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ABSTRACT 
 
Computations are often employed in the design and certification phase for aircraft components. With the 
advent of composite materials, conventional analysis tools need to be refined to accurately account for the 
complex response characteristics of components made of composite materials. For laminated composite 
plates, the first ply failure load and buckling load are taken as some of  the critical quantities of interest. For 
these quantities, it will be shown that unless the model and the finite element discretisation are properly 
chosen, the predicted critical response quantities can have significant error. Further, the effect of 
randomness in the material and loading data on the critical quantities will also be shown. It will be 
demonstrated that a random analysis is essential to obtain the dispersion in the critical response quantities, 
due to inherent dispersion in the material and loading data.  
 
INTRODUCTION 
 
Composite materials are being used increasingly in the manufacture of structural components. Due to their 
high strength to weight ratio, composite materials are replacing conventional metals in the fabrication of 
aircraft components. Components with tailored response features are now possible. For example, the whole 
wing-box structure of an aircraft can now be co-cured, eliminating the need to produce the sub-components 
separately followed by assembly of the component. In the Indian aerospace industry, all-composite vehicles 
have become very popular. The light combat aircraft and the advanced light helicopter are examples of 
such developments. During detailed trials, these vehicles have proved to have better handling qualities. 
 
Composite materials are heterogeneous media. Further, the composite structure is layered in nature, with 
several individual laminae stacked  together . These features of composite structures make the analysis of 
the response more complicated. The response characteristics depend on the fibre and matrix material, the 
curing process, ply orientation, stacking sequence, inherent lamina and laminate level flaws introduced 
during the manufacturing process. Hence, the analysis of these structures becomes very challenging. 
Specialized analysis tools have to be developed for the analysis of  composite structures. This study focuses 
on the issues of reliability of the computational tools. As examples, the static problem is discussed, with the 
goal being to accurately represent the macro-level response of thin, plate-like laminated structures. 
Linearized elasticity models will be employed throughout this study. The effect of the model and the finite 
element discretisation will be discussed. It will be shown that with proper model selection and mesh design, 
accurate computation of the desired response quantities is possible. Here, the first ply failure load and the 
buckling load have been taken as examples of desired macro-level quantities. Significant differences with 
the results reported in the literature will be demonstrated for these quantities. 
 
Most often a deterministic analysis is reported. However, the material properties and loading data are 
random in reality. Dispersion in the data can severely alter the critical response characteristics of a 
structure. In order to get a realistic picture, dispersion in the critical quantities should also be reported along 
with the mean data. A perturbation based analysis model will be discussed in this study. This model will be 
employed to report the dispersion in the first ply failure load and the buckling load for a composite 
structure. 
 
PLATE MODELS 
 
The system of partial differential equations of three dimensional elasticity is generally intractable 
analytically, especially for a layered medium. The development of classical theories was motivated to 
alleviate these problems by reducing the dimension for analysis. For example, in case of plates and shells 



reduction from three to two dimension reduces the computational cost and enables the handling of a large 
class of problems. Traditionally, for the plate and shell like thin structures, several plate theories have been 
proposed. These can be broadly classified as: 
 

(1) Shear deformable theories (HSDT); 
(2) Hierarchic plate theories and 
(3) Layerwise theories 

 
Shear Deformable Theory 
 
Here, one such theory due to Reddy [1] is taken as representative theory from this group. It is a third order 
shear deformable theory. And imposes the condition of parabolic distribution of transverse shear strains 
through thickness of the plate to satisfy the zero transverse shear stress on the top and bottom face of the 
plate. 
 
Hierarchic Plate Theory 
 
In these, the displacement components have a zig-zag or hierarchic representation through the thickness. 
The hierarchic plate models are a sequence of mathematical models, the exact solutions of which constitute 
a converging sequence of functions in the norm or norms appropriate for the formulation and objectives of 
analysis. The construction of hierarchic models for laminated plates by Babuška et al. [2] and Actis et al. 
[3]. The solutions of the lower order models are embedded in the highest order model and these models can 
be adapted according to the requirement. 

In these models the displacement field is given as product of functions that depend upon the 
variables associated with the plate, shell middle surface, and functions of the transverse variable. The 
transverse functions are derived on the basis of the degree to which the equilibrium equations of three-
dimensional elasticity are satisfied. 
 
Layerwise Theory 
 
In these theories, the individual lamina has continuous through thickness representation of displacements. 
In the present study, the layer-by layer model proposed by Ahmed and Basu [4] is adapted. In this model, 
all the displacement components are represented as product of in-plane functions of same order and out-of-
plane approximating functions of different order for ( )),vu  and w . In the layerwise model proposed in [9] 
different transverse approximation order can be taken for ( )),vu  and w . 
 
MATHEMATICAL FORMULATION OF PLATE MODELS 
 
The generic representation of the displacement field for the plate models is given as: 
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and  ( ){ } ( ) ( ) ( ) ( ) ( ){ }TyxUyxUyxUyxUyxUyxU ,,,,,, 84321 L=               (3) 
 

Note that ( ) ( ) ( )LyxUyxUyxU 631 ,,,,, , ……are the in-plane components of displacement terms 
),,( zyxu . Similarly, ( ) ( ) ( )LyxUyxUyxU 742 ,,,,,  are the in-plane components of displacement terms 
),,( zyxv . The in-plane components of transverse displacement ),,( zyxw are given by 



( ) ( )LyxUyxU 85 ,,, . The transverse functions are given in terms of the normalized transverse coordinate 
zt2z )/(ˆ =  (where t  is the thickness of the laminate). 

For the higher order shear deformable model the functions ( )ẑφ  are given as: 
( ) ( ) ( ) ,1zzz 521 =φ=φ=φ  ( ) ( ) ,zzz 43 =φ=φ  

( ) ( ) ( ) ( ) ,0zzzz 11876 =φ=φ=φ=φ  ( ) ( ) 3
109 zzz =φ=φ  

For the hierarchic family of the plate models the transverse functions ( )ẑφ  are given as: 
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Here Qij are the coefficients of the global constitutive relation, in the global xyz -coordinate system. For 
other transverse functions see Actis et al. 
 

The present layerwise plate model is an improvement over the model given In [4] as the original 
layerwise model had same order transverse representation for all three displacement components, whereas 
the present layerwise model can have different approximation in transverse direction for individual 
displacement components. The different approximation for displacement components is used as suggested 
by Schwab [5] for a single lamina, to separately account for bending and membrane actions. The 
displacement component lu , for a prismatic element (i.e. triangular in-plane projection) in the thl  layer, is 
given as 
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where xyp  and u
zp  are the in-plane and transverse approximation order (for component lu ) and ( )yxN j ,  

and ( )yxM k ,  are in-plane and transverse approximation functions, respectively. Similarly the other 

components lv  and lw  can be expressed. The transverse approximation orders for u  and v  displacement 
components will be the same, while that for the component w  can be different. In this study, 2pxy =  or 3; 

u
zp , 1pv

z = , 2, 3; ,0pw
z =  1, 2, 3 will be used. 

 
FINITE ELEMENT FORMULATION 
 
For a given lth lamina, the constitutive relationship in principal material directions is given as: 
{ } [ ]{ })()()( lll C ε=σ                 (4) 
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)( γγγεεε=ε  are the components of strain. The subscripts 1, 2 and 3 denotes 

the three principal material directions. The constitutive relationship in global xyz coordinates can be 
obtained by usual transformations. 
 
The potential energy, Π, for the laminate is given by 
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Where V is the volume enclosed by the plate domain, R+ and R- are the top and bottom faces of plate and 
q(x,y) is the transverse applied load. The solution to this problem uex is the minimizer of the potential 
energy Π. 
 



ERROR ESTIMATOR FOR LOCAL QUANTITY OF INTEREST 
 
In the analysis of laminates for first-ply failure, accurate computation of state of stress at a point is 
essential. When the finite element analysis is employed, the issue of control of modeling error (error due to 
model employed in the analysis of laminate, as compared to three dimensional elasticity) and discretization 
error becomes important. Various smoothening based a-posteriori error estimation techniques for laminated 
composites have been proposed by the authors for the local quantity of interest [6]. Further, estimation and 
control of the error in the quantity of interest and “one shot” adaptive approach for the control of 
discretization error was proposed in [7],[8]. Further, this approach is used for accurate computation of 
critical local quantities in [9]. The quantity of interest is the stress component, which contributes maximum 
to the Tsai-Wu [10] first ply failure index. Similar procedures can be used for the Hoffman and other 
failure theories. 
 
TSAI-WU FAILURE CRITERION 
 
The Tsai-Wu criterion is given by 

1FFFI jiijiiTW ≥σσ+σ=                   (6) 

where iji FF ,  are the strength tensor terms and iσ  are the stress components. 
 
NUMERICAL RESULTS 
 
One of the major goals of this paper is to do a critical analysis of various families of plate models, with 
respect to the quality of the point-wise stresses obtained using the models. The effect of in-plane 
approximation order, model order and type will also be investigated here. All the models are subjected to 
rigorous numerical studies to compare the transverse deflection and stress profiles for numerous ply 
orientations, stacking sequences and boundary conditions under transverse loadings. In the present study 
uniform pressure, sinusoidal transverse and constant in-plane loadings are considered. 
 
Effect of Model on Accuracy of Point-wise Data 
 
Comparison of Transverse Deflections 
 
The goal of this numerical experiment is to compare the value of transverse displacement components 
obtained using various models, and in-plane discretization, with the exact three-dimensional elasticity 
results reported in [11], for cross-ply laminate sequence with material properties given in table 1. The plate 
has dimension a  along x -axis and b  along y -axis, and is subjected to sinusoidal loading of the form 
( ) ( ) ( ) ( )byaxyxqyxq 0 /sin/sin,, ππ=                 (7) 

All edges of the plate are simply supported (see table 2 for all BC’s used). The transverse deflection at 
( )02b2a ,/,/  is reported in tables 3 and 4. Note that in all the computations the layerwise model uses 
(3,3,2) model (unless specified), that is, transverse approximation for u  and v  is cubic and quadratic for 
w . For the hierarchic family 11 field model is used, while for the HSDT model (3,3,0) approximation is 
used. 
 
Table 1 Material Properties for [11, 12]. 

Property E1 E2 G12 G23 υ 12=υ 23 
Value 25×106 psi 106 psi 0.5×106 psi 0.2×106 psi 0.25 

 
Table 2 Boundary conditions 

Boundary Condition At y=0 and y=b At x=0 and x=a 
 Soft Simple Support v=w=0 u=w=0 

Clamped u=v=w=0 u=v=w=0 
Free u, v, w≠0 u, v, w≠0 

 



In this study following case has been studied: 
Square plate with cross ply laminae, such that outer laminae with orientation o0  and total thickness of o0  
laminae is equal to total thickness of o90  laminae. Also laminae with same orientation have equal 
thickness. In this study, 7 layered laminate is used. Transverse deflection is nondimensionalised as 

tSq
Qww 4
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*

12
π

= , ( )[ ] ( )211223221112 1/214 ννν −+++= EEGQ . Here, 3=xyp  is used for all models. 

Numbers in parenthesis show the % error with respect to exact solution given in [11]. 

Table 3: Non-dimensional transverse deflection ( )*w  for 7 layered cross-ply laminate. 

S Exact [11] Layer-wise HSDT Hierarchic 
10 1.529 1.529 (0.00) 1.417 (7.33) 1.444 (5.56) 
50 1.021 1.021 (0.00) 1.005 (1.56) 1.017 (0.39) 
100 1.005 1.005 (0.00) 0.993 (1.19) 1.004 (0.09) 

 
From these tables we observe that: 
 

1. The layerwise model predicts the transverse deflection accurately for all the aspect ratios. 
2. For the HSDT and hierarchic model with aspect ratios 10>S  the displacement is close to exact. 

The error is 0.1-3 %.  
 
Comparison of Stresses 
 
In this case [0/90/0], square laminate with all edges simple supported is considered. All the laminae are of 
equal thickness. The sinusoidal loading is of the form as in above subsection. The in-plane stresses are 
nondimensionalised as ( ) ( ) ( ) ( )( )z00z2b2aSq1 xyxx

2
0xyxx ,,,,/,//, τσ=τσ  and the transverse stresses as 

( ) ( ) ( )( )z2b0Sq1 xz0xz ,/,/ τ=τ . The in-plane stress components are shown in fig. 1 and transverse stress 
component is shown in fig. 2. These are compared with exact ones given in [12]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 [0/90/0] laminate; SSSS b.c.  

Equilibrium stresses Direct stresses
Fig. 2 [0/90/0] laminate; SSSS, transverse stress 



Effect of Models on Accuracy of Predicted Failure Load 
 
The laminates considered are [0/90]S and [-45/45/-45/45]. The plate is clamped on all edges. The top face 
of the plate is subjected to uniform transverse load ( ) 0, qyxq = . The plate dimensions are 

)9(9.228 inmma =  and )5(127 inmmb = . The material properties are given in table 4. The first-ply 

failure load is nondimensionalised as 22
4

0 ESqFLD /= . The results obtained from the present analysis are 
compared with those reported in [13]. 
 
Table 4: Material properties for T300/5208 Graphite/Epoxy (Pre-preg) [13]. 
 
Property Value Property Value 

11E  132.5 GPa TX  1515 MPa 

3322 EE =  10.8 GPa CX  1697 MPa 

1312 GG =  5.7 GPa CTCT ZZYY ===  43.8 MPa 

23G  3.4 GPa R  67.6 MPa 

1312 νν =  0.24 TS =  86.9 MPa 

23ν  0.49 Ply thickness, it  0.127 mm 
 
The computed failure load depends on the accuracy of the lamina level stress. Hence, an adaptive approach 
with the capability to estimate error in the local stresses and refine mesh accordingly to bring the error 
down to acceptable tolerance, is required. For the fixed model, the focussed adaptive approach is employed 
to recompute the failure load. Here, the stress component contributing maximum to the Tsai-Wu first-ply 
failure criterion is used as the quantity of interest. In table 5 the first-ply failure loads are given. In these 
tables, the superscript a  shows all the values of failure loads and corresponding failure index obtained 
using uniform mesh, the superscript b  shows the value of the failure index obtained with the same load as 
in a  (see fig. 3) and the adapted mesh and the superscript c  shows the first-ply failure load for the adapted 
mesh. 
 
 
 
 
 
 
 
 
 
 
Table 5: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse 
loading, (equilibrium stresses) 2=xyp . 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Ref. 13 39354.8 ≈115.00 ≈125.00 1 bottom -  
HSDTa 31463.7 107.51 0.56 4 top 1.00 yyσ  

HSDTb 31463.7 112.71 0.14 4 top 1.82  
HSDTc 23377.6 112.71 0.14 4 top 1.00  
11-fielda 31672.2 121.38 126.43 4 top 1.00 yyσ  

11-fieldb 31672.2 116.18 126.85 4 top 1.75  
11-fieldc 23955.1 116.18 126.85 4 top 1.00  
Layer 32549.2 107.51 0.56 1 bottom 1.00 yyσ  

 
 

 
Fig. 3 Adapted mesh with 11-field hierarchic for [-45/45/-45/45] clamped laminate. 



With equilibrium stresses we observe that: 
1. For the initial mesh, the failure loads predicted by all the models are lower than those obtained by 

[13]  (shown with superscript a ) and those obtained by using direct stresses. 
2. The locations predicted by all the models are either close to one obtained by [13] or are 

corresponding symmetric points. The locations for both direct stresses and equilibrium stresses are 
same (or corresponding symmetry points). 

3. Failure loads predicted by the HSDT and hierarchic models are close while those predicted by 
layerwise are slightly higher than these. 

4. When the discretization error control is used the failure index, for the failure load obtained using 
adapted mesh, increases upto 82%. This is due to the increased flexibility of the numerical 
solution for the adapted mesh. 

5. With the adapted mesh the error in the failure load computations can be close to 25%. 
6. The failure locations for the HSDT and hierarchic models are in the same region before and after 

the use of discretization error control. 
It is obvious that a suitably refined mesh, along with proper post-processed values of the transverse 
stresses, is necessary to obtain reliable values of the first-ply failure load. 
 
Here, it can be seen that a suitably refined analysis is necessary for the standard analysis. In real life 
problems, however, even the material and the load data is not deterministic. A proper random analysis is 
required to get the true picture of the influence of the dispersion of the input data. In the following, properly 
controlled finite element computations are employed to carry out a random analysis. The effect of 
randomness on critical design data, like the first-ply failure load and the buckling load, are studied. 
 
 STOCHASTIC FINITE ELEMENT APPROACH 
 
 Consider a plate with stochastically varying material properties, subjected to random transverse 
loading. The plate is assumed to be linearly elastic with a stochastic elasticity tensor field ijklC . The goal is 
to find the statistics of failure index under transverse loading and the statistics of buckling strength in the 
case of in-plane loading. The following Green’s strain-displacement relationship is used: 
 

 }{}{}{ NLL ε+ε=ε                  (8) 
 

Here }{ Lε  is the linear strain and }{ NLε  is the geometric nonlinear strain with components:  
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The total potential energy corresponding to the linear state of the system for uncertain stiffness can be 
written as [15]: 
 1ii
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The exact solution minimizes Π  on the set of all kinematically admissible functions denoted by V, i.e. 
Vu∈  such that }:)({ 0

1 on   0uHuV Γ=Ω∈= . This yields: 
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where 10 Γ∪Γ=Γ  represents the surface of the body Ω . 0Γ  denotes the Dirichlet part and 1Γ  denotes the 
Neumann part of the boundary of the body. 
 According to the standard stochastic variational formulation in conjunction with Taylor series 
expansion, the zeroth- and first-order variational statements are written as: 
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 In the case of buckling analysis a linear elastostatic problem is first solved for the reference 
loading refq  with the given constraints for the plate. The linear solution is used for computing the initial 

stress tensor ref
ijσ and then these stresses are used to compute the geometric matrix. The zeroth- and first-

order variational statements can be written as: 
 

Zeroth-order:      0ddC NL0
ij

ref0
ij

0
cr

L0
kl

L0
ij

0
ijkl =Ωδεσλ+Ωδεε∫ ∫

Ω Ω

)()()()(  ( 3 2 1lkji ,,,,, = )                  (14) 

First-order: 0dddCC NL0
ij

ref0
ij

r
cr

NL0
ij

refr
ij

0
cr

L0
kl

Lr
ij

0
ijkl

L0
ij

r
ijkl =Ωδεσλ+Ωδεσλ+Ωδεε+ε ∫∫ ∫

ΩΩ Ω

)()(,)()(,)()(,)(, )(  

      ( 3 2 1lkji ,,,,, = ; R 2 1r ...,,,= )                       (15) 
where R  is the number of basic random variables chosen for the analysis. 
 
Statistics of first-ply failure load under transverse loading 
 
 Tsai-Wu and Hoffman failure criteria are adopted for the present analysis to predict the failure of a 
laminate based on first-ply failure analysis. 
 
 )(σf = iiFσ + jiijF σσ    ( 6  2 1ji ...,,,, = )           (16) 
 
The mean and variance of the failure index are expressed as: 
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Statistics of buckling strength 
 
The total minimum eigenvalue or load parameter takes the following form: 
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The mean and variance of the minimum eigenvalue can be expressed as: 
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Results and discussions 
 
Statistics of failure load under transverse loading 
 
The laminates considered for generating the results are made of T300/5208 graphite/epoxy material with 
properties as listed below: 

GPaE  5.13211 = ; GPaEE  8.103322 == ; GPaG  4.323 = ; GPaGG  7.51312 == ; 24.01312 ==νν ; 
49.023 =ν  



The ultimate strengths for the above material which are used to calculate the strength parameters are 
defined as: 
 MPaX T  1515= ; MPaX C  1697= ; MPaZY TT  8.43== ;  
 MPaZY CC  8.43== ; MPaR  6.67= ; MPaTS  9.86==  
In the present analysis the elastic moduli ( 11E , 22E , 12G , 23G , 12ν , 23ν ) of the material are treated as 
independent random variables. The laminated plate is subjected to a uniform distributed random load.  
 
Validation - Simply supported (SSSS) symmetric cross-ply laminated plate 
 
 A thin square laminated plate consisting of four layers ]///[ 0000 090900  of equal thickness 
with 100/ =hb  having all edges simply supported is considered for the present validation. A uniformly 
distributed load is applied on the top surface. Both Tsai-Wu and Hoffman failure criteria are used to 
compare the mean failure load and the statistics of the failure index. In order to validate the layer-wise 
model implementation, the failure loads obtained using the layerwise model are compared with that 
obtained using a closed form solution and Kirchoff-Love (KL) model. From the results given in Table 6, it 
can be observed that the mean failure load is close to that obtained using a closed-form solution. The layer-
wise model gives lower failure loads because this model is less stiffer than the KL model. Further for thin 
plates the behavior is accurately predicted by the KL model, i.e. shear effect are negligible. This is the 
reason why the layer-wise model and KL model give very close values of the failure load. 
 
Table 6: Comparison of the mean failure load for ]///[ 0000 090900  square laminate with 100/ =hb  
having SSSS boundary condition. 
 

 
Failure criteria 

Mean failure load (MPa) 
SFEM Closed form  

Tsai-Wu  0.07292 0.07306 
Hoffman  0.06246 0.06250 

 
 In order to validate the SFEM implementation the effect of randomness of the material data and 
loading, on the calculated failure load, is calculated. In Table 7 the coefficient of variation (COV) of the 
failure load is reported, with respect to change in the random input variables, for the thin symmetric cross 
ply laminate considered above. From the result it can be noted that: 

(1) The COV of failure load obtained using SFEM is close to that obtained using the closed form 
solution. 

(2) The failure load is very sensitive to change in the input data. For example, for a COV of 4% in 
input material data, the COV of failure load is ≈13%. 

(3) The Tsai-Wu and Hoffman measures give similar COV for the failure load 
This example validates the SFEM implementation of the present study. It should be noted that the two 
failure models, i.e. Tsai-Wu and Hoffman, give different values of the mean failure load (Table 6). It is also 
note worthy that effect of material defects on the failure load is significant. 
 
Table7: Comparison of COV of failure index for ]///[ 0000 090900 square laminate with 100/ =hb  
having SSSS boundary condition. 
 

 
sd/mean of all 

random 
variables 

sd/mean of failure index )(σf  

Tsai-Wu Hoffman 

SFEM Closed form SFEM Closed form 
0.00 0.0000 0.0000 0.0000 0.0000 
0.08 0.2599 0.2597 0.2343 0.2343 
0.16 0.5197 0.5195 0.4685 0.4685 
0.20 0.6497 0.6494 0.5856 0.5856 



Second order failure statistics of anti-symmetric laminated plates 
 
 The probabilistic failure of the angle-ply laminated plates with three different boundary conditions 
SSSS, SCSC and SFSF are used in this study. The plate thickness ratio 100/ =hb  has been used in this 
study. Two different ply schemes for the plate used in the study are:  
 Ply scheme 1:  [0/90]; Ply scheme 2:  [-45/45] 
The mean failure load predicted by Tsai-Wu and Hoffman criteria by keeping failure index equal to 0.8 are 
listed in Table 8 for square plate with different lay-ups and boundary conditions. These failure loads ensure 
that if a factor of safety of 1.2 were chosen for the design, the plates would still be assumed to be safe in the 
deterministic environment. 
 
Table 8: Mean failure load for square plate with different lay-ups and boundary conditions. 
 

 
Ply schemes 

 
Failure criteria 

Mean failure load for boundary conditions 
SSSS SCSC SFSF 

 
[0/90] 

Tsai-Wu 
Hoffman 

0.02469 
0.02827 

0.01869 
0.02397 

0.01113 
0.01274 

 
[-45/45] 

Tsai-Wu 
Hoffman 

0.04323 
0.05526 

0.03059 
0.04098 

0.01412 
0.01589 

 
Simultaneous Variation of All BRVs 
 
 The effects of material properties on failure index of composite laminated plates under transverse 
random loading are now presented. The variations of non-dimensionalised failure index (FI) with 
dispersion in all the basic random variables (BRV) changing simultaneously for ply schemes 1 and 2 
having SSSS and SCSC boundary conditions are presented in Figures 4 and 5 respectively. It is found that: 

(1) Angle ply is more affected by dispersion in the input variables compared to cross-ply laminate.  
(2) Boundary conditions also play an important role in the stochastic analysis.   
(3) The variation in FI is most sensitive for SCSC boundary condition. 

 

 
Figure 4 - Influence of SD/mean of all basic random inputs changing simultaneously on COV of failure 
index for different laminates with SSSS boundary condition and b/h=100. 
 

 
Figure 5 - Influence of SD/mean of all basic random inputs changing simultaneously on COV of failure 
index for different laminates with SCSC boundary condition and b/h=100. 



Statistics of buckling strength under in-plane compressive loading 
 
Validation 
 
A graphite/epoxy antisymmetric cross-ply laminated plates with 11E / 22E =40, 12G / 22E =0.6, 

23G / 22E =0.5, 12ν = 23ν =0.25 and b/h=50 are considered under uniaxial compressive loading. 
 Table 4 shows mean normalized buckling load of two-layer antisymmetric cross-ply square plate 
with b/h=5, having different boundary conditions. The effect of both pre-buckled stress and uniform stress 
assumption on the buckling load is compared with those obtained using Reddy’s plate theories [14]. Further 
the effect of equivalent layer, by assuming both material layers as an equivalent solution layer, on the 
buckling load using uniform stress assumption is also presented in the table. It is observed that 
conventional 2D plate models overpredict buckling loads compared to layer-wise plate model for the plate 
considered. Also the reference uses uniform stress assumption which is only true for specific laminates 
with specific boundary condition and is not true in general. Buckling load of a plate using pre-buckled 
stress is found to be smaller compared to analytical solution  using uniform stress assumption with 
equivalent single layer consideration. 
 
Table 4: Comparison of mean buckling load for [0/90] laminates with different supports and b/h=5 
 

 
 

Various 
Boundary 
Conditions 

Mean Buckling load )/( 3
22

2cr hEbN λ=
)

 

Present result (layer-wise plate model)  
Reddy’s result 

[14] 
(various 2D plate 

model) 

with pre-buckled 
stress 

(layer-by-layer) 

with uniform stress 
(equivalent layer) 

 
SSSS 

 
7.874 

 
8.473 

8.769 (HSDT) 
8.277 (FSDT) 
12.957 (CPT) 

 
SCSC 

 
8.945 

 
10.652 

11.490 (HSDT) 
9.757 (FSDT) 
31.280 (CPT) 

 
Variance of buckling strength 
 
 Second order statistics of buckling load is evaluated using stochastic finite element method. In the 
present analysis the elastic moduli ( 11E , 22E , 12G , 23G , 12ν , 23ν ) of the material are treated as 
independent random variables. The variations of buckling load with 10% dispersion in all the basic inputs 
for antisymmetric cross-ply and angle ply square plate with SSSS boundary conditions is presented in 
Figures 6 (a) and (b). 1σ  limit is used to study the effect of material properties on critical buckling load. It 
is observed  that the effect  of dispersion in  material  properties on  critical buckling  load is significant  for  
 

 
Figure 6: Influence of all basic random inputs changing simultaneously on critical buckling load parameter 
for different laminates with SSSS boundary condition (a) [0/90] (b) [-15/15]. 



plates with lower aspect ratios and it decreases with increase in aspect ratio of the plate.  
 
CONCLUSIONS 
 
 In this study, a systematic procedure is outlined for the reliable analysis of composite laminated 
structures. It has been shown that the discretisation error has to be controlled in order to get accurate values 
of the response quantities of interest. A-priori the right choice of the mesh, model and approximation are 
not obvious. Heuristic reasoning can be disastrous. As has been demonstrated a feedback-based analysis, 
where the error in the desired quantity of interest is controlled, is mandatory. A more fundamental issue is 
the choice of the right model, to represent the physics (at the desired scale) accurately. This is the subject of 
ongoing research initiatives.  

Most often a deterministic engineering analysis is done. This can be very far from the reality, 
especially for composite materials, where dispersion in the lamina and laminate level material properties 
can be significant. Further, the loading can never be deterministic. Hence, a meaningful analysis should 
give an indication of the dispersion in the computed response quantities, along with the mean values. Here, 
we have shown that the effect of the dispersion in the material and load data can be significant for the 
failure load, which is a local quantity. While for the buckling load, which is a global quantity, the effect of 
the dispersion is small. 
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