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Abstract

Several plate models have been proposed in the literature for the analysis of laminated plates. These are based either on an equivalent
through-thickness formulation or a layerwise formulation. It is shown in the literature that while the equivalent models are economical,
the layerwise models are expensive but are also more accurate, especially with respect to the transverse stresses. Generally, the same
model is used throughout the domain. The current study addresses the issue of economical and accurate computation of local stresses,
strains and displacements (as well as global quantities) using combinations of layerwise, equivalent or intermediate models in various
regions of the domain. A region-by-region modeling strategy is presented for a chosen general family of equivalent, intermediate and
layerwise models. The proposed strategy allows the user to put any model (of any order in the thickness direction) in any desired region
of interest. The effectiveness of the strategy is demonstrated through numerical examples. It is shown that this approach can significantly
reduce computational cost and can also lead to good resolution of the local stress and displacement fields for domains with unsymmetric
laminae, cut-outs, local damage, corner edges, sudden transition of boundary conditions and material.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Laminated structures are generally thin, and thus several
dimensionally reduced models (or reduced 2D models)
have been proposed in the literature for the study of these
structures. These models (popularly known as plate mod-
els) are based on either displacement based (see [1–4]) or
mixed formulations (see [5–8]). A comparison of these
models can be seen in [7]. An excellent review of various
types of plate models (especially the layerwise and zig-zag
models) has been given in [9]. The plate models are classi-
fied according to the through-thickness representation of
the displacement field [1–4], transverse shear strain/stress
field (for mixed formulation based elements [5] and refer-
ences therein) and the interlaminar continuity conditions
imposed (for layerwise models [10]).
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In this study, we will focus on plate models based on the
displacement formulation. These models can be catego-
rized as:

(1) Shear deformable theories (see [3,4]).
(2) Zig-zag theories (see [1,2,9] and references therein).
(3) Layerwise theories (see [11–17]).

For the families of models given above, the attractive fea-
ture is that the models are independent of the number of lay-
ers, i.e. the computational cost does not depend on the
number of layers. Some of the zig-zag models have also
shown to be convergent to the three-dimensional elasticity
solution with respect to the strain energy (energy norm).
These models focus on representing the transverse shear
effects more accurately, by enriching the representation field
in the z-direction. Another important issue has been that of
shear locking in the case of thin plates. Several ‘‘locking
free’’ shear deformable models have been proposed in the lit-
erature (see [3,4]).
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A major drawback with these models has been that the
transverse stresses, obtained using these models, are not
accurate. An equilibrium based postprocessing approach
can be (see [11–13]) used to extract the transverse stress
components accurately. This approach is quite effective in
most cases. However, for domains with unsymmetry in
layup, existing delamination and ply level damage, the
dimensionally reduced models are ineffective. In order to
handle these problems a more refined analysis is desired.
Layerwise models (see [6,11,13,14] and references therein,
[15,18–20]) and intermediate models are often used to
resolve this issue. In the layerwise models, the standard
plate models are applied layerwise (see [16,17]), and conti-
nuity of displacement (and transverse shear stresses in
some cases [10]) is imposed at the interlaminar interfaces.
The intermediate model is based on using the dimension-
ally reduced models piecewise (i.e. lump all laminae above
and below a delamination separately). The use of these
models leads to enhanced resolution of the local effects,
but it also increases the size of the problem to be solved.
In [13,15], a generalized layerwise model is given which is
based on use of one-dimensional hierarchic basis functions
in the transverse and the planar directions. These models
allow for use of different approximation orders in the trans-
verse and planar directions. Thus, the transverse order of
approximation can be raised for each layer. These models
are essentially three-dimensional models and have been
shown to be very accurate with respect to any pointwise
quantity of interest. An exhaustive review of the existing
literature, on laminated plate and shell models, can be seen
in [21].

Generally, the strong three-dimensional effects are local-
ized (see [22–27]) in the vicinity of boundaries (boundary
layer), vertices (vertex singularities), edges (edge and vertex
edge singularities), parts of lamina/laminae (damaged lam-
ina) and local interfaces (interlaminar delamination). An
example of such a situation is shown in Fig. 1. In these
cases, beyond a local neighborhood of the regions of
unsmooth behavior (in the vicinity of damaged zone
boundaries), the solution can be effectively represented
using any of the families of dimensionally reduced models.
Hence, the approximation is required to be enriched only in
the regions where the solution is not smooth. To achieve
this, here we propose a region-by-region solution
Equivalent
elements

Individual elements Damaged zones

Needle type
fictitious layers

Fig. 1. Cross-sectional representation of a generic laminated structure
with damaged regions. The generic modeling strategies with equivalent,
intermediate, layerwise and sublaminae based modeling is also depicted.
approach. The goal has been to give a generalized, compu-
tationally implementable, procedure to incorporate models
of any complexity in any region of interest. It will be shown
that this approach leads to tremendous savings in compu-
tational cost and gives accurate representation of the state
of stress, strain and displacement, in the region of interest.
This approach is a generalization of the planar constrained
approximation approach of [32] and the h–d approach of
[33], given for homogeneous materials. In this study, we
do not address the issue of adaptivity for control of mod-
eling and discretization errors. Estimation and control of
discretization error has been discussed in [11,12]. However,
note that the current approach is naturally amenable to an
adaptive analysis. Estimation and control of modeling
error will be discussed in a forthcoming paper.

Note that several approaches have been proposed in the
literature (for different classes of problems), using the glo-
bal–local solution procedure. Examples of such procedures
are the Arlequin method [28], the overlapping grid method
[29] (also known as chimera method used in fluid mechan-
ics) and global–local method [30]. In these methods either
the global solution is used as the boundary condition for
a more refined local analysis, or various models are glued
together (weakly) through some edge constraint or penalty
conditions. Following [31], these approaches are useful
when the solution is smooth everywhere and the far-field
influence on the local approximate solution is not signifi-
cant (see [31] for details).
2. Plate models

Analysis of thin laminated structures is based on using
predefined transverse functions in the z-direction, with
the displacement field given as a series in terms of products
of the transverse functions and planar functions. Various
families of plate models can be defined based on the specific
definitions of the transverse functions. The particular plate
models employed in this study belong to the families of
plate models given below.
2.1. Equivalent models (EQ)

These are conventionally the most popular plate models,
with CLPT and HSDT models as special cases. The dis-
placement fields corresponding to these models can be
defined as

fug ¼
u1ðx; y; zÞ
u2ðx; y; zÞ
u3ðx; y; zÞ

8><
>:

9>=
>; ¼

Pp1
zþ1

i¼1

u1iðx; yÞ/iðzÞ

Pp2
zþ1

i¼1

u2iðx; yÞwiðzÞ

Pp3
zþ1

i¼1

u3iðx; yÞfiðzÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð1Þ

Here, pi
z; i ¼ 1; 2; 3 is the order of the polynomial transverse

functions in the z-direction for u1, u2 and u3, respectively.
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Generally p1
z ¼ p2

z is chosen. Here, z is chosen with respect
to the middle plane of the plate. Note that for isotropic
plates and also for symmetric laminates subjected to trans-
verse loads, u1(x,y,z) and u2(x,y,z) are antisymmetric,
while u3(x,y,z) is symmetric with respect to z. Hence, fol-
lowing [34,38], p1

z ¼ p2
z ¼ 1 and p3

z ¼ 0 is chosen as the first
order shear deformable theory. This is represented as the
(1,1,0) model. The HSDT model is generally taken as
(3,3,0). The transverse functions are polynomials defined
over the full thickness. Following [34], a natural hierarchy
of such models is given by (1, 1,0), (1, 1,2), (3, 3,2), (3,3,4),
. . . These models generally correspond to bending effect
(i.e. plate under transverse loading). In the current study,
both the conventional definition and the sequence of mod-
els due to [34] are used. Conventionally, the functions
/iðzÞ ¼ wiðzÞ ¼ fiðzÞ are taken as the monomials zi�1. Here
we have taken /iðzÞ ¼ wiðzÞ ¼ fiðzÞ ¼ MiðẑÞ, where MiðẑÞ is
the Legendre polynomial based hierarchic shape function
(see Fig. 2) defined in terms of ẑ ¼ 2

t z, where t is the total
thickness of the plate. The functions are

M1ðẑÞ ¼
1

2
ð1� ẑÞ; M2ðẑÞ ¼

1

2
ð1þ ẑÞ;

M3ðẑÞ ¼
1

2
ffiffiffi
6
p ð3ẑ2 � 3Þ; M4ðẑÞ ¼

1

2
ffiffiffiffiffi
10
p ð5ẑ3 � 5ẑÞ;

M5ðẑÞ ¼
1

8
ffiffiffiffiffi
14
p ð35ẑ4 � 42ẑ2 þ 7Þ ð2Þ

For isotropic plates and symmetric laminates, in-plane
loads lead to in-plane or membrane stresses. In this case,
u1 and u2 are symmetric with respect to z and u3 is antisym-
metric. Following [34], the sequence of models for this case
is given by (0, 0,1), (2, 2,1), (2,2,3), (4,4,3), . . . Note that
for isotropic plates and symmetric laminates the bending
and membrane effects are decoupled. However, for anti-
symmetric or unsymmetric laminates, both bending and
membrane effects are coupled and hence (1, 1,1), (2,2,2),
(3,3,3), . . . models should be ideally used. However, for
these laminates also, as is commonly used, we have
employed the bending displacement representation when
transverse loads are applied. The in-plane approximation
order (for uij(x,y)) is the same for all the components and
is denoted by pxy. Members of this family of models
will be represented by EQpxyp1

z p2
z p3

z . For example EQ3110
corresponds to the equivalent model with pxy ¼ 3 and
p1

z ; p
2
z ¼ 1; p3

z ¼ 0.
M
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Fig. 2. Transverse approximation for equivalent model: example of
fourth-order transverse approximation.
2.2. Intermediate models (IM)

Generally, the critical local quantities of interest are
desired in particular lamina or at the interface of two lam-
inae. Initiation of failure is one such quantity of interest.
Further, analysis of initially damaged laminates with
embedded lamina level damage or delaminations requires
accurate representation of the local displacement, strain
and stress state. In this case, the equivalent models cannot
be used. The intermediate models are based on defining the
transverse functions for a group of laminae and not the full
laminate. From Fig. 3, it can be seen that the transverse
functions are defined as the one-dimensional hierarchic
basis functions MiðzÞ. The displacement field is defined,
in terms of the functions MiðzÞ, as

u1ðx; y; zÞ ¼
Xn1

i¼1

u1iðx; yÞMiðzÞ

u2ðx; y; zÞ ¼
Xn2

i¼1

u2iðx; yÞMiðzÞ

u3ðx; y; zÞ ¼
Xn3

i¼1

u3iðx; yÞMiðzÞ

ð3Þ

Generally, n1 ¼ n2. Note that now n1 and n3 depend on
the number of lamina groups in the thickness direction,
with the order of the transverse functions taken to be the
same in each group of laminae, given by p1

z , p2
z and p3

z . This
leads to an increase in the number of transverse functions
MiðzÞ and hence the number of unknown functions uij(x,y).
Similar to the convention employed above, these models
will be denoted by IMpxyp

1
z p2

z p3
z . Note that different orders

of transverse functions can be used in each group of lami-
nae, but have not been employed in this study.
2.3. Layerwise models (LM)

This is the most general three-dimensional representa-
tion of the displacement field. Each lamina is taken as a
separate group and the transverse functions are defined
as the one-dimensional basis functions defined over the
lamina. From Fig. 4, it can be seen that the representation
of the displacement field is given by
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Fig. 3. Transverse approximation for intermediate model: example of
cubic order transverse approximation.
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Fig. 4. Transverse approximations for layerwise model: example of cubic
order transverse approximation.

Fig. 5. Illustration of region-by-region model. (a) Division of domain into
regions and (b) two-dimensional mesh over the domain.
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u1ðx; y; zÞ ¼
Xn1

i¼1

u1iðx; yÞMiðzÞ

u2ðx; y; zÞ ¼
Xn2

i¼1

u2iðx; yÞMiðzÞ

u3ðx; y; zÞ ¼
Xn3

i¼1

u3iðx; yÞMiðzÞ

ð4Þ

where n1 = n2 and n3 depend on the order of approxima-
tion p1

z ¼ p2
z , p3

z and the number of laminae (or layers) nl

in the laminate. Hence, here the number of unknowns
grows with the number of laminae. Members of this family
of models will be represented by LMpxyp

1
z p2

z p3
z .

3. Concept of sublaminae

For the intermediate and layerwise models, it is possible
to partition a lamina into multiple laminae, with different
thickness, as shown in Fig. 1. Hence, in the vicinity of del-
aminations, ply damage, resin rich regions, etc. the approx-
imation can be suitably enriched by using a graded division
of the lamina, leading to needle shaped elements (that is,
elements with high aspect ratios) in the neighborhood of
the flaws. This should lead to a more accurate representa-
tion of the state of stress in the vicinity of the flaws (see
Fig. 1 for details). The approximation is now constructed
using representation of (3) or (4), defined with the sublam-
inae assumed to be independent laminae. Note that the
sublaminae are referred to as ‘numerical sublayers’ in the
open literature. A similar approach was used in [33] for
the Euler–Bernoulli beam model.

Remark 1. It has been shown in [26], that for such three-
dimensional problems corner, corner edge and edge singu-
larities may also exist. The sublaminae concept, along with
graded refinements in the plane, can be used to effectively
capture these singularities.
4. Region-by-region modeling (RR)

4.1. Motivation

In a structural component, the ‘‘hot-spots’’ are generally
localized in the vicinity of structural details, boundaries of
the domain (faces and edges), re-entrant corners, cut-outs,
existing delaminations and ply-failure zones. The solution
is unsmooth in the vicinity of these details, while it is very
smooth in the remaining part of the domain (see Figs. 1
and 5). In order to get an accurate representation of the
solution everywhere, it is desirable to use an enriched
approximation model (LM or IM with sublaminae if
desired) only in the vicinity of the ‘‘hot-spot’’, while in
the rest of the domain, a lower order model will suffice.
In this study, pxy is uniform over the whole domain, while
the approximation enrichment is done by using either a
higher value of pi

z and/or a more refined model, e.g. IM
or LM. Thus it is important to build the capability to
put any desired model in a specified region, rather than
doing an overkill by using a higher model everywhere in
the domain (which will be computationally very expensive
for a laminate with many layers). This concept has been
introduced through the region-by-region modeling
approach described in this section.
4.2. Concept of regions

As an illustrative example, let us consider the domain
given in Fig. 5, with the two circular cut-outs shown. In
the vicinity of the cut-outs (free edge) and the outer bound-
aries of the domain (shown with grey shade in Fig. 5(a)),
the solution is expected to be unsmooth, have severe
boundary layer effect, and possibly be three-dimensional
in nature. Hence along with a refinement of the mesh,
enrichment of the model will also be desired in the shaded
regions. Thus, the domain is divided into multiple regions
(three regions shown by different shades of grey). The plate
model is then fixed for each region. For example, for the
domain of Fig. 5(a), EQpxyp

1
z p2

z p3
z may be used in the

unshaded region; IMpxyp
1
z p2

z p3
z may be used in the lighter

grey region and LMpxyp
1
z p2

z p3
z may be used in the region

shaded dark grey.
4.3. Concept of groups

Let the laminate have nl layers, or laminae (this also
includes the sublaminae). Since all the models given above
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have the same representation in terms of the one-dimen-
sional hierarchic basis functions defined over groups of
laminae, it is advantageous to define a generic representa-
tion of the group structure. The base two-dimensional
mesh T2D (with nel2D number of elements) is made first
over the projected two-dimensional surface (for example,
see Fig. 5(b)). In this study, meshes of triangles are used.
Using the base two-dimensional mesh, the three-dimen-
sional mesh T3D of prismatic elements is made over the
whole domain, layer by layer. Hence the number of ele-
ments in T3D is nel2D � nl. Each two-dimensional element
s2D � T 2D is assigned the set of all the nl three-dimensional
elements s3D � T 3D, whose projection on the plane is s2D.
This set is denoted as P s2D

. For each element s2D, the type
of model to be used through the thickness is then specified.
The model is fixed by the region-by-region allocation
described above. Note that two contiguous two-dimen-
sional elements may have the same or different models by
this strategy. For the element s2D we specify the number
of groups ngs2D

. For each group gi;s2D
; i ¼ 1; 2; . . . ; ngs2D

,
the three-dimensional elements s3D � P s2D

contained, are
specified. Note that the group will contain one or more
three-dimensional elements that are stacked on top of each
other. Illustrations of some possible groups is given in
Fig. 6, through a frontal view. The figure also demonstrates
the possible interfaces between neighboring groups. Note
that in this study, case (g) is not considered. Note that
the interfaces are the lateral faces and common corner
edges of the neighboring three-dimensional elements.
Now each group will have its own definition of displace-
ments. We choose the representation of the displacement
on the common face or edge to correspond to the ‘‘domi-
nant group’’ of all the groups sharing this edge/face. The
dominant group corresponds to the lowest model (e.g.
the equivalent model in Fig. 6(b)). Displacements for all
neighboring elements will be constrained to follow this rep-
resentation on the common edge/face.
Fig. 6. Illustration of various possible groups of layers in transverse directio
groups on the interface shown shaded grey.
4.4. Imposition of constraints

In this section, the concept of constrained approxima-
tion will be discussed. The ideas are generalization of the
concept introduced in [32]. In order to fix ideas let us con-
sider a one-dimensional example. Let us take an interval
(0,L) with one element, as shown in Fig. 7(a). Let us also
assume that piecewise linear basis functions (i.e. p = 1)
are defined over this mesh. Let

vðzÞ ¼
Xpþ1

i¼1

aiMiðzÞ ð5Þ

be the representation of a function over this domain. Here,
MiðzÞ are the linear basis functions defined as shown in
Fig. 7(a). Let us now subdivide this element into two equal
sub-elements, with size L

2
. Over this new mesh of two ele-

ments, let the function v(z), given above, be represented
in terms of the piecewise linear basis functions (as shown
in Fig. 7(b)) as

vðzÞ ¼
X2pþ1

i¼1

�aiMiðzÞ ð6Þ

where MiðzÞ are the piecewise linear basis functions defined
over the new mesh. Since both Eqs. (5) and (6) represent
the same function, the coefficients �ai can be expressed in
terms of the coefficients aj. It is obvious that

�a1 ¼ a1; �a2 ¼ a2; �a3 ¼
a1 þ a2

2
ð7Þ

Similarly, the representation of v(z) over any finer mesh
can be obtained in terms of the representation over the
coarser mesh, with the new fine mesh coefficients �aj con-
strained by the values of the coefficients ai for the coarser
mesh. This can be easily extended to any p order approxi-
mation defined over the coarse and fine meshes. As shown
below, the transverse representation of the finite element
n. Possible interface conditions between adjacent groups with dominant
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Fig. 7. One-dimensional example of linear constrained approximation.
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solution is defined over a group. However, the basic build-
ing block in the analysis is the individual three-dimensional
element s3D. Hence, the approach given above will be
employed to represent the element degrees of freedom in
terms of the group degrees of freedom.
4.4.1. Constraint for a generic group

Let the displacement component u1(x, ,y,z) be given in a
group gi;s2D

(referred as group g in short), by using (1), as

ug
1ðx; y; zÞ ¼

XN1z

j¼1

XN2D

i¼1

ug
1ijN

g
i ðx; yÞMg

j ðzÞ

¼
XN2D

i¼1

N g
i ðx; yÞ

XN1z

j¼1

ug
1ijM

g
j ðzÞ

 !
ð8Þ

Here, N 2D ¼ ðpxy þ 1Þðpxy þ 2Þ=2; N 1z ¼ ðp1
z þ 1Þ. Note that

p1
z can be different for each region; N g

i are the two-dimen-
sional shape functions defined over the projected two-
dimensional element s2D; Mg

j are the one-dimensional hier-
archic transverse functions for the group (see Fig. 2).
Assuming (as an example) p1

z ¼ 4, and expanding the trans-
verse approximation, we get

ug
1ðx; y; zÞ ¼

XN2D

i¼1

ug
1i1Mg

1ðzÞ þ ug
1i2Mg

2ðzÞ þ ug
1i3Mg

3ðzÞð

þug
1i4Mg

4ðzÞ þ ug
1i5Mg

5ðzÞÞN
g
i ðx; yÞ ð9Þ
M1

M1
1 1

2

M3

M4

M5

M2
1

M5
2

M3
1

M4
1

M5
1

I1

I

ξξ1 2

M

Fig. 8. One-dimensional example of constraint impo
Similarly, for an arbitrary element s3D � g (s in short)
the displacement can be written in terms of the element
transverse functions (one-dimensional shape functions in
the transverse direction) as

us
1ðx; y; zÞ ¼

XN2D

i¼1

us
1i1M s

1ðzÞ þ us
1i2M s

2ðzÞ þ us
1i3M s

3ðzÞ
�

þus
1i4M s

4ðzÞ þ us
1i5M s

5ðzÞ
�
N s

i ðx; yÞ ð10Þ

Fig. 8 gives the representation of the transverse func-
tions for the element and the group. Since, for any point
(x,y,z) in the element s, us

1ðx; y; zÞ ¼ ug
1ðx; y; zÞ, the trans-

verse functions Mg
i ðzÞ for the group g can be represented

in terms of the transverse functions M s
jðzÞ for the element

as

Mg
1ðzÞ ¼ a1M s

1ðzÞ þ a2M s
2ðzÞ

Mg
2ðzÞ ¼ b1M s

1ðzÞ þ b2M s
2ðzÞ

Mg
3ðzÞ ¼ c1M s

1ðzÞ þ c2M s
2ðzÞ þ c3M s

3ðzÞ
Mg

4ðzÞ ¼ d1M s
1ðzÞ þ d2M s

2ðzÞ þ d3M s
3ðzÞ þ d4M s

4ðzÞ
Mg

5ðzÞ ¼ k1M s
1ðzÞ þ k2M s

2ðzÞ þ k3M s
3ðzÞ þ k4M s

4ðzÞ þ k5M s
5ðzÞ
ð11Þ

For convenience, the z coordinate in the group is trans-
formed to the master coordinate n ð�1 6 n 6 1Þ using
standard linear one-dimensional transformations. The ori-
ginal and the mapped transverse coordinates are shown in
Fig. 9. In the mapped coordinates, the extremities of the
element are given by ns

1 and ns
2 (as shown in Fig. 9).

For all of the transverse approximation orders the coef-
ficients corresponding to linear part, e.g. a1, a2; c1, c2, etc.
are obtained from the values of Mg

i ðzÞ at the nodes. Thus,
for Mg

1ðzÞ at ns
1 the first of (11) gives

Mg
1ðn

s
1Þ ¼ a1M s

1ðn
s
1Þ þ a2M s

2ðn
s
1Þ ¼ a1 þ 0 ð12Þ
M2
2

M2

M3
2

M4
2

2

ξ
I

sition of higher order transverse approximation.
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Fig. 9. Example of constraint imposition for element approximation: (a)
Typical 3D element s with extremities of group given by zg

1; z
g
2 with

transverse location of element zs
1; z

s
2; (b) the corresponding location of

element ðns
1; n

s
2Þ with respect to mapped group transverse coordinate n; (c)

the mapped transverse coordinate system of element given by �n.
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Thus

a1 ¼ Mg
1ðn

s
1Þ and similarly a2 ¼ Mg

1ðn
s
2Þ ð13Þ

Similarly, other constants are given as

b1 ¼ Mg
2ðn

s
1Þ; b2 ¼ Mg

2ðn
s
2Þ; c1 ¼ Mg

3ðn
s
1Þ; c2 ¼ Mg

3ðn
s
2Þ

d1 ¼ Mg
4ðn

s
1Þ; d2 ¼ Mg

4ðn
s
2Þ; k1 ¼ Mg

5ðn
s
1Þ; k2 ¼ Mg

5ðn
s
2Þ

Knowing the constants c1 and c2 the constant c3 is deter-
mined from (11), using the following projection:

c3 ¼
R ns

2

ns
1

Mg
3ðnÞ � c1M s

1ðnÞ þ c2M s
2ðnÞ

� �� �
M s

3ðnÞdnR ns
2

ns
1

M s
3ðnÞ

� �2
dn

ð14Þ

Similarly, knowing d1 and d2 the constants d3 and d4 can
be found using (11) from the two equations given byZ ns

2

ns
1

½Mg
3ðnÞ � ðd1M s

1ðnÞ þ d2M s
2ðnÞÞ�M s

3ðnÞdn

¼ d3

Z ns
2

ns
1

ðM s
3ðnÞÞ

2dnþ d4

Z ns
2

ns
1

ðM s
3ðnÞÞðM s

4ðnÞÞdn
*
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Fig. 10. A generic 3D element with cubic in-plane approximation and quadrati
are shown.
andZ ns
2

ns
1

½Mg
4ðnÞ � ðd1M s

1ðnÞ þ d2M s
2ðnÞÞ�M s

4ðnÞdn

¼ d3

Z ns
2

ns
1

ðM s
3ðnÞÞðM s

4ðnÞÞdnþ d4

Z ns
2

ns
1

ðM s
4ðnÞÞ

2dn

Similarly, three simultaneous equations are solved for k3,
k4 and k5. Using (11) in (9) and collecting the coefficients
of M s

i , we get the representation of us
lij in terms of ug

lij.
Note that these coefficients can be obtained symbolically

in terms of the extremities ns
1; n

s
2 of the generic element s.

Since this involves only master element coordinates (in
the thickness direction), the generic computations can be
symbolically done a priori and the explicit expressions
can be obtained by putting in the required ns coordinates.
Further, these expressions can be used for any member of
any group. Also, the same expressions are valid for the dis-
placement components ug

2; u
g
3 and hence do not have to be

recomputed. This procedure is a generalized adaptation of
the procedure outlined in [32]. Note that this procedure can
be employed to get constraints for any order of approxima-
tion in the transverse direction.

4.4.2. Constraint for lateral faces of element s
Following (9), the constraint has to be applied for all

degrees of freedom of the elements s. As an example, con-
sider the 3D element given in Fig. 10, where pxy = 3 and
pi

z ¼ 2. Also, consider the displacement component us
k. In

the figure, ul � ukij where l ¼ ðj� 1ÞN 2D þ i. The degrees
of freedom 10, 20, 30 are internal; degrees of freedom 1,
11, 21, 2, 12, 22, 3, 13, 23 are corner edge degrees of freedom
and the rest are degrees of freedom on lateral faces. For the
internal degrees of freedom, the transformation given by
(11)–(14) will be used. The corner edges and lateral faces
of s are shared with neighboring groups (see Fig. 11). Exam-
ples of types of the interfaces are shown in Fig. 6 (dominant
groups are shown with grey shade). The displacement on
the face is constrained to be that of the dominant group.
For the representation of the displacements on the face,
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c transverse approximation: The interior, edge and face degrees of freedom
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pi
z is chosen to be the maximum of that for the two neigh-

boring groups sharing the face. From Fig. 10, this process
will be done for all the face degrees of freedom of the ele-
ment s. The constraint matrix for these degrees of freedoms
are then obtained by the same procedure as given above. As
an example, let all elements s3D in g6 (in Fig. 11) have the
model EQ3112 while all elements in g7 have the model
LM3332. Then the common face between elements of g6

and g7 will follow the displacement representation given
by EQ3332 where ‘‘EQ’’ is the dominant group and pk

z jmax

is given by (3,3,2).

4.4.3. Constraint for corner edge of element s
For the corner edges, the dominant group is determined

out of all the groups sharing this edge. The value of pi
z is

again determined as the maximum order of all the groups
sharing this edge. For all the degrees of freedom on the cor-
ner edge of the element s, the constraint matrix is obtained
using the procedure outlined above.

Using the constrained representation of the interior, lat-
eral face and corner edge degrees of freedom, the constraint
matrix ½As� for the element s can now be formed, such that

fusg ¼ ½As�fuGg ð15Þ

where fusg are the element degrees of freedom (uncon-
strained) and fuGg are the corresponding global degrees
of freedom defined using the groups (for the solution pro-
cess, the groups are the elements over which the approxi-
mation is globally defined). Note that when element s is a
group by itself, then ½As� ¼ ½I �.

As an example, the constraint matrix ½As� for the element
s with pxy ¼ 1 and pz ¼ 2 for the displacement u is given as

u1

u2

u3

u4

u5

u6

u7

u8

u9

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

s

¼

a1 b1 c1 0 0 0 0 0 0

a1 b1 c1 0 0 0 0 0 0

a1 b1 c1 0 0 0 0 0 0

0 0 0 a2 b2 c2 0 0 0

0 0 0 a2 b2 c2 0 0 0

0 0 0 a2 b2 c2 0 0 0

0 0 0 0 0 0 0 0 c3

0 0 0 0 0 0 0 0 c3

0 0 0 0 0 0 0 0 c3

2
66666666666666664

3
77777777777777775

u1

u2

u3

u4

u5

u6

u7

u8

u9

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

G

ð16Þ
Remark 2. If the transverse dimension of all the groups for
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nodal group case and the groups for the vertical faces are
same then the dominating group is the current group itself.
The approach given is a generalized combination of the
representation given in [32,33].
Remark 3. From the implementation certain embedding
properties of the models can be seen. For example,
EQ3111 is embedded in EQ3222, EQ3333, LM3111,
LM3222, . . . However, we cannot show that EQ3222 is
embedded in LM3111. Hence, a natural hierarchy of mod-
els cannot be strictly given. However, note that the EQ3111
is also embedded in IM3111, which in the limit converges
to LM3111 (i.e. when the number of groups is increased
to the number of layers).
5. Finite element implementation

5.1. Implementation for LM, EQ and IM models

For a given lth lamina the constitutive relationship, in
the principal material directions is given as

f�rðlÞg ¼ ½CðlÞ�f��ðlÞg ð17Þ

where f�rðlÞg ¼ f rðlÞ11 rðlÞ22 rðlÞ33 rðlÞ23 rðlÞ13 rðlÞ12
gT are the

stress components for the layer, and f��ðlÞg ¼
f �ðlÞ11 �

ðlÞ
22 �

ðlÞ
33 �

ðlÞ
23 �

ðlÞ
13 �

ðlÞ
12g

T are the strain components
for the layer. Here, 1, 2 and 3 correspond to the three prin-
cipal material directions (see Fig. 12(b)). The constitutive
relationship in the global xyz-coordinates (for each lamina)
can be obtained as

frðlÞg ¼ ½QðlÞ�f�ðlÞg ð18Þ

with frðlÞg¼ frðlÞxx rðlÞyy rðlÞzz rðlÞyz rðlÞxz rðlÞxy g
T and f�ðlÞg¼

f�ðlÞxx �ðlÞyy �ðlÞzz �ðlÞyz �ðlÞxz �ðlÞxy g
T; ½QðlÞ� can be obtained from

½CðlÞ� by transformation from the principal material coordi-
nates to global xyz-coordinates. The potential energy, P,
for the structure is given by

P ¼ 1

2

Z
V
frðuÞgTf� uð ÞgdV �

Z
Rþ[R�

T 3u3 ds

�
Z

CN

ðT 1u1 þ T 2u2Þds ð19Þ

where V is the volume enclosed by the plate domain; R+

and R� are the top and bottom faces of the plate (see
Fig. 12(a)); T3(x,y) is the applied transverse load on these
faces; C are the lateral faces with C ¼ CN [ CD and
CN = Neumann boundary, CD = Dirichlet boundary;
T1,T2 are the tractions specified on the lateral faces (in-
plane loading).

The solution to the problem, uex, is the minimizer of the
total potential, P, and is obtained from the solution of the
following weak problem:

Find uex 2 H 0ðVÞ such that

Bðuex; vÞ ¼FðvÞ 8v 2 H 0ðVÞ ð20Þ
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where H 0ðVÞ ¼ fv : Bðv; vÞ <1 and Mu ¼ 0 on CDg.
Note that in this study Dirichlet means the part of lateral
boundary where geometric constraints are imposed, while
Neumann stands for the parts of the lateral boundary with
specified tractions. Further, M is a generic representation
of displacement constraints on the Dirichlet boundary
edge. For example, the boundary condition can be
clamped; soft simple-support; hard simple-support; etc.
(see Table 1 for example). Note that the definition of the
Dirichlet boundary conditions can be generalized to in-
clude non-homogeneous displacement conditions. The
expressions in (20) can be written as

Bðuex; vÞ ¼
X

l

Blðuex; vÞ

¼
X

l

Z
V l

frðlÞðuexÞgTf�ðlÞðvÞgdV l ð21Þ

and

FðVÞ ¼
Z

Rþ[Rþ
T 3v3 dsþ

Z
CN

ðT 1v1 þ T 2v2Þds ð22Þ

where Vl is the volume of the lth lamina in the laminate; {v}
is the test function. Note that in this study T1, T2 are taken
to be zero on the lateral faces (i.e. the bending problem is
considered).

5.2. Implementation for region-by-region model

Eq. (19) can be rewritten as

P ¼
X

s

1

2
fusgT½Ks�fusg � fusgTfF sg ð23Þ
Table 1
Examples of boundary conditions

Boundary along x = 0,a along y = 0,b

Clamped u = v = w = 0 u = v = w = 0
Free u,v,w 5 0 u,v,w 5 0
Hard simple supported v = w = 0 u = w = 0
Soft simple supported u = w = 0 v = w = 0
Point supported w = 0 w = 0
where fusg denotes the displacement vector, ½Ks� denotes
the stiffness matrix and fF sg denotes the load vector corre-
sponding to element s3D (or s). Using (15), to represent
fusg, (23) reduces to

P ¼
X

s

1

2
fuGgT½As�T½Ks�½As�fuGg � fuGgT½As�TfF sg ð24Þ

Minimization of P gives the matrix problem in terms
of fuGg, as

½KG�fuGg ¼ fF Gg

where ½KG� ¼
P

s½As�T½Ks�½As� and fF Gg ¼
P

s½As�TfF sg.
This gives the constrained element stiffness matrix ½Ks�
and load vector fF sg in terms of the constraint matrix, as

½Ks� ¼ ½As�T½Ks�½As�; f�F sg ¼ ½As�TfF sg ð25Þ

Note that for the given family of models, the implemen-
tation is general. The element level stiffness and load com-
putations can be done for each three-dimensional element
s3D. Using the information about the model used locally
in the thickness direction, the constraint matrix for the ele-
ment can be generated. Using this constraint matrix, the
constrained element stiffness matrix and load vector can
be easily generated. This allows us to use any model in
any of the s2D. Since the method is based on satisfying dis-
placement continuity constraint on the common faces and
edges, its extension to other hierarchies of plate models is
also possible. Further, note that ½As� can be explicitly com-
puted using the symbolic expressions and hence will not be
time consuming. The explicit constant matrix has to be
used only at model interfaces. Elsewhere, the model defini-
tions can be directly used.
6. Equilibrium approach of postprocessing

In the present study, the transverse stresses are obtained
using both direct approach, i.e. the constitutive equations,
and the equilibrium approach.



Table 2
Material properties for graphite/epoxy [35,36]

Property E11 E22 G12 G23 v12 ¼ v23

Values 25� 106 psi 106 psi 0:5� 106 psi 0:2� 106 psi 0.25
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In the equilibrium approach the three-dimensional equi-
librium equations are used to get the transverse stresses
from the in-plane stress components. For example

sxzðx; y; zÞ ¼ �
Z z

z¼0

ðrxx;x þ sxy;yÞdz ð26Þ

For the right-hand side quantities the constitutive equa-
tions are used. Similar procedure for the components syz

and rzz is used. For the computation of the postprocessed
rzz, the finite element solution is used to compute sxz,x and
syz,y (for use in the right-hand side of (26)).
7. Numerical results

The major goal of this paper is to present an approach
through which the local three-dimensional state of stress
can be obtained in a laminated plate structure, in a desig-
nated region of interest, with optimal computational effort.
Hence, the local accuracy of the EQ, IM and LM families
of plate models will be analyzed first. This will be done by
comparing the pointwise stresses with those obtained by
the theory of elasticity solution where applicable. This will
be followed by a study of the efficacy of region-by-region
implementation, for various problems.

The list of models used in the following examples are:

(1) LM3332, EQ3332, IM3332: layerwise, equivalent sin-
gle layer and intermediate models used in [0/90/0/90/
0/90/0/90/0] laminate bending problem.

(2) RR-I, RR-II, RR-III: Region-by-region models used
for cylindrical bending of [165/�165] and [150/�150/
150] laminates.

(3) RR2332: Region-by-region model for first-ply failure
problem.

(4) RR-U, RR-G: Region-by-region models used for
domain with multi-material region problem.
7.1. Effect of model on accuracy of pointwise data for EQ,

IM and LM models

In this section, the EQ, IM and LM models are com-
pared for the transverse deflection and state of stress.
Table 3
Comparison of transverse displacement ð�wÞ for cross-ply seven layer
square laminate under sinusoidal loading

S Exact [35] LM3332 IM3332 EQ3332

2 12.342 12.341 (0.008) 11.866 (3.86) 13.790 (�11.73)
4 4.153 4.153 (0.00) 3.846 (7.39) 3.712 (10.62)
10 1.529 1.529 (0.00) 1.473 (3.66) 1.417 (7.32)
20 1.133 1.133 (0.00) 1.119 (1.25) 1.104 (2.55)
50 1.021 1.021 (0.00) 1.019 (0.19) 1.017 (0.39)
100 1.005 1.005 (0.00) 1.005 (0.00) 1.004 (0.09)
7.1.1. Comparison of transverse deflection

These models are compared with the exact three-dimen-
sional elasticity solution for seven layer [0/90/0/90/0/90/0]
cross-ply, square laminate. Total thickness of 0� layers is
equal to total thickness of 90� laminae and laminae of same
orientation are of equal thickness. The material properties
are as given in Table 2. The plate has dimension a = b = St

along x-axis and y-axis, respectively. Here, S ¼ a
t is aspect

ratio with t = 6 mm. The plate is subjected to transverse
sinusoidal loading of the form

T 3ðx; yÞ ¼ q0ðx; yÞ sin
px
a

� �
sin

py
b

� �
All edges of the laminate are soft simple-supported. The
transverse deflection (w = u3) is nondimensionalised as �w ¼
p4Qwða2;

b
2;0Þ

12q0S4t
, where

Q ¼ 4G12 þ ½E11 þ E22ð1þ 2m23Þ�=ð1� m12m21Þ
The nondimensional thickness is defined as �z ¼ z

t. The
values of �w are tabulated in Table 3. The models used
are LM3332, IM3332 and EQ3332. The number in paren-
thesis are the percentage error in the computed transverse
displacements. Note that for the intermediate model, the
bottom four layers of the laminate are lumped together
to form an equivalent layer whereas the top three layers
are individual layers.

From the table we observe that

1. The LM3332 model predicts the transverse deflection
accurately for all the aspect ratios. The error in the val-
ues ranges from 0% to 0.008%.

2. The IM3332 and EQ3332 models are far from the exact
one for the aspect ratios up to S = 10, i.e. for thick
plates. The error for these aspect ratios ranges from
3.6% to 12%.

3. For the IM3332 and EQ3332 models with aspect ratios
S > 10 the displacement is close to exact. The error is 0–
2.5%. The IM3332 model is more accurate, as compared
to the EQ3332 model.
Remark 4. Explicit discretization error control is not used
here. However, sufficiently refined meshes are used a priori
to ensure that discretization error is small. The same mesh
is used for all the models.
7.1.2. Comparison of state of stress

Here we take the nine layered cross-ply laminate [0/90/
0/90/0/90/0/90/0] with the total thickness of 0� layers as
that of the 90� layers. The plate has dimensions
a = b =St with t = 10 mm. All the edges of the plate are
soft simple-supported. Note that for IM model the bottom
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six laminae are lumped in single equivalent layer while the
remaining three laminae are left as such. The stresses are
normalised as
ð�rxx; �ryy ;�sxyÞ ¼
1

q0S
ðrxxðx; y;�zÞ; ryyðx; y;�zÞ; sxyðx; y;�zÞÞ

ð�rzz;�sxz;�syzÞ ¼
1

q0S2
ðrzzðx; y;�zÞ; sxzðx; y;�zÞ; syzðx; y;�zÞÞ
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The through thickness variation of the normalised in-
plane stress �rxx is plotted at a

2
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2
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� �
for various families

of plate models. Similarly, the through thickness variation
of the transverse stress �sxz is plotted at 0; b

2
;�z
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. All the

results are given for S = 2 (thick plate) and S = 10 (moder-
ately thick plate). For, the transverse stresses, both the
direct values obtained from constitutive relationship and
those obtained by the equilibrium based postprocessing
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EQ3332 and IM3332. The stresses obtained by the various
models is compared with the exact three-dimensional val-
ues from [35]. The pointwise values of stress components
�rxx and �sxz directly obtained from these models are also
given in Tables 4 and 5.

From the figure we note that:

1. The LM3332 model is very accurate for all values of S

(the graph overlaps the exact one), for both in-plane
and out of plate stress components.

2. The EQ3332 model can have significant errors in �rxx for
thick laminates. However, as S increases the �rxx becomes
Table 4
Pointwise values of stress component �rxx

a
2
; b

2
;�z

� �
for [0/90/0/90/0/90/0/90/

0], S = 10, laminate under sinusoidal loading

�z Pagano [35] LM EQ IM

0.500 0.541 0.540 0.547 0.540
0.400 0.396 0.399 0.411 0.397
0.400 0.016 0.016 0.023 0.022
0.275 0.013 0.013 0.015 0.016
0.275 0.267 0.265 0.265 0.281
0.175 0.145 0.146 0.163 0.158
0.175 0.006 0.006 0.009 0.009
0.050 0.000 0.000 0.003 0.003
0.050 0.059 0.058 0.044 0.053
�0.050 �0.066 �0.062 �0.047 �0.037
�0.050 0.000 0.000 �0.001 0.000
�0.175 �0.013 �0.012 �0.007 �0.007
�0.175 �0.152 �0.150 �0.165 �0.160
�0.275 �0.277 �0.277 �0.267 �0.268
�0.275 �0.016 �0.016 �0.013 �0.013
�0.400 �0.026 �0.025 �0.021 �0.021
�0.400 �0.409 �0.404 �0.412 �0.419
�0.500 �0.554 �0.549 �0.547 �0.554

Table 5
Pointwise values of stress component �sxzð0; b

2
;�zÞ for [0/90/0/90/0/90/0/90/

0], S = 10, laminate under sinusoidal loading

�z Pagano [35] LM3332 EQ3332 IM3332

�0.500 0.000 0.000 0.051 0.086
�0.400 0.155 0.155 0.171 0.170
�0.400 0.155 0.155 0.068 0.068
�0.275 0.167 0.168 0.113 0.104
�0.275 0.167 0.168 0.284 0.262
�0.175 0.237 0.237 0.343 0.325
�0.175 0.237 0.237 0.137 0.130
�0.050 0.241 0.241 0.152 0.156
�0.050 0.241 0.241 0.381 0.390

0.050 0.241 0.241 0.381 0.432
0.050 0.241 0.241 0.152 0.173
0.175 0.234 0.236 0.137 0.188
0.175 0.234 0.236 0.343 0.237
0.275 0.169 0.168 0.284 0.165
0.275 0.169 0.168 0.113 0.165
0.400 0.155 0.154 0.068 0.153
0.400 0.155 0.154 0.171 0.153
0.500 0.000 0.000 0.051 0.000
more accurate. For S = 10, the error in pointwise �rxx is
very small.

3. The directly computed �sxz obtained using EQ3332 model
is different from the exact one both qualitatively and
quantitatively.

4. The directly computed �rxx, �sxz for IM3332 model is close
to the EQ3332 for bottom 6 laminae (which are lumped
together for analysis), while in the top three laminae the
values of the stresses are close to the exact one. In this
case even �sxz, obtained directly, is reasonably accurate
in the top three-layers.

5. For the EQ3332 and IM3332 models, equilibrium based
postprocessing, is effective in giving reasonably accurate
representation of the transverse stress components.

6. For S = 2, the EQ3332 model is inaccurate, as com-
pared to the IM3332 and LM3332 models.

From the results of this section we observe that the
LM model is very accurate with respect to the pointwise
data. However, the cost of computation increases signifi-
cantly when this model is used. Generally, we are inter-
ested in the state of stress in a particular region, in only
a few critical laminae. Note that the IM model can be
effectively used to zoom onto desired laminae. For exam-
ple, if the top lamina is of interest, then the top two or
three laminae can be taken as separate layers, while
remaining laminae can be lumped into an equivalent
layer. This leads to significant saving in computational
cost, without much degradation in accuracy. Also note
that the higher (more expensive) models need to be used
only in a reasonable neighborhood of the region of inter-
est. Elsewhere a lower model, e.g. EQ model, can be used,
to lead to further saving in computational cost. Below, we
Fig. 14. Region-by-region schemes for transverse shear and in-plane stress
for [165/�165] and [150/�150/150] laminate. (a) RR-I: with LM3332 in
the dark shaded region, LM3112 in the grey shaded region and EQ3112
in the rest, (b) RR-II: with LM3332 in the dark shaded region, LM3112 in
the grey shaded region and EQ3112 in the rest and (c) RR-III: with
LM3332 in the dark shaded region and EQ3112 in the rest.
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demonstrate through numerical examples the efficacy of
such an implementation.

7.2. Region-by-region modeling

Here we consider various types of problems to study the
accuracy of the region-by-region modeling approach. This
modeling approach is compared with EQ, LM and IM
models.
S=4
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Fig. 15. Comparison of transverse shear stress for [165/�165] laminate
under cylindrical bending. (a) Direct stresses, (b) equilibrium based
postprocessed stresses and (c) region-by-region scheme I (RR-I).
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Fig. 16. Comparison of in-plane stresses for [150/�150/150] laminate
under cylindrical bending. (a) In-plane normal stress and (b) in-plane
shear stress.
7.2.1. Cylindrical bending problems

Here, various stress components for symmetric and anti-
symmetric laminates, under cylindrical bending, are com-
pared with the exact values given in [36]. The cylindrical
bending load is of the form T 3ðx; yÞ ¼ q0 sin px

a

� �
. The

LM3332 and EQ3332 models are used for computing the
stresses.

Case 1 (Point at Boundary): In this case [165/�165] lam-
inate is considered. All the laminae are of equal thickness.
Here, we have taken t = 2nl (t = 2 mm here) and a = St.
Further, in the y-direction the plate is taken to be suffi-
ciently long with b = 20a. At x = 0, a the edge is point sup-
ported while at y = 0, b the edge is free. The normalised
stress �syz is plotted at ð0; b

2
;�zÞ. The region-by-region scheme

I (RR-I) for this case is shown in Fig. 14(a). In the darker
region LM3332 model is used. In the region shown by grey
shading LM3112 model is used followed by the EQ3112
model in the remaining region. The stress components for
S = 4 are shown in Fig. 15.

Case 2 (Interior and Boundary Point): Here, [150/�150/
150] laminate is considered such that the thickness of each
layer is [1, 2,1] and t = 4 mm. The truncated mesh (in the
y-direction) used for this example is shown in Fig. 14. The
normalised in-plane stresses �rxx and �sxy are plotted at
ða

2
; b

2
;�zÞ while the transverse shear stresses are plotted at
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ð0; b
2
;�zÞ. Since the transverse stresses are shown for a point

on the boundary, the RR-I scheme is used for these results.
The in-plane stresses are given for an interior point, hence,
the RR-II scheme shown in Fig. 14(b) is used. Here the dar-
ker region has LM3332, grey region has LM3112 and
remaining region has EQ3112. The transverse shear stresses
are also obtained by another scheme (RR-III) shown in
Fig. 14(c) where the darker region has EQ3332 and remain-
ing region has EQ3112 model. Note that the results are also
obtained by using EQ3332, EQ3112 and LM3332 models in
the full domain for comparison with the, RR-II and RR-III
schemes. The in-plane stresses and transverse shear stresses
for S = 4 are shown in Figs. 16 and 17, respectively. The
stresses obtained in case 1 and case 2 are compared with
the exact three-dimensional values from [36]. The pointwise
values of stress component �sxz at ð0; b

2
;�zÞ directly obtained

from these models are also given in Table 6.
From the results it is observed that:

1. All the stress components obtained directly by the
LM3332 model are close to the exact values.

2. The direct transverse stresses obtained by the EQ3332
and RR-III models are almost the same but are qualita-
tively and quantitatively different from the exact one.
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Fig. 17. Comparison of transverse shear stresses for [150/�150/150] laminate cy
stress, (c) equilibrium based postprocessed stress and (d) equilibrium based po
Using the RR-I model gives better direct values of trans-
verse stresses.

3. When the equilibrium based postprocessing is employed
the EQ3332 and RR-III models give very good values of
transverse stresses while RR-I model leads to slightly
inferior accuracy of the transverse stresses. This is
because the EQ3332 model (and RR-III model) lead to
more accurate in-plane stresses in the neighborhood of
point of interest while RR-I model may lead to less
accurate values of in-plane stresses in this neighbor-
hood. The equilibrium based postprocessing approach
uses the derivatives of in-plane stresses to obtain the
transverse stresses.

The quality of the solution can be further improved by
enriching the local model further. For example, one can
use the LM3332 model in a one layer neighborhood of
the region of interest.

In Table 7, the number of unknowns for all the models
used in these cases are compared. From this table it is
observed that:

1. The LM3332 approach is very intensive
computationally.
−
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;�zÞ. (a) Direct stress, (b) direct

stprocessed stress.



Table 6
Pointwise values of stress component �sxz 0; b

2
;�z

� �
for [150/�150/150], S = 4,

laminate under cylindrical bending loading

�z Pagano [36] LM3332 EQ3332 RR-I RR-III

0.500 0.000 0.005 �0.065 0.027 �0.056
0.400 0.198 0.200 0.187 0.256 0.190
0.300 0.290 0.289 0.383 0.316 0.383
0.200 0.371 0.375 0.378 0.293 0.376
0.100 0.467 0.473 0.435 0.434 0.432
0.000 0.502 0.498 0.453 0.452 0.449
�0.100 0.470 0.470 0.433 0.431 0.429
�0.200 0.379 0.273 0.372 0.347 0.370
�0.300 0.283 0.283 0.378 0.305 0.377
�0.400 0.198 0.192 0.181 0.242 0.183
�0.500 0.000 0.003 �0.073 0.024 �0.001

Table 7
Number of unknowns for given choice of model and laminate

Laminate Model Stress component Unknowns

[165/�165] Throughout LM3332 �rxx;�sxy ;�sxz;�syz 11,875
[150/�150/150] �rxx;�sxy ;�sxz;�syz 16,875
[165/�165] Throughout EQ3332 �rxx;�sxy ;�sxz;�syz 6875
[150/�150/150] �rxx;�sxy ;�sxz;�syz 6875
[165/�165] Region-by-region

(scheme I)
�sxz;�syz 4863

[150/�150/150] Region-by-region
(scheme II)

�rxx;�sxy 5147

[150/�150/150] Region-by-region
(scheme I)

�sxz;�syz 5239

[150/�150/150] Region-by-region
(scheme III)

�sxz;�syz 4715

Table 8
Material properties for T300/5208 Graphite/Epoxy (Pre-preg) [38]

Property Value Property Value

E11 132.5 GPa XT 1515 MPa
E22 = E33 10.8 GPa XC 1697 MPa
G12 = G13 5.7 GPa YT = ZT = YC = ZC 43.8 MPa
G23 3.4 GPa R 67.6 MPa
v12 = v13 0.24 S = T 86.9 MPa
v23 0.49 Ply thickness, ti 0.127 mm
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2. The RR-I, RR-II and RR-III schemes lead to tremen-
dous saving in computational cost, as compared to
LM3332 (or EQ3332 model for RR-III), and also give
local accuracies comparable to the LM3332 model (or
EQ3332 model for RR-III).
Fig. 18. [�45/45/�45/45] laminate with clamped boundaries: Regions
with FITW P 0:8 shown shaded grey.
7.2.2. First-ply failure load prediction

The first-ply failure load is obtained by using Tsai–Wu
criterion is given by (see [37,38] for more details)

FITW ¼ F iri þ F ijrirj P 1 ð27Þ

where Fi and Fij are the strength tensor terms and ri are the
stress components. As an example the [�45/45/�45/45] is
taken. The plate is clamped on all edges. The top face of
the plate is subjected to uniform transverse load
T 3ðx; yÞ ¼ q0. The plate dimensions are a = 228.9 mm
Table 9
First-ply failure loads; all edges clamped, [�45/45/�45/45] laminate under un

Model FLD Coordinates

x y

Reddy [38] 39354.8 �115.00 �125.00
EQ2332 32382.6 121.38 126.43
RR2332 32386.1 107.51 0.56
LM2332 32549.2 107.51 0.56
(9 in.), b = 127 mm (5 in.). The material properties and
lamina thickness used in these computations are given in
Table 8. The first-ply failure load is nondimensionalised as

FLD ¼ q0

E22

S4

The results obtained from the present analysis are com-
pared with those reported in [38]. The loads are computed
using LM2332, EQ2332 and RR2332. For the region-by-
region model (RR2332 as shown in Fig. 18) the failure load
is first computed by equivalent single layer model. The ele-
ments with failure index above 0.8 are found. These will be
the critical region of interest or ‘‘hot-spots’’. In a neighbor-
hood of this region, it is desired to enrich the model to get
the three-dimensional state of stress more accurately. In the
implementation in one element neighborhood of these ele-
ments (shaded dark grey in Fig. 18) the LM2332 model is
used, while in the remaining region the EQ2332 model is
used. The first-ply failure load is given in Table 9.

In the present study, the transverse stress components
obtained from the equilibrium based postprocessing
approach, have been used in computing the failure load.
iform transverse loading, pxy ¼ 2

Layer Location Unknowns Max. r

1 Bottom – –
1 Bottom 6875 r22

1 Bottom 8987 r22

1 Bottom 21,875 r22
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We observe that:

1. The first-ply failure loads obtained by RR2332 and
LM2332 models are close.

2. The locations predicted by the RR2332 and LM2332
models are close.

3. The number of unknowns for LM2332 model are signif-
icantly higher as compared to the RR2332 model.

The locations and values obtained by LM2332 and
RR2332 are not the same as [38] because the mesh and
the model used here is more refined. Note that the solution
of [38] is ‘‘stiffer’’ leading to higher predicted failure loads.
This could be dangerous from a design point of view. Using
adaptivity (with a fixed model) for discretization error con-
trol would have led to a further reduction in the predicted
failure load (see [11] for details).
7.3. Domain with multi-material region

Let us take the rectangular domain of Fig. 19(c). The
dimensions of the plate are a = 100 mm, b = 10 mm and
t = 0.254 mm. The plate is clamped along all the edges
and is subjected to a uniform transverse load of intensity
q0 ¼ 1 N=mm2. The plate has two lamina with [0/90] in
the regions 0 6 x 6 a

2
, 0 6 y 6 b. The material properties

for each lamina are as given in Table 8. In the region
a
2
6 x 6 a, 0 6 y 6 b

2
, the plate has a bottom layer of epoxy

(with E11 ¼ E22 ¼ E33 ¼ 4600 MPa;m12 ¼ m13 ¼ m23 ¼ 0:36)
for � t

2
6 z 6 0. For z P 0, lamina with 90� orientation

with material properties given in Table 8 is present (see
Fig. 19(a)). The plate essentially mimics a L-shaped
1 2 a/2a/2

Region 2

Region 2

Needle type
fictitious sublayers

y

x

x

x

z

z

EQ3333

EQ3333 EQ3333

EQ3333

**

Region 1

Region 1

Region 3

Region 3

LM3333

LM3333

Fig. 19. Multimaterial beam problem: mesh and model. (a) RR-U model
with point of interest, (b) RR-G model and (c) the two-dimensional mesh.
domain in two-dimensions. For this domain the exact solu-
tion will have an edge singularity along the line given by
x ¼ a

2
, z = 0. To solve this problem we will use LM3333,

EQ3333 models and the region-by-region schemes given
by:

1. RR-U (Fig. 19(a)): EQ3333 in region 1, LM3333 model
in region 2 and 3.

2. RR-G (Fig. 19(b)): EQ3333 in region 1, LM3333 model
in region 2 and 3, with geometrically graded sublaminae
(with factor q ¼ 0:15) near z = 0.

Note that in the RR strategies the 3D model is used in
the vicinity of the singular edge only. Elsewhere, lower
models are used.

Remark 5. The two-dimensional mesh is as shown in
Fig. 19(c), with geometrically graded elements (with
grading factor q = 0.15) in the vicinity of the line x ¼ a

2.
The energy norm of the discretization error, eD, for this
mesh was 2.84% (when the EQ3333 model is used
everywhere). For this mesh, we can assume that the major
contributor to the error is modeling error eM, i.e. the total
error e ¼ u3D � uM þ uM � uFE ¼ eM þ eD � eM. Here the
exact three-dimensional solution to the problem is denoted
by u3D; the exact solution to the chosen model is given by
uM ; the finite element solution for the chosen model (for the
given mesh and in-plane approximation) is given by uFE.
Note further that the RR-G scheme leads to elements with
high aspect ration in the vicinity of the singular edge.
7.3.1. Displacement analysis

The displacement components, along a cutting line given
by y ¼ b

2
, z ¼ t

2
, is plotted in Fig. 20. From the figure we

observe that:

1. The LM3333 and RR-U strategies give almost identical
displacement profiles.

2. The displacement due to the EQ3333 model is far from
LM3333 and RR-U models at the boundary and in the
region of material dissimilarity.

3. The displacements have a sharp change at x ¼ a
2
. This is

because the effective flexural rigidity reduces signifi-
cantly beyond x ¼ a

2
.

The results clearly bring out the effect of pollution in the
modeling error as explained below.

For the EQ3333 model the modeling error is significant
in the vicinity of the singular edge (when compared to the
LM3333 or RR-U models). This affects the local quality of
the displacements and stresses at the regions far from the
corner. For example, let us take the average displacement
vi;avg, in a small region �v near the boundary, given by
vi;avg ¼ 1

�v

R
�v vi dv. Let vLM

i;avg be the quantity when the
LM3333 model is used everywhere, with the refined mesh
shown in Fig. 19(c). Similarly, let vEQ

i;avg be the quantity
obtained using the EQ3333 model everywhere with the
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same mesh. Following [11], we can solve for the dual func-
tion GLM

i (using the same mesh and LM3333 models) as

B GLM
i ; vLM

� �
¼ 1

�v

Z
�v

vLM
i;avg dv ð28Þ
σxx
(P )

2

−0.6

−0.4

−70 −60 −50 −40 −30 −20 −10 0  10  20  30

Fig. 21. In-plane stress for beam without sublayers. (a) At point 1 and (b)
at point 2.
where vLM is represented in terms of the LM3333 model;
GLM

i satisfies homogeneous Dirichlet boundary conditions
on the clamped edges. Since the displacement uEQ

i (corre-
sponding to EQ3333 model) can be represented in terms
of the basis functions corresponding to LM3333 model,
vLM ¼ uLM � uEQ can be chosen. Hence
B GLM
i ; uLM � uEQ

� �
¼ uLM

i;avg � uEQ
i;avg

� �
¼ BðuLM � uEQ;GLM

i Þ ð29Þ

If GEQ
i corresponds to BðGEQ

i ; vEQÞ ¼ vEQ
i;avg, with GEQ

i and
vEQ corresponding to the EQ3333 model, then we have
BðuLM � uEQ;GEQ

i Þ ¼ 0. Hence

uLM
i;avg � uEQ

i;avg ¼ B uLM � uEQ;GLM
i � GEQ

i

� �
¼
X
s2P�v

B uLM � uEQ;GLM
i � GEQ

i

� �
þ
X
s2P�v0

BðuLM � uEQ;GLM
i � GEQ

i Þ

6

X
s2P�v

kuLM � uEQkskGLM
i � GEQ

i ks

þ
X
s2P�v0

kuLM � uEQkskGLM
i � GEQ

i ks ð30Þ

where P �v is a small (one layer) neighborhood of region of
interest �v. It is now obvious that if the errors
kuLM � uEQks, kGLM

i � GEQ
i ks are large in some elements,

then they contribute significantly to uLM
i;avg � uEQ

i;avg. In this
case, the significant contribution comes from the region
near the singular edge. This is further substantiated by
using the RR-U model. Here, the LM model is used in
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beam without sublayers. (a) At point 1 and (b) at point 2.
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the vicinity of the singular edge only. Here, the error
kuLM � uRR-Uks, kGLM

i � GRR-U
i ks is small for the elements

near the singular edge. Hence, the displacement uRR-U
i is

very close to uLM
i everywhere, including the boundary. This

clearly demonstrates that the augmentation of the model
has to be done in the non-smooth regions (which, in this
case, is far from the region of interest) also, in order to
get good local solutions. In all the earlier examples, the
solution was smooth everywhere in the domain and model
pollution effect was negligible. This simple problem also
highlights one of the major drawbacks of ad-hoc global–lo-
cal computations, where the model and mesh are suitably
refined only in the vicinity of the region of interest (for de-
tails see [39,40]). Based on the analysis given above, an a
posteriori modeling error estimator (for the quantity of
interest) can be developed. This can be used, along with
the region-by-region approach outlined in this paper, to de-
velop an adaptive modeling error control algorithm. The
modeling error estimators will be discussed in a subsequent
paper.

The need for use of sublaminae in the vicinity of
regions where the solution is non-smooth, will be
further demonstrated through a study of the stress
obtained at points P 1ð40; 5;�zÞ and P 2ð60; 5;�zÞ, shown in
Fig. 19(a).
7.3.2. Stress analysis

The through thickness variation of the stress compo-
nents is given for two points P1 and P2. The in-plane stress
rxx obtained using EQ3333, LM3333 and RR-U model is
shown in Fig. 21. The equilibrium based postprocessed
stress rzz obtained with EQ3333, LM3333 and RR-U
model is shown in Fig. 22. From the figures we observe
that:

1. All the stress components, obtained by the EQ3333
models, are quantitatively and qualitatively different
from those obtained by the LM3333 model.

2. The RR-U strategy gives stress values that are very close
to those obtained by the LM3333 model.

Here, the LM3333 model was our benchmark. The
pointwise stresses due to the RR-U scheme are very close
to those obtained by the LM3333 model.

Since the exact solution of this problem is expected to
not be smooth in the vicinity of the singular edge, for a bet-
ter approximation graded sublaminae were used in the RR-
G model in the vicinity of the singular edge. The RR-G
strategy is compared with the RR-U strategy in Figs. 23
and 24. From the figures we observe that the RR-U and
RR-G strategy give in-plane and postprocessed stresses
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Fig. 24. Transverse normal stress (equilibrium based postprocessing) for
beam with graded sublayers. (a) At point 1 and (b) at point 2.

Table 10
Number of unknowns for multimaterial beam problem

Model Throughout
EQ3333

Throughout
LM3333

RR3333-U RR3333-G

Unknowns 28,812 50,421 38,955 92,757
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very close (overlapping lines). The example clearly demon-
strates the ineffectiveness of the EQ models. It further dem-
onstrates the effectiveness of the RR-U and RR-G
strategies. Note that with the RR-G strategy, the value of
rzz at the top reaches closer to the exact value of 1. Further
graded sublaminae and mesh has to be used in the vicinity
of singular edge to get the pointwise value of the transverse
stress components at the given point more accurately. This
can be achieved by using a suitable a posteriori error esti-
mator for modeling error, along with the RR-G strategy.

In Table 10, the number of unknowns for each of the
solution strategies, is given. From the table it is clear that
the RR-U or RR-G strategy leads to significant savings
in the computational cost as compared to the LM model.
8. Conclusions

In this study, we presented some families of plate mod-
els. A study of their local quality was carried out. A new
region-by-region modeling approach was introduced.
Below we give some of the major conclusions that can be
drawn from this study:

1. The equivalent, intermediate and layerwise models
employed in this study give accurate in-plane stresses,
as has been extensively reported in the literature for such
classes of models. These models display the expected
accuracy for transverse stress components also.

2. The equilibrium approach for computing transverse
stresses is accurate for all the models, for symmetric
and antisymmetric laminates.

3. The equivalent, intermediate and layerwise models fail
in the presence of singular vertices, singular edges and
material transitions. In all these cases the solution is
locally non-smooth and is strongly three-dimensional
in nature. This requires the layerwise models to be aug-
mented locally by using graded sublayers, along with a
geometrically graded in-plane mesh.

4. The concept of region-by-region modeling, with differ-
ent models in different regions of the domain has been
proposed and implemented.

5. Generally, using LM model in a one-layer neighborhood
of region of interest is enough. Outside this region, a low
order equivalent model can be used, leading to signifi-
cant reduction in computational cost.

6. The region-by-region approach allows for augmentation
of the model in regions where the three-dimensional
effects are very pronounced. The strategy allows the user
to put the layerwise model, along with graded sublayers
in the vicinity of the region where the solution is non-
smooth. This leads to better local resolution of the
three-dimensional effects and hence a more accurate
evaluation of any pointwise quantity of interest.

7. The proposed modeling strategy, along with robust a
posteriori discretization and modeling error estimators,
can be naturally used in a general adaptive finite element
analysis for any plate configuration.

References
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wandte Mathematik Eidgenössische Technische Hochschule CH-8092
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