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Abstract 

 

In this paper a novel region-by-region modeling approach for layered composite has been proposed. With this 
approach a Layerwise model (3D model) and equivalent single layer(2D Model) or intermediate (sublaminate) 
model can be put in any region of the domain. The three dimensional effects, in general, are localized at cutout 
boundaries, crack front, delaminated or damaged zones, re-entrant corners, free edges etc. It is shown that the 
Layerwise model is very accurate in such situations but very costly, computationally. Away from these structural 
details the equivalent or intermediate models are accurate when equilibrium based postprocessing is used for 
transverse stress components. It is shown that by judiciously using Layerwise model in the regions where solution is 
predominantly three dimensional in nature, and lower order models elsewhere, same accuracy (as that of Layerwise 
model) can be achieved at a significantly lower cost. A simple explicit modeling error indicator based on 
interelement jumps is used to adaptively select the models in the domain.  

Keywords: layerwise; equivalent single layer; region-by-region model, modeling error, equilibrium based 
postprocessing  

 

 

1.0  INTRODUCTION  

The laminated structures are widely used for the fabrication 
of critical components used in aerospace, automobile and 
other applications. Several dimensionally reduced models 
have been proposed in the literature for the analysis of the 
layered medium (see [1] for a brief review). The 
displacement based models like shear deformable models 
and zig-zag models are very popular as their cost of 
computation is independent of numbers of layers in the 
laminate. The major drawback of these theories is that the 
transverse stresses are not accurately predicted by these 
models. The equilibrium based postprocessing approach 
works most of the cases for thaese models but fails in the 
case of laminate unsymmetry layup, cut-out boundaries. 
This problem is circumvented by using refined models like 
Layerwise model. In this, the standard models are used 
layer by layer where continuity of displacements (and is 
some cases the transverse stresses) is imposed. In 
intermediate models some of the laminae are lumped above 
and below a lamina of interest. The proposed models can be 
seen in [1].  

The three dimensional effects are localized in the vicinity of 
boundaries (boundary layer), vertices, edges, damaged and 
delaminated zones (see Fig. 1). In the vicinity of these 
regions it is needed to enrich the approximation to capture 
these effects. This is achieved by proposed region-by-
region model [2]. The proposed model is an adaptation of 
the planar constrained approximation of [3] and h-d 
approach of [4].   

  
Fig. 1: General Scenario in Laminated Composites 
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2.0  PLATE MODELS  

Here, the displacement based plate models are used for the 
analysis of laminated structures. The displacement field is 
given as a series in terms of products of the director 
functions in the z-direction and planar functions. The plate 
models used in this study are presented briefly. 

2.1  Layerwise Models (LM) 
This is the most general three-dimensional representation of 
the displacement field. The director functions are taken as 
one dimensional basis functions defined over each lamina. 
The displacement field is given as 
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Where n1= n2 and n3 depends upon the order of transverse 
approximation v

z
u
z pp =  and w

zp  for u, v and w, 
respectively and the number of layers nl in the laminate. 
Hence, the number of unknowns grows with number of 
layers. Here, ( )zM i  are director functions in transverse 
direction defined as the one dimensional hierarchical basis 
functions. These are shown in Fig. 2(a). ( )yxui , , ( )yxvi ,  

and ( )yxwi ,  are the planar functions for three 
displacement components.  

The members of this family are denoted by 
the w

z
v
z

u
zxy pppLMp  where xyp  is the in-plane 

approximaion order. 

2.1 Equivalent Models (EQ) 
These are most popular models with, HSDT as a special 
case. The displacement fields corresponding to these 
models is represented as  
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Here, the number of unknowns is independent of number of 
layers. The director functions for this model are shown in 
Fig. 2(b). 

The members of this family are denoted by 
the w

z
v
z

u
zxy pppEQp . 

2.2 Intermediate Models (IM) 
Generally, the critical local quantities of interest like stress 
of state or damage are desired in a particular lamina or at 
the interface of two laminae. Analysis of initially damaged 
laminates with embedded lamina level damage or 
delamination requires accurate representation of the local 
displacement, strain and stress components. In such a case, 
the equivalent models cannot be used. The intermediate 
models are based on defining the director functions for a 
group of laminae and not the full laminate. The director 
functions are given as 
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Where n1= n2 and n3 depends upon the order of transverse 
approximation and number of lamina groups in thickness 
direction. The director functions for this model are shown 
in Fig. 2(c). 

The members of this family are denoted by 
the w

z
v
z

u
zxy pppIMp . 

 
Fig. 2: Director Functions Over Laminate Thickness for (a) 

Layerwise (b) Equivalent and (c) Intermediate Models 

3.0 REGION-BY-REGION MODEL (RR) 

3.1 Motivation 
In a structural component, the “hot-spots” are generally 
localized in the vicinity of structural details, boundaries of 
the domain (faces and edges), re-entrant corners, Cut-outs, 
existing delaminations and ply failure zones. The solution is 
unsmooth in the vicinity of these details, while it is very 
smooth in the remaining part of the domain (see Fig. 1 and 
3(a)). In order to get an accurate representation of the             
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solution everywhere, it is desirable to use an enriched 
approximation model (LM or IM with sublaminae (i.e. to 
divide a lamina into two or more laminae) if desired) only 
in the vicinity of the “hot-spot”, while in the rest of the 
domain, a lower order model will suffice. In this study, pxy 
is uniform over the whole domain, while the approximation 
enrichment is done by using either a higher value of i

zp  
and/or a more refined model, e.g. IM or LM. Thus it is 
important to build the capability to put any desired model in 
a specified region, rather than doing an overkill by using a 
higher model everywhere in the domain (which will be 
computationally very expensive). This concept has been 
introduced through the region-by-region modeling approach 
described in this section.  

     
(a)   (b) 

Fig. 3: (a) Typical Plate Domain with Cut-outs (b) and 
Meshing  

3.2 Concept of Regions 
Let us consider the domain given in Fig. 3(a), with the two 
circular cut-outs shown. In the vicinity of the cut-outs and 
the outer boundaries of the domain (shown grey shaded in 
Fig. 3), the solution is expected to be unsmooth, have 
severe boundary layer effect, and possibly be three-
dimensional in nature locally. Hence along with a 
refinement of the mesh, enrichment of the model will also 
be desired in the shaded regions. Thus, the domain is 
divided into multiple regions (three regions shown by 
different shades of grey). The plate model is then fixed for 
each region. For example, for the domain of Fig. 3(a) EQ 
may be used in the unshaded region; LM may be used in the 
region shaded dark grey.  

3.3 Concept of Groups 
Let the laminate have nl layers. The advantage of one 
dimensional hierarchic basis functions is exploited to define 
a generic representation of the group structure. The base 
two-dimensional mesh T2D (with nel2D number of elements) 
is made first over the projected two-dimensional surface 
(see Fig. 3(b) for example). Here meshes of triangles are 
used. Using this base two-dimensional mesh, the three 
dimensional mesh T3D of prismatic elements is made over 
whole domain, layer by layer. Hence, the number of 
elements is T3D is nel2D X nl. Each two-dimensional element 

DD T22 ⊆τ  is assigned the set of all the nl three 

dimensional elements DD T33 ⊆τ , whose projection on the 

plane is D2τ . This set is denoted by DP 2τ . For each 

element  D2τ , the type of model to be used through the 
thickness is then specified. The model is fixed by the 
region-by-region allocation described above. It may be 
noted that the neighbouring two-dimensional elements may 
have the same or different models by this strategy. For the 
element D2τ  we specify the number of groups Dng 2τ . For 

each group Di ngig
D 2, ,,2,1,

2 ττ L= , the three-

dimensional elements DD P 23 ττ ⊆  contained, are 
specified. Thus, a group will contain one or more three-
dimensional elements that are stacked on top of each other. 
Some of the possible groups are shown in Fig. 4 through 
frontal view. 

  
Fig. 4: Grouping Strategies for Region-by-region Model 

 3.4 Imposition of Constraints 

In this section the concept of constrained approximation 
will be discussed. The ideas are generalization of the 
concept introduced in [3] and [4]. In order to fix the ideas 
let us consider a one-dimensional example. Let us take an 
interval (0, L) with one element, as shown in Fig.5 (a). Let 
us also assume that piecewise linear basis functions (i.e. p = 
1) are defined over this mesh. 

 

 
Fig. 5: Constraint Imposition  

Let  

( )zMazv i

p

i
i∑

+

=

=
1

1
)(

    (4)  
be the representation of a function over this domain. Here, 

( )zMi  are the linear basis functions defined as shown in 
Fig. 5(a). Let us now subdivide this element into two equal 
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sub-elements, let the function ( )zv , given above, be 
represented in terms of the piecewise linear basis functions 
(as shown in Fig. 5(b)) as 

( )zMazv i

p

i
i∑

+

=

=
12

1

)(     (5)  

where, )(zMi  are the piecewise linear basis functions 
defined over the new mesh. Since both Eq. (4) and (5) 
represent the same function, the coefficients ia  can be 

expressed in terms of the coefficients ja . It is obvious that 

22
21

311 ;
2

; aaaaaaa =
+

==   (6) 

Similarly, the representation of ( )zv  over any finer mesh 
can be obtained in terms of the representation over the 
coarser mesh, with the new fine mesh coefficients ja  

constrained by the values of the coefficients ia  for the 
coarser mesh. This can be easily extended to any p-order 
approximation defined over the coarser and fine meshes. As 
shown below, the transverse representation of the finite 
element solution is defined over a group. However, the 
basic building block in the analysis is the individual three-
dimensional element D3τ . Hence, the approach given above 
will be employed to represent the element degrees of 
freedom in terms of the group degrees of freedom. The 
region-by-region model is denoted by the w

z
v
z

u
zxy pppRRp .  

3.5 Finite Element Implementation for Region-by-
region Model 
The total potential is given as  

}{}{}]{[}{
2
1 τττττ

τ

FuuKu TT −=Π ∑
  (7) 

Where, }{ τu denotes the displacement vector, ][ τK  denotes 
the stiffness matrix and }{ τF denotes the load vector 
corresponding to element )(3 ττ orD . The element degrees 
of freedom are constrained by group degrees of freedom as 

}]{[}{ GuAu ττ =  where ][ τA  is the elemental constraint 
matrix. Thus, the total potential can be re-written as 

}{][}{}]{][[][}{
2
1 τττττ

τ

FAuuAKAu TTGGTTG −=Π ∑  (8) 

Minimization of Π  gives the solution for }.{ Gu  Note that 
this gives the element stiffness matrix ][ τK  and load vector 

}{ τF  in terms of the constraint matrix, as 
}{}[}{];][[][][ ττττττ

τ FAFAKAK TT ==  (9) 

4.0 MODELING ERROR INDICATOR AND 
ADPTIVE SELECTION OF MODELS  

The total error for the finite element solution of a given 
plate model can be given (in norm) as  

||uu||||uu||||uu|| 33
M
h

MM
D

M
hD −+−≤−  (10) 

Where D3u  is the exact three dimensional solution of the 

given system, M
hu  is the finite element solution of the 

given plate model and Mu  is the exact solution of the 
given plate model. The first part on the right side of the Eq. 
(10) is the modeling error and the second part is 
discretisation error. When the discretisation error is 
controlled, the total error is due to modeling error only.  

Here, following [6] explicit type modeling error indicator is 
given in terms of interelement jumps. The novelty of the 
proposed indicator over the [6] is that it uses the 
postprocessed stresses to compute the interelement jumps 
thus leading to smaller value of the indicator. Here, it is to 
be noted that since postprocessed stresses are used the 
jumps at the top and bottom faces of an element are zero. 
Thus, the contribution to the interelement jumps is only due 
to jumps at the side faces of the elements.  

5.0 NUMERICAL RESULTS  

Here the key results are given to demonstrate the efficacy 
of the region-by-region model developed. Also the 
accuracy of the models and computational cost is 
comapared. Further, an example with ply level damage is 
given to elucidate the adaptive selection of the models for 
the region-by-region modeling approach.  

5.1 Comparison of Plate Models 

Here, [150/-150/150] laminate under cylindrical loading of 
the type ( )axqq /sin0 π=  is considered here. Here, a is 
the x-dimension and b is the y-dimension of the laminate. 
The laminate is made of high modulus Graphite/Epoxy 
composite material. The properties can be seen in [5]. The 
length to thickness ratio of the laminate is 4. The laminate 
is infinite in y direction. The thickness of outer laminae is 1 
mm each and middle lamina is 2 mm. The through thickness 
variation of transverse shear stress xzτ  at point (0,b/2) is 
given in Fig 7. The stress is nondimensionalized as 

0/ qxzxz ττ = . The stress obtained directly from the finite 
element data and use of constitutive equation is given in 
Fig. 7(a) and that obtained by the use of equilibrium based 
postprocessing is given in Fig. 7(b). The region-by-region 
modeling strategies RR-I and RR-II for this numerical 
example are given in Fig. 6(a) and (b), respectively. In RR-I  
the darker region shows the LM3332 model, the light 
shaded region shows LM3112 model and in the rest of the 
region EQ3112 model is used.  In RR-II model, the darker 
region uses EQ3332 model while rest of the domain uses 
EQ3112 model. The results are also obtained using LM3332 
and EQ3332 models in the whole domain. The results are 
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compared with exact three-dimensional elasticity solution 
given in [5]. 

The computational cost for each of the models is given in 
Table 1. 

   
(a)  (b) 

Fig. 6: Region-by-region Schemes for [150/-150/150] Laminate 
Under Cylindrical Bending (a) RR-I (b) RR-II 

    
(a)   (b) 

Fig. 7: Through Thickness Variation of Transverse Shear 
Stress in [150/-150/150] Laminate Under Cylindrical Bending 

(a) Direct Stresses (b) Postprocessed Stresses 

Here, it is to be noted that the meshes shown in Fig. 6 are 
truncated in y-direction. 

Table 1: Number of Unknowns for Models Used 

Models LM3332 EQ3332 RR-I RR-II 

Unknowns 11875 6875 5239 4715 
 

From the Fig. 7 it can be seen that  

 The LM3332 model accurately predicts the stress 
components both by direct and postprocessed approach. 

 The direct stresses obtained using EQ3332 model shows 
jumps at interlaminar interface whereas with 
postprocessing the stresses are accurate. 

 The stresses obtained by RR-I and RR-II models by 
direct and postprocessed approach are very close to the 
exact one.  

 The stresses obtained by the RR-II model are very close 
to those obtained by the EQ3332 model. 

From the Table 1 it can seen that  

 The LM3332 model is computationally very expensive. 
 The RR-I and RR-II strategies are computationally very 

economical. The savings in computational cost using 
region-by-region models over layerwise can be upto 
50%.  

5.2 Modeling Error Estimation and Control 
Here, [0/90] square laminate of dimensions a=b=100 mm 
with all edges clamped and under uniform transverse load 
of intensity 0.0001 N/mm2 is considered. The laminate is 
made of M55J/M18 material. The thickness of each lamina 
is 0.1 mm. The thickness of interface between the layers is 
0.01 mm and is made of M18 Epoxy. The bottom layer has 
a square damage of size 25X25 mm in the fibre fracture 
mode. 

The starting model is EQ3333 in the whole domain. 

Note: The discretisation and modeling error tolerance 
specified for this study is 5% each.   

The initial mesh with the location of damage is shown in 
Fig. 8(a). The discretisation error for this mesh is 58%. The 
discretisation error is controlled by controlling error in the 
energy norm using smoothening based discretisation error 
estimator and control methodology developed by authors in 
[1]. The Fig. 8(b) shows the adapted mesh. The 
discretisation error for this mesh is 0.9%.  

 

    
(a)   (b) 

Fig. 7: (a) Initial Mesh with Location and Size of Damage and  
(b) Final Adapted Mesh  

The densities of energy of the error for the sequences of the 
models adapted are shown in Fig. 8. Here, it is to be noted 
that the density of energy of the error is 
nondimensionalized by the maximum density of energy of 
the error for the lowest order (EQ3333) model.  

The key points of this study are:  

 The modeling error for EQ3333 model everywhere in 
the domain is 16% (see Fig. 8(a)). The region near the 
damage front shows the highest error in the density of 
energy of error. 

 The second sequence is LM3333 model in the region of 
highest error (see Fig. 8(b)). In the rest of the domain 
EQ3333 model is present. The modeling error for this 
sequence is 16%. 
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 The next model is same as above with two sublayers in 
the bottom lamina. The modeling error for this sequence 
is 8%  (see Fig. 8(c)). 

 Finally, the model same as in above with additional two 
sublayers (total four sublayers) in the bottom lamina 
gives the modeling error of 4%, which is below the 
specified tolerance. 

 

    
(a)   (b) 

   
(c)   (d)   

Fig. 8: Densitiy of Energy of Error for Sequences of Models 
Adapted (a) EQ3333 Model Everywhere (16%) (b) EQ3333 + 

LM3333 Model (16%) (c) EQ3333 + LM3333 Model with 2 
sublayers in bottom lamina (8%) and (d) EQ3333 + LM3333 

Model with 4 sublayers in bottom lamina (4%)   

The models adapted in the first step of the sequences of the 
adapted models are shown in Fig. 9. The darker region 
shows the LM3333 model while rest of the region has 
EQ3333 model.  

  
Fig. 9: The Models Adapted for the First Step in the Sequence: 
in the Darker region LM3333 Model elsewhere EQ3333 Model 

2.0 CONCLUSION 

In this paper a families of plate models for layered 
composites have been proposed. The novel concept of the 
region-by-region modeling approach has been successfully 
implemented. Further, a reliable explicit type modeling 
error indicator using postprocessed transverse stresses has 

been proposed for the adaptive selection of models in the 
region-by-region strategy. The key points from this study 
that can be concluded are:  
 The layerwise modeling approach is very accurate 

pointwise in predicting the state of stress obtained both 
with direct and postprocessing approach but 
computationally very expensive. 

 The equivalent model is also accurate with 
postprocessing approach and computationally very 
economical. 

 The region-by-region modeling approach is as accurate 
as layerwise model and computationally very 
economical. The saving in computational cost can be as 
high as 25-50% over the layerwise model. 

 The proposed modeling error indicator is reliable. 
 The layerwise model reduces the modeling error. 
 The concept of sublayer is very effective in reducing the 

modeling error. 
 The damaged front region requires the highest order 

models with sublayers to capture the effects accurately. 
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