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Abstract

The local and global quality of various smoothening based a-posteriori error estimators is tested in this paper, for

symmetric laminated composite plates subjected to transverse loads. Smoothening based on strain recovery and dis-

placement-field recovery is studied here. Effect of ply orientation, laminate thickness, boundary conditions, mesh to-

pology, and plate model is studied for a rectangular plate. It is observed that for interior patches of elements, both the

estimators based on strain or displacement smoothening are reliable. For element patches at the boundary of the

domain, all estimators tend to be unreliable (especially for angle-ply laminates). However, the strain recovery based

estimator is clearly more robust for element patches at the boundary, as compared to displacement-recovery based error

estimators. Globally, all the estimators tested here were found to be very robust.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the advent of several new materials, and

improved manufacturing capabilities, composites are

replacing metals in the fabrication of a number of en-

gineering components. Lightweight, high-speed struc-

tures are increasingly becoming composite based. Thus,

development of appropriate analysis and design tools

for composite structures is essential. The use of finite

element methods in the analysis of laminated composite

structures is prevalent, especially for plate or shell type

structures made of unidirectional composites. Several

authors have used the finite element analysis in the op-

timal design of structures made of composites (see [1] for

details). The critical constraint quantities (e.g. maximal

stress, buckling load, natural frequency, etc.) have to be

obtained accurately, for the design to be reliable. This

requires an adaptive finite element analysis, with control

of the error in the various desired response quantities.

An a-posteriori estimate of the error in the desired re-

sponse quantity employs the standard local error esti-

mators (see [2] for details). In order to have complete

confidence in the computed solution quantities, reli-

ability of the error estimator is essential, both at the

local and global levels.

In [3] a comprehensive computational approach for

the determination of the asymptotic quality of a-poste-

riori error estimators was presented, for the Poisson

equation and the planar elasticity problem (with ortho-

tropic material). It was found that the local quality of

error estimators depends on several factors, e.g. mesh

topology, material parameters, loading data and

boundary-conditions. It was found in [3–5] that the error

estimator based on stress recovery (defined in [6]) was

reliable. It should be noted that, as compared to residual

type error estimators (see [3,4]), the smoothening type
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estimators tend to be more economical because the size

of the local problems to be solved is smaller.

In [7] it was observed that for laminated composite

plates the quality of the error estimators also depends on

the lamina material properties, ply orientation, ply

stacking sequence, the number of laminae and the lam-

inate thickness. The effect of the particular plate model

should also be analyzed. Several higher order plate

theories have been proposed in the literature (see [8–15]),

for the analysis of laminated plates and shells. Obvi-

ously, a proper analysis of these structures would re-

quire simultaneous control of modeling (with respect to

three-dimensional elasticity) and discretisation error (see

[16–24] and the references therein). Here, we do not

address the issue of a-posteriori control of modeling

error (see [15] for an example). The plate model will be

fixed in this study, and the discretisation error will be

measured with respect to the exact solution of the plate

model. In [7] a reliable strain recovery based error esti-

mator was presented, for laminated composite plates. It

was found in [7] that the performance of the strain re-

covery based estimator (defined later) is reasonably ro-

bust. In the interior of the mesh, the estimator was very

reliable, in the absence of boundary-layers and locking

influence. At the boundary, the elementwise quality de-

teriorated. Globally, the estimator studied in [7] was

found to be very reliable. In the current study, several

alternative versions of smoothening based error esti-

mators will be presented. A detailed analysis of the

quality of these error estimators will also be carried out.

2. Plate theory for laminates

Several plate theories are available in the literature.

For all the plate theories displacement field is repre-

sented in terms of known functions in the thickness

variable z (either as a power series representation, or a

piecewise polynomial representation) as given by [8,9]

and references therein. Let us define the generic dis-

placement field as:

uðx; y; zÞ ¼
uðx; y; zÞ
vðx; y; zÞ
wðx; y; zÞ

8<
:

9=
; ¼ UU ð1Þ

where

UT ¼ u0; v0; u1; v1;w0; u2; v2;w1; u3; v3;w2; . . .f g ð3Þ

where all the components of U are functions of x and y.

Different plate models can be obtained by using

specific representations of UiðzÞ. The plate model em-
ployed in the numerical study is given by (see [8])

U1ðzÞ ¼ U2ðzÞ ¼ U5ðzÞ ¼ 1; U3ðzÞ ¼ U4ðzÞ ¼ z;

U6ðzÞ ¼ U7ðzÞ ¼ z3; UiðzÞ ¼ 0 for i > 7 ð4Þ

Depending on the number of independent functions

(represented as NMODEL) employed in the representation
of Uðx; y; zÞ, we get various higher order models. For
example, in the representation used for the numerical

study NMODEL ¼ 7.
The laminate is made by stacking laminae with given

material properties, orientation and ply thickness. For a

given lamina ‘l’, the generalised Hooke’s law (see [10,11])

gives:

rðlÞðuÞ ¼ �QQðlÞeðlÞðuÞ ð5Þ

where,

rlðuÞ ¼ frl
xxðuÞ; rl

yyðuÞ; rl
zzðuÞ; rl

zyðuÞ; rl
zxðuÞ; rl

xyðuÞg
T
is the

engineering stress vector for the lth lamina; eðlÞðuÞ ¼
feðlÞxx ðuÞ; eðlÞyy ðuÞ; eðlÞzz ðuÞ; cðlÞyz ðuÞ; cðlÞxz ðuÞ; cðlÞxy ðuÞg

T
is the engi-

neering strain vector for the lth lamina; �QQðlÞ is the ma-

terial matrix for the lth lamina (transformed to the x–y

coordinate system). Using the definition of eðlÞ in terms
of the displacement field uðx; y; zÞ, the strain energy U,

and the potential V due to the transverse loads acting

on the top and bottom faces of the plate are:

UðuÞ ¼ 1
2

Z
X

rðuÞeðuÞdV

¼ 1
2

Z
X2D

XNLAY
i¼1

Z zi

zi�1

ðrðlÞðuÞeðlÞðuÞdzÞ
 !

dA ð6Þ

VðuÞ ¼
Z
Rþ

qþw0 dAþ
Z
R�

q�w0 dA ð7Þ

Here X is the plate domain of interest (of rectangu-

lar cross section X2D ¼ fðx; yÞj06 x6 a; 06 y6 bg and
depth d), as shown in Fig. 1a; NLAY is the number of
laminae; zi are the z coordinates of interlaminar inter-

faces (as shown in Fig. 1b); Rþ and R� are the top and

bottom faces of the plate, respectively; qþðx; yÞ and
q�ðx; yÞ are the transverse loads on Rþ and R�, respec-

tively.

Thus, the total potential energy is given as:

PðuÞ ¼ UðuÞ �VðuÞ ð8Þ

U ¼
U1ðzÞ 0 U3ðzÞ 0 0 U6ðzÞ 0 0 U9ðzÞ 0 	 	 	
0 U2ðzÞ 0 U4ðzÞ 0 0 U7ðzÞ 0 0 U10ðzÞ 	 	 	
0 0 0 0 U5ðzÞ 0 0 U8ðzÞ 0 0 	 	 	

2
4

3
5 ð2Þ
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Minimizing PðuÞ with respect to u, we get

Bðu; duÞ ¼
Z

X2D

XNLAY
i¼1

Z zi

zi�1

ðrðlÞðuÞeðlÞðduÞdzÞdA

¼ FðduÞ ¼
Z
Rþ

qþdw0 dAþ
Z
R�

q�dw0 dA ð9Þ

The variational formulation (9) is often written in its

equivalent form in terms of stress resultants at the cen-

tral surface X2D of the plate. The above formulation

leads to NMODEL number of coupled equation in terms of
the independent functions used in the representation (1).

The finite element formulation of the above problem

follows by replacing the given functions by the ap-

proximating series representation in terms of the basis

functions. Here we will take elementwise p order ap-

proximation for all the unknown functions.

3. Definition of a-posteriori error estimator based on

strain recovery and displacement recovery

Let uFE be the finite element solution and eðuFEÞ the
corresponding strain components. The a-posteriori es-

timation of the error is based on the recovery of a

smoothened strain field e
, or displacement field u
, by

postprocessing uFE. This recovered strain or displace-

ment field is used to define the element error indicator

gs, which for the element s is given as:

g2s ¼
Z

s

XNLAY
i¼1

Z zi

zi�1

ððe

 

� eðuFEÞÞ �QQðiÞðe
 � eðuFEÞÞÞdz
!
dA

ð10Þ

where e
 is obtained either by directly recovering a strain
field, or from the recovered displacement field u
. Sev-

eral postprocessing procedures are possible (see [6,12,

13]). The postprocessing procedures employed in this

study are:

3.1. Estimator based on strain recovery (EST1)

For each element s, a polynomial strain field

e
 2 PeðsÞ is recovered, by using an energy projection of
the finite element strain, eðuFEÞ, over a one-layer neigh-
bourhood of s (given as patch Ps as shown in Fig. 2).

This can be represented as:

For element s, find e
 2 PeðsÞ which minimizes

Je
 ¼
1

2

X
�ss2Ps

XNLAY
l¼1

Z
A�ss

Z zl

zl�1

ðe
 � eðuFEÞÞQðlÞ

� ðe
 � eðuFEÞÞdzdA ð11Þ

where PeðsÞ ¼ fejexx; eyy ; cxy 2 SpðPsÞ; ezz; cxz; cyz 2 Spþ1�
ðPsÞg, with SqðPsÞ being the set of polynomials of order q

over the patch Ps.

3.2. Estimator based on displacement field recovery using

energy projection (EST2 and EST3)

For each element s a displacement field u
 ¼ UU
,

where U
 2 Ppþk
u ðsÞ, is recovered using an energy

Fig. 1. Plate domain with interlaminar interfaces and top and bottom faces.

Fig. 2. An element s with a layer of elements fsPi g
11
i¼0 sur-

rounding it, forming the patch Ps.
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projection of the finite element solution uFE over the

patch Ps. This can be represented as:

For each s, find U
 2 Ppþk
u ðsÞ which minimizes

JU
 ¼ 1
2

X
�ss2Ps

XNLAY
l¼1

Z
A�ss

Z zl

zl�1

ðeðu
Þ � eðuFEÞÞQðlÞðeðu
Þ

� eðuFEÞÞdzdAþ d
X
�ss2Ps

Z
A�ss
jU
 �UFEj2 dA

where d is a small number (d ¼ 10�8 has been used in the
study); Ppþk

u ðsÞ ¼ fUjUi 2 SpþkðPsÞ, i ¼ 1,2,. . . NMODEL};
uFE ¼ UUFE.

The above definition is employed for all elements s in
the interior of the domain for both estimators EST2 and

EST3. For EST2, the above definition is also employed

for elements at the boundary. However, at boundaries

with Dirichlet condition, one would like to impose the

applied displacement boundary conditions stringently,

while finding U
. Thus, in the case of EST3, for elements

s at the Dirichlet boundary, U
 is obtained by mini-

mising:

J1;U
 ¼ J 

U þ k

X
�ss2Ps

Z
o�ssCD

jU
 � �UUj2 ds ð12Þ

where k is a penalty parameter (k ¼ 108 was employed in
the study); �UU is the known boundary displacement, and

CD is the Dirichlet part of the boundary oX2D of the

domain X2D.

3.3. Estimator based on displacement field recovery using

L2 projection (EST4)

For each element s a polynomial displacement field
U
 2 Ppþk

u ðsÞ is recovered from the following minimi-

sation problem:

For each s, find U
 2 Ppþk
u ðsÞ which minimizes

J2;U
 ¼ 1
2

X
�ss2Ps

Z
A�ss

jU
 �UFEj2 dA ð13Þ

The estimator obtained with p þ 1 recovery will be re-
ferred to as EST4A, while the estimator obtained with

p þ 2 recovery will be referred to as EST4B.

Remark 1. This recovery is a planar recovery, using the

L2 projection of each component of UFE. This leads to

very small matrix problems at the element level, with

multiple right hand sides. Thus, this recovery is com-

putationally inexpensive.

The detailed procedures for the construction of the

various recovery based error estimators is given in the

appendix.

The error estimators proposed here have to be tested

for their reliability. Since the goal of all smoothening

based error estimators is to get superconvergent stress or

strain fields, an obvious choice for the measure of the

base error (i.e. the desired ‘‘true’’ error) is given as

e ¼ u
ðpþqÞ
FE � u

ðpÞ
FE, with u

ðkÞ
FE as the finite element solution

with elements of order k.
Given the element error indicators gs, the global

error estimator nX is given as:

nX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXNEL
s¼1

g2s

vuut ð14Þ

where NEL is the total number of elements in the mesh.
Thus, the ‘‘desired’’ error norm will be jjjejjjX ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2UðeÞ

p
, which will be used to obtain a measure of the

quality of the error estimators, i.e.

jX ¼ nX

jjjejjjX
ð15Þ

where jX is the global effectivity index (the ideal value of

jX is 1). The local quality of an estimator will be ob-

tained by finding the effectivity index for the patch x of
interest, i.e.

jx ¼ nx

jjjejjjx
ð16Þ

where nx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

s2x g2s
p

, jjjejjjx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2UxðeÞ

p
with UxðeÞ

as the strain energy of the error in the patch x.

4. Validation of the quality of a-posteriori error estima-

tors

Several factors affect the local and global quality of

a-posteriori error estimators. The major factors are:

1. effect of ply orientation, stacking sequence;

2. effect of number of laminae;

3. effect of boundary conditions and domain regularity;

4. effect of loading type;

5. effect of thickness of plate;

6. effect of plate model;

7. effect of polynomial order of the recovered field;

8. effect of mesh type.

The effect of all these factors on the local and global

quality of a-posteriori error estimators will be studied

through numerical examples. The material of interest

will be T300/5208 Graphite/Epoxy (prepreg) with the

following properties (as given in [26]):

Ell ¼ 132:5 GPa; Ett ¼ 10:8 GPa; mlt ¼ 0:24;
mtt ¼ 0:49; Glt ¼ 5:7 GPa; Gtt ¼ 3:4 GPa

For the numerical study, we will take the plate model

given by (4). Further, we will consider only the following

types of boundary conditions:

1480 P.M. Mohite, C.S. Upadhyay / Computers and Structures 80 (2002) 1477–1488



1. soft simple support (ut ¼ w ¼ 0), called SS;
2. hard simple support (un ¼ w ¼ 0), called HSS;
3. clamped (ut ¼ un ¼ w ¼ 0),

where ut and un are the in-plane tangential and normal
displacement components, respectively (as shown in

Fig. 3); w is the transverse displacement. Here, we will

assume the same boundary condition type on all bound-

ary edges.

Remark 2. Ideally, an analysis of the asymptotic quality

of error estimators is desired (see [3,4]). Here, a suffi-

ciently fine mesh (shown in Fig. 2) is employed, in order

to get close to the asymptotic quality. Note that the

preasymptotic quality (i.e. for coarse meshes) of all error

estimators can be significantly different from that re-

ported in this study. Study of the preasymptotic quality

of the error estimators is also important, in order to

assess the quality of the error prediction for the starting

(coarse) mesh in an adaptive process.

Remark 3. The presence of strong boundary-layers in

the solution can effect the quality of the overall finite

element solution (and the error estimator), unless ap-

propriate mesh refinement (see [14,25]) is done near the

boundary. Here, we have not employed mesh refine-

ments (h or p) to counter the influence of boundary-layer
on the quality of error estimators. Suitable refinements

at the boundary, will improve the observed quality of

the error estimators further.

Case 1: Quality for element patches in the interior of
the domain, X2D;interior. The local performance of the

error estimator has to be understood for the various

possible scenarios separately. We know that the

boundary layer effect in the finite element solution may

be present only in few layers of elements adjoining the

boundary. For elements removed from the boundary,

the finite element solution behaves like the local best

approximation, i.e. the local error converges at the op-

timal rate. Thus, the first check for the quality of the

error estimator should be for elements in the interior of

the domain, i.e. for element patches (various represen-

tative patches are shown in Fig. 5) in the subre-

gion X2D;interior. In Fig. 4 the element patches at the

boundary and interior are shown for the meshes used in

this study.

All the numerical results presented will be for the

four-layered laminates, unless otherwise specified, with

the ply thickness fixed to dl ¼ 0:127 mm, l ¼ 1,2,3,. . .
NLAY. In Tables 1 and 2, the extremal values of the ef-
fectivity index (jmax, and jmin respectively), for the ele-
ment patches x in the interior of the domain (see Fig. 4)
are given for various ply orientations and boundary

conditions. Effect of plate thickness is accounted for by

taking a
d ¼ 5 (thick plate), 10 (moderately thick plate),

100 (thin plate). Elements of order p ¼ 2 are taken for
thick and moderately thick plates, Note that since we are

interested in the asymptotic quality of error estimators,

for thin plates p ¼ 3 is employed in all cases (as for p ¼ 2
the error is not asymptotic in nature). The transverse

load is fixed to a uniformly distributed load of intensity

qþ ¼ 2 N/mm2 and q� ¼ 0.
From the results we observe that:

1. Estimators EST1, EST2 and EST4B are very reliable

for patches in the interior of the domain, with

0:976 jx 6 1:07.
2. The asymptotic quality of error estimators is rela-

tively insensitive to the ply orientation, and plate

thickness.

3. The effect of the boundary conditions is not seen

in the interior patches. Hence, the boundary-layer

in the numerical solution is localised to only one

patch of elements, adjacent to the boundary i.e. ele-

ments in X2D;outer.

4. The estimator EST4A is not reliable (0:986
jx 6 2:29). Hence, L2 projection with (p þ 1) order
polynomials is not advisable. EST4B (jx � 1) is very
reliable in the interior. Hence, L2 projection with
(p þ 2) order polynomials is more robust.

5. For interior patches EST2 and EST4B show similar

behavior.

Thus, for interior patches EST4B is preferable be-

cause it is very robust and the computational cost is

negligible, as compared to EST1 and EST2.
Fig. 3. Plate showing tangential and normal components of

displacement on the edges.
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Fig. 4. The square plate of dimensions a� a, with the mesh shown. The layer of element patches adjacent to the boundary are given by
X2D;outer. All other patches lie in subdomain X2D;interior. Sample inner and boundary patches are also shown (with dashed border).

Table 1

Quality of error estimators for patches in X2D;interior: uniform transverse load (qþ ¼ 2 N/mm2) [0/90]s laminate
a
d ratio Estimator SSS HSS Clamped

jmin jmax jmin jmax jmin jmax

5 EST1 1.0056 1.0056 1.0175 1.0175 1.0173 1.0173

EST2 0.9989 0.9989 1.0015 1.0015 1.0014 1.0014

EST4A 1.0365 1.0365 1.0609 1.0609 1.0604 1.0604

EST4B 0.9954 0.9954 0.9978 0.9978 0.9976 0.9976

10 EST1 1.0053 1.0053 1.0230 1.0230 1.0231 1.0231

EST2 1.0014 1.0014 1.0045 1.0045 1.0046 1.0046

EST4A 1.0713 1.0713 1.1178 1.1178 1.1176 1.1176

EST4B 1.0003 1.0003 0.9998 0.9998 0.9997 0.9997

100 EST1 1.0025 1.0025 1.0230 1.0230 1.0231 1.0231

EST2 1.0013 1.0013 0.9958 0.9958 0.9957 0.9957

EST4A 1.1539 1.1539 1.7105 1.7105 1.7105 1.7105

EST4B 0.9843 0.9843 0.9789 0.9789 0.9789 0.9789

Table 2

Quality of error estimators for patches in X2D;interior: uniform transverse load (qþ ¼ 2 N/mm2) [45/�45]s laminate
a
d ratio Estimator SSS HSS Clamped

jmin jmax jmin jmax jmin jmax

5 EST1 1.0203 1.0547 1.0137 1.0719 1.0144 1.0175

EST2 0.9657 0.9753 0.9807 0.9933 0.9945 0.9986

EST4A 1.0243 1.0413 1.0419 1.1165 1.0555 1.0855

EST4B 0.9651 0.9671 0.9755 1.0111 0.9985 1.0025

10 EST1 0.9848 0.9896 0.9892 0.9900 1.0153 1.0193

EST2 0.9589 0.9777 0.9628 0.9692 0.9959 1.0011

EST4A 1.0463 1.0469 1.0672 1.1733 1.0919 1.2109

EST4B 0.9716 0.9743 0.9633 0.9844 0.9888 1.0195

100 EST1 0.9272 0.9307 0.9156 0.9358 0.9900 1.0011

EST2 0.9305 0.9393 0.9066 0.9243 0.9774 0.9911

EST4A 0.9863 1.1679 1.3676 2.2956 1.4543 2.5316

EST4B 0.9217 0.9252 0.9218 0.9323 0.9864 1.0080
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Case 2: Quality for element patches in the boundary
region, X2D;outer. The local quality of the proposed error

estimators are investigated separately for element pat-

ches in X2D;outer. From the results given in Tables 3 and

4, we observe that:

1. Estimator EST1 is reliable upto the boundary for all
a
d ratios and symmetric cross-ply (½0=90�s), with
0:866 jx 6 1:04.

2. For the angle-ply laminate (½45=� 45�s), the quality
of EST1 deteriorates with 0:736 jx 6 1:70.

3. For ½0=90�s laminate with soft simply supported bo-
undary condition, estimators EST1, EST3, EST4B

are robust upto the boundary.

4. Estimator EST3 is better than estimator EST2 for

boundary patches. Thus, explicit imposition of the

essential boundary conditions is necessary, for the

displacement recovery method, in order to get reli-

able error estimators.

5. Estimator EST4B is more reliable than EST3.

Hence, for the class of problems considered here, es-

timator EST4B is preferable to EST3.

6. All estimators can significantly underestimate the

error, with jmin � 0:6.

It should be noted that the patches at the boundary

correspond to one layer of elements at the domain

boundary. Hence, the inferior performance of the

Table 3

Quality of error estimators for patches in X2D;outer: uniform transverse load (qþ ¼ 2 N/mm2); [0/90]s laminate
a
d ratio Estimator SSS HSS Clamped

jmin jmax jmin jmax jmin jmax

5 EST1 0.9981 1.0456 0.9668 1.1268 0.9655 1.1195

EST2 0.9767 1.0211 0.8442 1.0229 0.8468 1.0227

EST3 0.9838 1.1042 0.8558 1.0229 0.8564 1.0631

EST4A 0.9699 1.1439 0.9097 1.1262 0.9117 1.1602

EST4B 0.9621 1.0544 0.8596 1.0086 0.8617 1.0081

10 EST1 0.9845 1.0286 0.8744 1.0691 0.8737 1.0692

EST2 0.9737 1.0053 0.7988 1.0128 0.8007 1.0128

EST3 0.9813 1.0293 0.8132 1.0128 0.8564 1.0631

EST4A 0.9690 1.1186 0.8621 1.2280 0.8633 1.2255

EST4B 0.9616 1.0382 0.8105 0.9997 0.8124 0.9997

100 EST1 0.9718 1.0209 0.8604 1.0357 0.8617 1.0358

EST2 0.9689 1.0294 0.6988 1.0178 0.7015 1.0178

EST3 0.9715 1.0572 0.7211 1.0616 0.7239 1.0853

EST4A 1.4484 2.6835 1.7091 3.4468 1.4028 3.4483

EST4B 0.9812 1.3339 0.8395 1.1053 0.7024 1.1035

Table 4

Quality of error estimators for patches in X2D;outer: uniform transverse load (qþ ¼ 2 N/mm2); [45/�45]s laminate
a
d ratio Estimator SSS HSS Clamped

jmin jmax jmin jmax jmin jmax

5 EST1 0.9703 1.7028 0.9462 1.6029 0.9521 1.2558

EST3 0.8605 2.0219 0.7995 1.8825 0.8356 1.8446

EST4A 0.9118 1.8953 0.8611 1.7498 0.8911 1.2967

EST4B 0.8576 1.7705 0.8094 1.6602 0.8445 1.1505

10 EST1 0.8803 1.5212 0.8212 1.2944 0.8673 1.1035

EST3 0.7796 1.8136 0.7259 1.4505 0.7861 1.5711

EST4A 0.8557 1.6777 0.7795 1.3885 0.8396 1.3133

EST4B 0.7651 1.5078 0.7183 1.2323 0.7867 1.0195

100 EST1 0.7331 1.2225 0.8257 1.0354 0.9258 1.0325

EST3 0.5706 1.5167 0.6118 1.2022 0.8124 1.4295

EST4A 0.9980 4.0447 0.9276 3.6262 1.4791 3.9337

EST4B 0.6136 1.3099 0.6111 1.1072 0.8378 1.2803
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estimators (with respect to interior patches) is restricted

to a small region abutting the boundary.

Remark 4. Though the global effectivity index has not

been reported here, it was found that 0:866jX 6 1:2 for
estimators EST1, EST3 and EST4B. Hence, all the es-

timators are globally very reliable. This is essential for an
accurate stopping criterion for an adaptive process.

Case 3: Effect of number of laminae. The effect of
increasing number of laminae constituting the laminate

is studied by taking 4, 8 and 16 ply laminate. The

stacking sequences for these laminates are ½0=90�s,
½0=90�s2 and ½0=90�s4 , respectively. Here, the goal is to
study the effect of the number of plies on the local

quality of the error estimators for the worst-case sce-

nario obtained from the previous examples. Thus, we

consider the plate with clamped boundaries. The results

are presented in Tables 5 and 6.

From the results we can observe that:

1. Estimators EST1 and EST3 are reliable for interior

element patches, for any number of plies.

2. For the boundary patches EST1 is more reliable, as

compared to EST2.

3. The reliability of the estimators improves with in-

creasing number of laminae.

Case 4: Influence of mesh topology. For triangular ele-
ments, the topology of the elements can affect quality of

the error estimation (see [3] for details). In order to study

the influence of the mesh topology, we consider meshes

formed by repetition of the periodic patterns shown in

Fig. 5.

Here, we take the thin plate (ad ¼ 100) with

clamped boundaries. In Table 7, we give some values of

jmax and jmin obtained for meshes of Regular type,
Criss-Cross type along with the Union Jack type (which

is employed in all the numerical studies reported above)

for the ½0=90�s laminate. From the results we note

that:

1. For X2D;interior, the estimators EST1 and EST3 are ac-

curate for all mesh patterns, and relatively insensi-

tive to mesh topology.

2. For X2D;outer, estimator EST1 is more accurate com-

pared to EST3 for all patterns.

3. The effect of the mesh topology is clearly observable

for mesh patches at the boundary of the domain.

For the Criss-Cross pattern all estimators seem to

be more robust at the boundary (0:916 jx 6 1:15),
as compared to other patterns (e.g. for the Regular

pattern 0:626jx 6 1:14).

Case 5: Effect of polynomial order of recovered field. The
quality of estimator based on smoothening depends on

the order of polynomials employed in the fitting. Often,

p þ 1 fitting is used for recovered displacement field, and
p order polynomials are used for strain (or stress) re-
covery (see [6]). Here, we analyze the effect of the order

of the recovered field for the L2 projection based esti-
mator. EST4A is obtained by using p þ 1 order dis-
placement fitting and EST4B is obtained using p þ 2
order fitting. From Tables 1 and 2 we observe that:

1. EST4B is more accurate than EST4A for interior

patches in cross-ply laminate. EST4A tends to over-

estimate the error, with the quality deteriorating

with the a
d ratio. However, EST4B is relatively insen-

sitive to the a
d ratio.

2. For boundary patches, EST4A is unreliable with

jmax > 4. However, for EST4A jmin > 0:85, while
EST4B can have jmin � 0:6. Thus, EST4B can signif-
icantly underestimate the error while EST4A can se-

verly overestimate the error.

A similar performance is observed for EST3 with

p þ 1 or p þ 2 order fitting, and hence is not reported
here. Overall, recovery of displacement with (p þ 2)

Table 5

Effect of number of plies for X2D;interior; cross-ply laminate;

clamped support

a
d ratio NLAY EST1 EST2

jmin jmax jmin jmax

5 4 1.0173 1.0173 1.0014 1.0014

8 1.0117 1.0117 1.0013 1.0013

16 1.0134 1.0134 1.0017 1.0017

10 4 1.0231 1.0231 1.0046 1.0046

8 1.0165 1.0165 1.0035 1.0035

16 1.0174 1.0174 1.0039 1.0039

100 4 1.0231 1.0231 0.9957 0.9957

8 1.0215 1.0215 1.0023 1.0023

16 1.0211 1.0211 1.0034 1.0034

Table 6

Effect of number of plies for X2D;outer; cross-ply laminate;

clamped support

a
d ratio NLAY EST1 EST3

jmin jmax jmin jmax

5 4 0.9655 1.1195 0.8564 1.0631

8 0.9767 1.1534 0.8424 1.0761

16 1.0143 1.1076 0.8632 1.1127

10 4 0.8737 1.0692 0.8137 1.0128

8 0.8690 1.0463 0.7719 1.0102

16 0.9070 1.0483 0.8020 1.0754

100 4 0.8617 1.0358 0.7239 1.0853

8 0.8829 1.0152 0.7814 1.0847

16 0.9132 1.0158 0.8293 1.0915
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order polynomials is preferable, as compared to (p þ 1)
order polynomials.

Case 6: Effect of plate model. In order to find out
whether different definitions of the higher order plate

model can lead to dramatic changes in the observed

quality of the smoothening-based error estimators, we

consider here the hierarchic plate models proposed in

[14]. For the eight-field model of [14], we report the

extremal values of the patchwise effectivity index, for the

displacement-recovery based error estimators, for vari-

ous ply orientations for the thin plate (ad ¼ 100). Here,
we consider the plate with either clamped or soft simply

supported boundary edges. From the results reported in

Table 8 we observe that:

1. Estimators EST3 and EST4B are very robust for in-

terior mesh patches, ( 0:886 jX 6 1:16).
2. For the boundary patches, both estimators become

less robust, with 0:76 jX 6 1:62.
3. The observed quality of the estimators is identical to

that reported for the conventional higher order plate

theory given by (4).

Thus, the quality of the smoothening-based error

estimators is independent of the plate theory employed.

Fig. 5. The periodic patterns representing a patch of elements: (a) Union Jack; (b) Regular; (c) Criss-Cross.

Table 7

Effect of mesh topology on quality of error estimators for [0/

90]s laminate;
a
d ¼ 100; clamped support

Mesh

pattern

Esti-

mator

X2D;interior X2D;outer

jmin jmax jmin jmax

Regu-

lar

EST1 1.0228 1.0230 0.7614 1.0473

EST3 1.0074 1.0074 0.6249 1.1401

Union

Jack

EST1 1.0231 1.0231 0.8617 1.0358

EST3 0.9957 0.9957 0.7239 1.0853

Criss-

Cross

EST1 1.0238 1.0238 0.9501 1.1534

EST3 1.0271 1.0271 0.9147 1.0911

Table 8

Effect of plate model on quality of error estimators; 8-field hierarchic model of [14]; a
d ¼ 100

Laminate Boundary

condition

Estimator X2D;interior X2D;outer

jmin jmax jmin jmax

½0=90�s SSS EST3 0.960 0.960 0.981 1.000

EST4B 1.105 1.105 1.180 1.620

Clamped EST3 0.984 1.008 0.824 0.939

EST4B 1.149 1.149 1.001 1.094

½0=45�s SSS EST3 0.944 0.964 0.918 1.001

EST4B 1.073 1.076 1.106 1.493

Clamped EST3 0.907 1.008 0.772 0.950

EST4B 1.100 1.105 1.001 1.131

½�45=45�s SSS EST3 0.889 0.943 0.714 0.955

EST4B 0.977 1.159 0.743 1.168

Clamped EST3 0.883 0.961 0.709 1.001

EST4B 1.024 1.222 0.852 1.549
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5. Conclusions

In this paper, a comprehensive study of the quality of

several smoothening-based a-posteriori error estimators

has been carried out for the rectangular laminated plate

with symmetric ply stacking. The influence of various

factors on the local and global qualities of all the error

estimators has been studied. From the results, we can

conclude the following:

1. Estimators EST1, EST3 and EST4B are very reliable

for interior patches of elements for all mesh topolo-

gies.

2. At the boundary, estimator EST1 is the most robust

amongst all the estimators, for the classes of meshes,

boundary conditions, materials and plate thickness

considered.

3. For angle-ply laminates, the estimators are less ro-

bust at the boundary, as compared to cross-ply lam-

inates.

4. Explicit imposition of the applied Dirichlet bound-

ary conditions, in the recovered displacement field,

improves the quality of the estimator EST3 (as com-

pared to estimator EST2).

5. For the soft simple support, the estimators are more

robust as compared to the hard simple support or

clamped type of boundary conditions.

6. The behavior of the estimators is relatively insensi-

tive to the higher order plate model used.

7. With increased number of laminae in the plate, all

the estimators show a slight improvement in the

quality, especially at the boundary.

8. For the displacement-based recovery procedure,

p þ 2 order recovery is preferable, as compared to
p þ 1 order recovery.

9. For boundary patches, the effect of mesh topology

on the quality of the error estimators is significant.

For the Criss-Cross pattern, all the estimators are

robust upto the boundary, while for the Regular pat-

tern the underestimation can be severe.

10. Estimators EST1, EST3 and EST4B are very robust

globally.

11. A locally robust and economical version of the

smoothening-based error estimator can be obtained

by using EST4B for all elements in the interior of

the domain, and EST1 for the elements adjacent to

the domain boundary.
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Appendix A. Estimator based on strain recovery (EST1)

The strain field is taken to be of the same form as that

corresponding to the exact solution of the plate model.

For simplicity, let us consider the plate model given by

(4). For other models the generic representation similar

to (1) has to be employed.

Following the representation of the solution by (4),

we get the components of strain as:

e ¼

exx

eyy

cyz

cxz

cxy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

e0xx
e0yy

c0yz

c0xz
c0xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z

e1xx
e1yy
0

0

c1xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z2

0

0

c1yz

c1xz
0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z3

e2xx
e2yy
0

0

c2xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

The recovered strain e
 is also assumed to have the same
form (in terms of z) as the exact one. Thus, the recovered

strain is also represented as:

e
 ¼

e
xx
e
yy
c
yz
c
xz
c
xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

e
;0xx
e
;0yy

c
;0yz

c
;0xz
c
;0xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z

e
;1xx
e
;1yy
0

0

c
;1xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z2

0

0

c
;1yz

c
;1xz
0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

þ z3

e
;2xx
e
;2yy
0

0

c
;2xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

Given the representation of e
, it is now desired to ob-
tain the recovered strain field as a polynomial element

by element, such that the recovered strain components

are polynomials that are one order higher than the

corresponding finite element strain components. Thus, if

elements of order p are employed all the recovered in-

plane strain components are polynomials of degree p

and the out of plane strain components are polynomials

of degree p þ 1, and are given by:
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e
;ixx ¼
XNIN
j¼1

e
;ixx;jqjðx̂x; ŷyÞ i ¼ 0; 1; 2

e
;iyy ¼
XNIN
j¼1

e
;iyy;jqjðx̂x; ŷyÞ i ¼ 0; 1; 2

c
;iyz ¼
XNOUT
j¼1

c
;iyz;jqjðx̂x; ŷyÞ i ¼ 0; 1

c
;ixz ¼
XNOUT
j¼1

c
;ixz;jqjðx̂x; ŷyÞ i ¼ 0; 1

c
;ixy ¼
XNIN
j¼1

c
;ixy;jqjðx̂x; ŷyÞ i ¼ 0; 1; 2

where NIN ¼ ðp þ 1Þðp þ 2Þ=2, NOUT ¼ ðp þ 2Þðp þ 3Þ=2
and qjðx̂x; ŷyÞ are the monomials given by:

q1ðx̂x; ŷyÞ ¼ 1; q2ðx̂x; ŷyÞ ¼ x̂x; q3ðx̂x; ŷyÞ ¼ ŷy;

q4ðx̂x; ŷyÞ ¼ x̂x2; q5ðx̂x; ŷyÞ ¼ x̂xŷy; q6ðx̂x; ŷyÞ ¼ ŷy2; . . .

Here x̂x ¼ x� xs
c; ŷy ¼ y � ys

c are the local coordinates

with the origin at the centroid of the element of interest, s.

A.1. Estimator based on displacement field recovery using

energy projection (EST2 and EST3)

Here, the recovered displacement field is assumed to

be of the same form as given by the solution (4). Thus,

the recovered displacement field U
 is represented as:

U
ðx; y; zÞ ¼
u
ðx; y; zÞ
v
ðx; y; zÞ
w
ðx; y; zÞ

8<
:

9=
;

¼
u
0ðx; yÞ
v
0ðx; yÞ
w

0ðx; yÞ

8<
:

9=
;þ z

u
1ðx; yÞ
v
1ðx; yÞ
0

8<
:

9=
;

þ z3
u
2ðx; yÞ
v
2ðx; yÞ
0

8<
:

9=
;

Given the representation for recovered displacement

field U
, the recovered displacement field is obtained as a

polynomial element by element, such that the recovered

displacement components are polynomials that are k

order higher than the finite element displacement com-

ponents. Thus, if elements of order p are employed all

the displacement components are polynomials of degree

p þ k, and are given as:

u
;i ¼
XNP
j¼1

u
;i;j qjðx̂x; ŷyÞ i ¼ 0; 1; 2

v
;i ¼
XNP
j¼1

v
;i;j qjðx̂x; ŷyÞ i ¼ 0; 1; 2

w
 ¼
XNP
j¼1

w

;jqjðx̂x; ŷyÞ

where NP ¼ ðp þ k þ 1Þðp þ k þ 2Þ=2 and qjðx̂x; ŷyÞ are
the monomials as given previously.

A.2. Estimator based on displacement field recovery

procedure using L2 projection (EST4)

In this recovery procedure, the recovered dis-

placement field is also assumed to be of the same form

as given by the solution (4) and is as given above for

EST3.
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