layer-wise HSDT Hierarchic 
2 12.342 12.341 (0.00) 10.918 (11.54) 10.358 (16.07) 
4 4.153 4.153 (0.00) 3.594 (13.46) 3.575 (13.92) 
10 1.529 1.529 (0.00) 1.417 (7.33) 1.444 (5.56) 
20 1.133 1.133 (0.00) 1.096 (3.26) 1.113 (1.76) 
50 1.021 1.021 (0.00) 1.005 (1.56) 1.017 (0.39) 
100 1.005 1.005 (0.00) 0.993 (1.19) 1.004 (0.09) 

 
From these tables we observe that: 
 

1. The layerwise model predicts the transverse deflection accurately for all the 
aspect ratios. 

2.  The HSDT and hierarchic model are far from the exact one for the aspect ratios 
upto 10=S . The error for this aspect ratios ranges from 5-16 %. 

3. For the HSDT and hierarchic model with aspect ratios 10>S  the displacement is 
close to exact. The error is 0.1-3 %.  

 

Table 4:Non-dimensional transverse deflection ( )*w  for 9 layered cross-ply laminate. 

S Exact [12] Layer-wise HSDT Hierarchic 
2 12.288 12.306 (-0.15) 10.703 (12.89) 11.632 (5.34) 
4 4.079 4.079 (0.00) 3.530 (13.46) 3.664 (10.17) 
10 1.512 1.512 (0.00) 1.406 (7.01) 1.438 (4.89) 
20 1.129 1.129 (0.00) 1.093 (3.18) 1.110 (1.68) 
50 1.021 1.020 (0.09) 1.001 (1.96) 1.017 (0.39) 
100 1.005 1.005 (0.00) 1.004 (0.09) 0.993 (1.19) 

 
Comparison of Stresses 
 
Here, various stress components for symmetric and antisymmetric laminates, under 
cylindrical bending, are compared with the exact values given in (Pagano,1972-Pagano, 
1970). 
 
Case 1: In this case [0/90/0], square laminate with all edges simple supported is 
considered. All the laminae are of equal thickness. The sinusoidal loading is of the form 
as in above subsection. The in-plane stresses are nondimensionalised as 
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stress component is shown in fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 2: In this case, [165/-165] laminate under cylindrical loading is considered. The 
loading is of the form ( ) ⎟

⎠
⎞

⎜
⎝
⎛=

a
xqyxq πsin, 0 . The plate is infinite along y -direction. All the 

laminae are of equal thickness. The stress components are nondimensionalised as 

Fig. 2 [0/90/0] laminate; all edges simply supported, in-plane stresses. 

Fig. 3 [0/90/0] laminate; all edges simply supported, transverse stresses. 
Equilibrium stressesDirect stresses
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stress components are shown in fig. 4 and transverse stress components are shown in fig. 
5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 [165/-165] laminate under cylindrical bending, in-plane stresses. 

Direct stresses

Equilibrium stresses
Fig. 5 [165/-165] laminate under cylindrical bending, transverse stresses. 



Case 3: The problem description is same as previous sub-subsection. The stress 
components are nondimensionalised as case 1 above. The point-wise stress values are 
given for layerwise model in tables 5 and 6. In these tables the first row gives the value at 

0=z  while in the second maximum values and in the third row their location quoted in 
parenthesis is reported for the components xzτ  and yzτ . 
 
From the results it is observed that: 
 

1. The in-plane stress components are accurately predicted by all higher order 
models.  

2. The transverse shear stress components computed directly from finite element 
solution is accurate for the layerwise model whereas, those obtained by HSDT 
and hierarchic models are significantly different both qualitatively and 
quantitatively. 

3. Using the equilibrium approach of post-processing leads to more accurate 
transverse stress components for all the models.  

The layerwise model predicts accurately the point-wise values of the stress components 
for all the values of S . 
 
Effect of Models on Accuracy of Predicted Failure Load 
 
The laminates considered are [0/90]S and [-45/45/-45/45]. The plate is either clamped on 
all edges or simple supported. The top face of the plate is subjected to uniform transverse 
load ( ) 0, qyxq = . The plate dimensions are )9(9.228 inmma =  and )5(127 inmmb = . The 
material properties are given in table 7. The first-ply failure load is nondimensionalised 
as 4

22

0 S
E
q

FLD = . The results obtained from the present analysis are compared with those 

reported in (Reddy and Reddy, 1992. 
 
Table 5:Comparison of non-dimensional stresses for 7 layered cross-ply laminate. 
 

S )
2
1,

2
,

2
( ±

aa
xxσ  )

8
3,

2
,

2
( ±

aa
yyσ )0,

2
,0( a

xzτ  )0,0,
2

(a
yzτ  )

2
1,0,0( ±xyτ  

 Exact Layer Exact Layer Exact Layer Exact Layer Exact Layer 

2 
1.284 1.287 1.039 1.040 0.178 0.177 0.238 0.238 -0.0775 -0.0776 

-0.880 -0.882 -0.838 -0.839 0.229 0.229 0.239 0.240 0.0579 0.0580 (0.16) (0.16) (0.02) (0.02) 

4 
0.679 0.678 0.623 0.623 0.219 0.219 

0.236 0.237 
-0.0356 -0.0357 

-0.645 -0.646 -0.610 -0.610 0.223 0.223 0.0347 0.0347 (0.12) (0.12) 

10 
0.548 0.548 0.457 0.457 0.255 0.255 

0.219 0.220 
-0.0237 -0.0237 

-0.548 -0.549 -0.458 -0.458 0.255 0.255 0.0238 0.0239 (-0.02) (-0.02) 

20 0.539 0.540 0.419 0.420 0.267 0.267 0.210 0.214 -0.0219 -0.0219 
-0.539 -0.541 -0.420 -0.420 0.0219 0.0220 

50 0.539 0.541 0.407 0.408 0.271 0.277 0.206 0.0225 -0.0214 -0.0215 
-0.539 -0.541 -0.407 -0.408 0.0214 0.0215 

100 0.539 0.545 0.405 0.409 0.272 0.291 0.205 0.262 -0.0213 -0.0216 
-0.539 -0.545 -0.405 -0.409 0.0213 0.0216 



 
Table 6:Comparison of non-dimensional stresses for 9 layered cross-ply laminate. 
 

S )
2
1,

2
,

2
( ±

aa
xxσ  )

8
3,

2
,

2
( ±

aa
yyσ  )0,

2
,0( a

xzτ  )0,0,
2

(a
yzτ  )

2
1,0,0( ±xyτ  

 Exact Layer Exact Layer Exact Layer Exact Layer Exact Layer 

2 
1.260 1.263 1.051 1.052 0.204 0.204 0.194 0.194 -0.0722 -0.0723 

-0.866 -0.868 -0.824 -0.825 0.224 0.224 0.211 0.229 0.0534 0.0535 (0.23) (0.235) (-0.1) (0.1) 

4 
0.684 0.685 0.628 0.628 0.223 0.223 0.223 0.223 -0.0337 -0.0338 

-0.649 -0.650 -0.612 -0.612 0.223 0.223 0.225 0.226 0.0328 0.0329 (0.01) (0.01) (-0.06) (±0.08) 

10 
0.551 0.552 0.477 0.477 

0.247 0.247 
0.226 0.226 -0.0233 -0.0234 

-0.551 -0.552 -0.477 -0.477 0.226 0.227 0.0235 0.0235 (-0.01) (±0.05) 

20 
0.541 0.542 0.444 0.444 

0.255 0.255 
0.221 0.223 -0.0218 -0.0219 

-0.541 -0.542 -0.444 -0.444 0.224 0.0218 0.0219 (±0.05) 

50 
0.539 0.542 0.433 0.435 

0.258 0.262 
0.219 0.232 -0.0214 -0.0215 

-0.539 -0.542 -0.433 -0.433 0.237 0.0214 0.0215 (±0.05) 

100 
0.539 0.546 0.431 0.436 

0.256 
0.266 0.219 0.258 -0.0213 -0.0216 

-0.539 -0.546 -0.431 -0.436 0.273 0.275 0.0213 0.0216 (±0.05) (0.05) 
 
Table 7: Material properties for T300/5208 Graphite/Epoxy (Pre-preg) (Reddy and 
Reddy, 1992). 
 
Property Value Property Value

11E  132.5 GPa TX  1515 MPa
3322 EE =  10.8 GPa CX  1697 MPa
1312 GG =  5.7 GPa CTCT ZZYY === 43.8 MPa

23G  3.4 GPa R  67.6 MPa
1312 νν =  0.24 TS = 86.9 MPa

23ν  0.49 Ply thickness, it  0.127 mm
 
The computed failure load depends on the accuracy of the lamina level stress. In general, 
there is no a-priori information about the local stress. Hence, an adaptive approach with 
the capability to estimate error in the local stresses and refine mesh accordingly to bring 
the error down to acceptable tolerance, is devised. For the fixed model, the focussed 
adaptive approach (as discussed in earlier section) is employed to recompute the failure 
load. Here, the stress component contributing maximum to the Tsai-Wu first-ply failure 
criterion is used as the quantity of interest. In tables 8-15 the first-ply failure loads are 
given. In these tables, 
 

1. The superscript a  shows all the values of failure loads and corresponding failure 
index obtained using mesh shown in fig.6a. 

2. The superscript b  shows the value of the failure index obtained with the same 
load as in a  and the adapted mesh. (e.g. see fig.6b). 



3. The superscript c  shows the first-ply failure load for the adapted mesh. The initial 
mesh and final adapted mesh for HSDT and hierarchic models for a representative 
problem are shown in fig. 6b,c,d. 

 
Note that the first-ply failure load for layerwise model is computed using only the initial 
mesh. 
In the present study, the stress components obtained directly from the finite element 
computation, as well as the transverse components obtained from the equilibrium 
approach, have been used in computing the failure load. 
 
The results are given in tables 8-15. When direct stresses are used, we observe that: 
 

1. For the initial mesh with the direct stresses computed from finite element analysis 
(shown with superscript a ) the failure loads computed are very close to those 
obtained by [14] for all models. 

2. The locations predicted by all the models are either close to one obtained by [14] 
or are corresponding symmetric points. 

3. The failure loads obtained by HSDT and hierarchic models are close. 
4. For the same mesh the failure loads obtained by layerwise model is higher, in 

general, than the values obtained by HSDT and hierarchic models. 
5. When the discretization error is controlled (using focussed adaptivity) for HSDT 

and hierarchic models, with the same initial load and adapted mesh the failure 
index goes above 1 (rows with superscript b ). The increase in the values ranges 
between 1% to 98%. 

6. With the adapted mesh, the failure loads reduce drastically compared to that 
obtained without control over discretization error (rows with superscript c . The 
error in the failure load can be close to 20%. 

7. The failure locations for the HSDT and hierarchic models are in the same region 
before and after the use of discretization error control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Adapted meshes for [-45/45/-45/45] 

(a) Initial Mesh (b) HSDT

(c) 8-field (d) 11-field



 
 
Table 8: First-ply failure loads; all edges clamped, [0/90]S laminate under uniform 
transverse loading, (direct stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 19050.9 ≈5.00 ≈65.00 1 bottom -  
HSDTa 20265.4 112.04 0.67 1 bottom 1.00 yyσ

HSDTb 20265.4 113.85 0.16 1 bottom 1.82  
HSDTc 15032.5 113.85 0.16 1 bottom 1.00  
5-fielda 20277.8 112.04 0.66 1 bottom 1.00 yyσ

5-fieldb 20277.8 113.85 0.16 1 bottom 1.82  
5-fieldc 15047.6 113.85 0.16 1 bottom 1.00  
8-fielda 20269.1 112.04 0.66 1 bottom 1.00 yyσ

8-fieldb 20269.1 113.85 0.16 1 bottom 1.82  
8-fieldc 15034.5 113.85 0.16 1 bottom 1.00  
11-fielda 19533.4 112.04 0.66 4 top 1.00 yyσ

11-filedb 19533.4 112.04 0.66 4 top 1.98  
11-fieldc 14539.0 112.04 0.66 4 top 1.00  
Layer 19791.7 107.52 0.56 4 top 1.00 yyσ

 
 
Table 9: First-ply failure loads; all edges clamped, [0/90]S laminate under uniform 
transverse loading, (equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 19050.9 ≈5.00 ≈65.00 1 top -  
HSDTa 17172.8 107.51 0.56 4 top 1.00 yyσ

HSDTb 17172.8 112.71 0.14 4 top 1.85  
HSDTc 12612.9 112.71 0.14 4 top 1.00  
5-fielda 17180.3 107.51 0.56 4 top 1.00 yyσ

5-fieldb 17180.3 112.71 0.14 4 top 1.85  
5-fieldc 12612.7 112.71 0.14 4 top 1.00  
8-fielda 17175.3 107.51 0.56 4 top 1.00 yyσ

8-fieldb 17175.3 112.71 0.14 4 top 1.85  
8-fieldc 12612.0 112.71 0.14 4 top 1.00  
11-fielda 16531.3 107.51 0.56 4 top 1.00 yyσ

11-filedb 16531.3 112.71 0.14 4 top 1.80  
11-fieldc 12322.5 112.71 0.14 4 top 1.00  
Layer 17123.6 107.51 0.56 4 top 1.00 yyσ

 
 



 
 
Table 10: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under 
uniform transverse loading, (direct stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 39354.8 ≈115.00 ≈125.00 1 bottom -  
HSDTa 39036.9 112.04 0.66 1 bottom 1.00 yyσ

HSDTb 39036.9 119.52 0.33 1 bottom 1.65  
HSDTc 30258.2 119.52 0.33 1 bottom 1.00  
5-fielda 39077.6 112.04 0.66 1 bottom 1.00 yyσ

5-fieldb 39077.6 119.52 0.33 1 bottom 1.65  
5-fieldc 30281.4 119.52 0.33 1 bottom 1.00  
8-fielda 38990.7 112.04 0.66 1 bottom 1.00 yyσ

8-fieldb 38990.7 119.52 0.33 1 bottom 1.65  
8-fieldc 30224.8 119.52 0.33 1 bottom 1.00  
11-fielda 39436.3 121.38 126.43 1 bottom 1.00 yyσ

11-filedb 39436.3 116.81 126.85 1 bottom 1.71  
11-fieldc 30009.2 116.81 126.85 1 bottom 1.00  
Layer 39581.4 107.52 0.56 1 bottom 1.00 yyσ

 
 
Table 11: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under 
uniform transverse loading, (equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 39354.8 ≈115.00 ≈125.00 1 bottom -  
HSDTa 31463.7 107.51 0.56 4 top 1.00 yyσ

HSDTb 31463.7 112.71 0.14 4 top 1.82  
HSDTc 23377.6 112.71 0.14 4 top 1.00  
5-fielda 31486.1 107.51 0.56 4 top 1.00 yyσ

5-fieldb 31486.1 112.71 0.14 4 top 1.82  
5-fieldc 23383.7 112.71 0.14 4 top 1.00  
8-fielda 31403.1 107.51 0.56 4 top 1.00 yyσ

8-fieldb 31403.1 112.71 0.14 4 top 1.82  
8-fieldc 23350.7 112.71 0.14 4 top 1.00  
11-fielda 31672.2 121.38 126.43 4 top 1.00 yyσ

11-filedb 31672.2 116.18 126.85 4 top 1.75  
11-fieldc 23955.1 116.18 126.85 4 top 1.00  
Layer 32549.2 107.51 0.56 1 bottom 1.00 yyσ

 
 



 
 
Table 12: First-ply failure loads; all edges simple supported, [0/90]S laminate under 
uniform transverse loading, (direct stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 11646.5 ≈5.00 ≈5.00 4 top -  
HSDTa 11951.7 115.65 43.66 4 top 1.00 yyσ

HSDTb 11951.7 115.65 63.33 4 top 1.05  
HSDTc 11681.0 115.65 63.33 4 top 1.00  
5-fielda 11957.0 115.46 46.18 4 top 1.00 yyσ

5-fieldb 11957.0 115.65 63.33 4 top 1.05  
5-fieldc 11687.6 115.65 63.33 4 top 1.00  
8-fielda 11952.3 115.65 43.66 4 top 1.00 yyσ

8-fieldb 11952.3 115.65 63.33 4 top 1.05  
8-fieldc 11681.6 115.65 63.33 4 top 1.00  
11-fielda 11956.6 115.65 43.66 4 top 1.00 yyσ

11-filedb 11956.6 115.65 63.33 4 top 1.03  
11-fieldc 11755.2 115.65 63.33 4 top 1.00  
Layer 12332.8 119.20 50.27 4 top 1.00 yyσ

 
 
Table 13: First-ply failure loads; all edges simple supported, [0/90]S laminate under 
uniform transverse loading, (equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 11646.5 ≈5.00 ≈5.00 4 top -  
HSDTa 9948.9 115.46 46.18 4 top 1.00 yyσ

HSDTb 9948.9 117.91 62.67 4 top 1.07  
HSDTc 9620.2 117.91 62.67 4 top 1.00  
5-fielda 9951.1 119.20 50.27 4 top 1.00 yyσ

5-fieldb 9951.1 117.91 62.67 4 top 1.07  
5-fieldc 9623.1 117.91 62.67 4 top 1.00  
8-fielda 9949.1 115.46 46.18 4 top 1.00 yyσ

8-fieldb 9949.1 117.91 62.67 4 top 1.07  
8-fieldc 9620.5 117.91 62.67 4 top 1.00  
11-fielda 10055.6 115.65 43.66 4 top 1.00 yyσ

11-filedb 10055.6 117.91 62.67 4 top 1.05  
11-fieldc 9786.7 117.91 62.67 4 top 1.00  
Layer 11954.4 115.65 43.66 1 bottom 1.00 yyσ

 
 



 
 
Table 14: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate 
under uniform transverse loading, (direct stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 32513.5 ≈115.00 ≈65.00 4 top -  
HSDTa 32367.0 75.09 83.33 4 top 1.00 yyσ

HSDTb 32367.0 142.46 78.71 4 top 1.03  
HSDTc 31914.2 142.46 78.71 4 top 1.00  
5-fielda 32359.6 75.09 83.33 4 top 1.00 yyσ

5-fieldb 32359.6 142.46 78.71 4 top 1.03  
5-fieldc 31924.8 142.46 78.71 4 top 1.00  
8-fielda 32463.4 71.54 50.27 4 top 1.00 yyσ

8-fieldb 32463.4 142.46 78.71 4 top 1.03  
8-fieldc 32038.2 142.46 78.71 4 top 1.00  
11-fielda 32537.5 1.20 107.16 4 top 1.00 yyσ

11-filedb 32537.5 13.00 126.86 4 top 1.29  
11-fieldc 28595.0 13.00 126.86 4 top 1.00  
Layer 32742.6 1.20 107.16 4 top 1.00 yyσ

 
 
Table 15: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate 
under uniform transverse loading, (equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 14 32513.5 ≈115.00 ≈65.00 4 top -  
HSDTa 25802.4 138.28 66.13 4 top 1.00 yyσ

HSDTb 25802.4 136.99 73.26 4 top 1.08  
HSDTc 24729.1 136.99 73.26 4 top 1.00  
5-fielda 25807.7 90.62 60.86 4 top 1.00 yyσ

5-fieldb 25807.7 91.91 53.73 4 top 1.09  
5-fieldc 24729.5 91.91 53.73 4 top 1.00  
8-fielda 25687.1 90.62 60.86 4 top 1.00 yyσ

8-fieldb 25687.1 91.91 53.73 4 top 1.08  
8-fieldc 24727.7 91.91 53.73 4 top 1.00  
11-fielda 30791.5 31.22 0.56 4 bottom 1.00 yyσ

11-filedb 30791.5 0.25 0.96 4 top 1.39  
11-fieldc 26173.7 0.25 0.96 4 top 1.00  
Layer 31078.2 1.20 107.16 4 top 1.00 yyσ

 
 



With equilibrium stresses we observe that: 
 

1. For the initial mesh, the failure loads predicted by all the models are lower than 
those obtained by (Reddy and Reddy, 1992) (shown with superscript a ) and those 
obtained by using direct stresses. 

2. The locations predicted by all the models are either close to one obtained by 
(Reddy and Reddy, 1992) or are corresponding symmetric points. The locations 
for both direct stresses and equilibrium stresses are same (or corresponding 
symmetry points). 

3. Failure loads predicted by the HSDT and hierarchic models are close while those 
predicted by layerwise are slightly higher than these. 

4. When the discretization error control is used the failure index, for the failure load 
obtained using adapted mesh, increases upto 85%. This is due to the increased 
flexibility of the numerical solution for the adapted mesh. 

5. With the adapted mesh the error in the failure load computations can be close to 
25%. 

6. The failure locations for the HSDT and hierarchic models are in the same region 
before and after the use of discretization error control. 

 
It is obvious that a suitably refined mesh, along with proper post-processed values of the 
transverse stresses, is necessary to obtain reliable values of the first-ply failure load. 
 
CONCLUSION 

1. With respect to pointwise values of transverse deflection and stress, the HSDT 
and hierarchic models are more reliable for thin plates while for thicker plates 
these models can lead to erroneous results. 

2. The layerwise model accurately captures the local state of stress for all laminated 
composite plates, for different plate thickness. 

3. The in-plane stress components computed by all the models are accurate, for 
almost all the cases. 

4. The in-plane stress components computed by direct use of finite element data for 
layerwise model are in good agreement with exact one. 

5. The transverse stress components computed by direct use of finite element data 
for HSDT and hierarchic models are significantly different both qualitatively and 
quantitatively. 

6. The equilibrium approach for computing transverse stresses is accurate for all the 
models. 

7. Computed failure load is sensitive to the mesh, order of approximation and model 
used. 

8. When the equilibrium approach for computing transverse stresses is used the 

failure load computations can show reduction upto 20%. 

9. When the discretisation error is controlled (using focused adaptivity) failure load 

computed using direct stresses can go down by more than 23%. 



10. When proper discretisation error control is used, failure load computed using 

equilibrium approach for transverse stresses the failure load can go down by 25%. 

11. From design point of view, proper mesh design is essential, as the actual failure 

load can be significantly smaller than the computed one. 

12. In general, for symmetric and antisymmetric laminates, the HSDT and hierarchic 

models are effective, when equilibrium approach is used to obtain the transverse 

stresses. 
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