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Reliable Computation of Local Quantities of Interest in 
Composite Laminated Plates 

P. M. Mohite* and C. S. Upadhyay† 
Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India  

In the present study a family of plate models available for the analysis of laminated 
structures is compared under transverse loading for the point-wise data like maximum 
transverse deflection and local state of stress. Here, the plate models compared are Higher-
order-Shear-Deformable (HSDT) model, Hierarchic model and Layerwise model. It is seen that 
all the models predict the deflections accurately. The local state of stress is computed using 
direct finite element data and equilibrium approach of post processing as well. It is seen for 
HSDT and hierarchic models that the state of stress computed using direct finite element 
data is significantly different from exact one, whereas for the layerwise model it is accurately 
predicted. With equilibrium approach of post processing the local state of stress is 
accurately predicted by all the models. Further, the effect of the model on first-ply failure 
load obtained using the equilibrium approach of transverse stress extraction and Tsai-Wu 
failure criterion is studied. The effect of discretization error control by a one shot adaptive 
approach has been studied for the first-ply failure loads. It is seen that the control of 
discretization error together with equilibrium approach of post processing leads to 
significant reduction in the computed values of failure load.  

Nomenclature 
x,y,z = global coordinates 
a,b = plate dimensions 
t = laminate thickness 
ti = ith lamina thickness 
pxy = in-plane approximation order 
pz = transverse approximation order 
S = aspect ratio 
q0 = intensity of transverse loading 
u(x,y,z) = generalized displacement 
z  = non-dimensionalised plate thickness 

I. Introduction 
HIN structures made of composite laminates are increasingly used in the manufacture of structural components. 
The enhanced strength to weight ratios make composites especially attractive for aerospace applications. 

However, being heterogeneous in nature microscopically, the macroscopic behavior of these structures can be 
complex. One important aspect of the response of laminated structures that a designer should consider is the onset of 
failure in a laminated structure. Onset of failure in composite laminated plates requires the local stress state to be 
known in the structure, particularly near structural details; at interlamina interface and in the individual lamina. 
Accurate prediction of the local stress state becomes important for a reliable estimate of the failure load, which may 
be crucial for a safe design of the component. 

With an increasing demand to maximize payload carrying capabilities of aerial vehicles, shape and topology 
optimization of structural components has become an important thrust area. All the optimization problems posed in 
this context are constrained approximation problem with constraints on failure load, maximum transverse deflection, 
buckling load, natural frequency, etc. In order to obtain an acceptable optimally designed component, from a 
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computational analysis, it becomes imperative to estimate the constraint quantities accurately, at each step of the 
optimal design process. 

The goal of this study is to determine the quality of the local quantities of interest, obtained using various 
families of plate models commonly used in engineering practice. The comparisons will be done with respect to the 
exact three-dimensional elasticity solutions, for both symmetric and anti-symmetric stacking of the laminae. The 
values of the in-plane stresses obtained directly from the finite element computations will be compared to the 
elasticity solution. For the transverse stress components, the values obtained from the finite element solution 
directly, and those obtained using the equilibrium approach of post-processing, will be compared to the exact ones. 
Further, the study aims at clearly demonstrating the need for proper mesh design in the computation of critical 
failure loads. 

II. Plate Models 
Several plate theories have been proposed in the literature.1-3 The goal is generally to give a higher order 

representation of the transverse shear terms, as in Ref. 1, or to design families of plate theories with guaranteed 
convergence to the three-dimensional solutions in some norm, as in Ref. 2. However, not much can be said about the 
accuracy of the local stress state and displacements. In the third type of plate models the individual lamina have 
continuous through thickness representation of displacements (see Ref. 3). The goal of this study is to determine the 
quality of the local state of stress, obtained using various families of plate models commonly used in engineering 
practice. A detailed comparison will be done with respect to the exact three-dimensional elasticity solutions18-20 for 
both symmetric and anti-symmetric stacking sequence of the laminae. The values of the in-plane stresses obtained 
directly from the finite element computations will be compared to the three-dimensional elasticity solution. The 
effect of model order and in-plane approximation order, on the accuracy of these stresses will be demonstrated. For 
the transverse stress components, the values obtained from the finite element solution directly, and those obtained 
using the equilibrium approach of post-processing, will be compared to the exact ones. Further, the study aims at 
clearly demonstrating the need for proper mesh design in the computation of critical failure loads. Another important 
goal of this study is to obtain reliable values of the first-ply failure load, using the available models, and compare 
them with those given in Ref. 22. It will be demonstrated that depending on the applied boundary conditions, 
stacking sequence and ply orientation, the reliable values of the first-ply failure load can be significantly lower than 
those obtained using the commonly used meshes and polynomial approximations. 

Traditionally, for the plate and shell like thin structures, several plate theories have been proposed. These can be 
broadly classified as: 
 

1. higher order shear deformable theories (HSDT); 
2. hierarchic plate theories and 
3. layerwise theories 

A. Higher Order Shear Deformable Theories (HSDT) 
Here, one such theory due to Reddy1 is taken as representative theory from this group. It is a third order shear 

deformable theory with a parabolic distribution of transverse shear strains through thickness of the plate, in order to 
satisfy the condition of zero transverse shear stress on the top and bottom face of the plate. 

B. Hierarchic Plate Theories 
In these, the displacement components have a zig-zag or hierarchic representation through the thickness. The 

hierarchic plate models are a sequence of mathematical models, the exact solutions of which constitute a converging 
sequence of functions in the norm or norms appropriate for the formulation and objectives of analysis. The 
construction of hierarchic models for homogeneous isotropic plates and shells was given by Szabó and Sharmann2 
and later for laminated plates by Babuška, Szabó, and Actis4 and Actis Szabó and Schwab5. The solutions of the 
lower order models are embedded in the highest order model and these models can be adapted according to the 
requirement. 

In these models the displacement field is given as product of functions that depend upon the variables associated 
with the plate, shell middle surface, and functions of the transverse variable. The transverse functions are derived on 
the basis of the degree to which the equilibrium equations of three-dimensional elasticity are satisfied. The Fourier 
transform of the equations of motion is performed which results in two-point boundary value problem for the 
transverse functions. These are characterized by the geometric parameters and wave vector. These functions are 
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expanded in powers of wave vector around zero. The transverse functions are obtained by solving equations 
obtained by substituting the expanded functions into the transformed form of equations of motion. 

C. Layerwise Theories 
In these theories, the individual lamina has continuous through thickness representation of displacements. In the 

present study, the layer-by layer model proposed by Ahmed and Basu3 is adopted. In this model, all the 
displacement components are represented as product of in-plane and out-of-plane approximating functions of same 
order. The hierarchic approximating functions were used. 

III. Mathematical Formulation of Plate Theories 
The generic representation of the displacement field for the plate models is given as: 
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Note that ( ) ( ) ( )LyxUyxUyxU ,,,,, 631 , ……are the in-plane components of displacement terms ),,( zyxu . 

Similarly, ( ) ( ) ( )LyxUyxUyxU ,,,,, 742  are the in-plane components of displacement terms ),,( zyxv . The in-

plane components of transverse displacement ),,( zyxw are given by ( ) ( )LyxUyxU ,,, 85 . The transverse 

functions are given in terms of the normalized transverse coordinate ztz )/2(ˆ =  (where t  is the thickness of the 
laminate). 

For the higher order shear deformable model the functions ( )ẑφ  are given as: 

 ( ) ( ) ( ) ,1zzz 521 =φ=φ=φ  ( ) ( ) ,43 zzz ==φφ  

 ( ) ( ) ( ) ( ) ,011876 ==== zzzz φφφφ  ( ) ( ) 3
109 zzz == φφ  

Remark: The in-plane displacement components have cubic representation and transverse component is constant in 
laminate thickness. The quadratic term of in-plane displacement components drop out when the zero shear condition 
on the top and bottom face of the plate is enforced. 

 
For the hierarchic family of the plate models the transverse functions ( )ẑφ  are given as: 
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Where Qij are the coefficients of the global constitutive relation, in the global xyz -coordinate system. For other 
transverse functions see Ref. 5. 

The layerwise model used in this paper is adapted from Ref. 3. The present layerwise plate model is an 
improvement over the model given in Ref. 3, as the original layerwise model had same order transverse 
representation for all three displacement components, whereas the present layerwise model can have different 
approximation in transverse direction for individual displacement components. The different approximation for 
displacement components is used as suggested by Schwab6, for a single lamina, to take into account the bending and 
membrane actions. The displacement component lu , for an element in the thl  layer, is given as 
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where xyp  and u
zp  are the in-plane and transverse approximation order (for component lu ) and ( )yxN j ,  and 

( )zM k  are in-plane and transverse approximation functions, respectively. Similarly the other components lv  and 
lw  can be expressed. The transverse approximation orders for u  and v  displacement components will be the 

same, while that for the component w  can be different. Hierarchic basis functions will be used for in-plane and 

transverse representations of the solution components. In this study, 2=xyp  or 3 and u
zp , 1=v

zp , 2, 3 and 

,0=w
zp  1, 2, 3 will be used. 

The solution of the plate problem is decomposed into a membrane and a bending part by Schwab.6 For the 
membrane part the in-plane displacement components have symmetric representation, whereas, the transverse 
displacement has anti-symmetric representation. (0,0,1), (2,2,1), (2,2,3) etc. are the transverse representations of 
displacement components for membrane part in increasing model order. For the bending part, the in-plane 
displacement components have anti-symmetric representation, whereas, the transverse displacement has symmetric 
representation. (1,1,0), (1,1,2), (3,3,2) etc. are the transverse representations of displacement components for 
bending part in increasing model order. When the problem is dominated both by membrane and bending actions 
then the representations of displacements has to be chosen to satisfy both membrane and bending requirements. In 
this case (1,1,1), (2,2,2), (3,3,3) etc. representations are used. The authors have developed this capability and 
implemented it successfully in this study. 

Further, In the present study all the displacement components have same order of approximation in the in-plane 
direction (i.e. the xy -direction). 
Remark: The higher-order shear deformation model and hierarchic model do not enforce transverse stress continuity 
at the interfaces. In the layerwise model the continuity of transverse stress and zero transverse stress on top and 
bottom faces of laminate can be enforced. Although, in the present layerwise model these conditions are not 
imposed, it will be shown through numerical examples that the transverse shear stress components show much 



 
American Institute of Aeronautics and Astronautics 

 

5

smaller ( it is close to zero in most of the examples studied) jumps than those computed by using higher-order shear 
deformable and hierarchic models, and the stresses are close to zero on top and bottom faces of the laminate. 

IV. Finite Element Formulation 
For a given lth lamina, the constitutive relationship in principal material directions is given as: 

 { } [ ]{ })l()l()l( C ε=σ  (4) 

where { }Tllllll
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)(
11)( γγγεεεε =  are the components of strain. The subscripts 1, 2 and 3 denote the 

three principal material directions. The constitutive relationship in global xyz coordinates can be obtained by usual 
transformations. 

The potential energy, Π, for the laminate is given by 

 { }{ } ∫∫ −+
εσ=Π

RRV
dswq-dV

2
1

U
 (5) 

Where V is the volume enclosed by the plate domain, R+ and R- are the top and bottom faces of plate and q(x,y) is 
the transverse applied load. The solution to this problem uex is the minimizer of the potential energy Π. It is obtained 
by the solution of following weak problem: 

Find )V(u °∈Hex  such that 

 ( ) ( ) ( ) ( )Vvvv,u °∈∀= Hex  (6) 

where ( ) [ ] ( ){ }DonandH Γ=∞<φ==° 0MUu|UV U ,  is the strain energy with ),( uu
2
1

= . Here, 

DN ΓΓ=Γ U  is the lateral boundary of the plate with Dirichlet part DΓ  and Neumann part NΓ . Note that in this 
study Dirichlet means the part of lateral boundary where geometric constraints are imposed, while Neumann stands 
for the stress-free parts of the lateral boundary. Further, M depends on the type of Dirichlet conditions on the edge, 
i.e. soft-simple support; hard simple-support; clamped etc. 

Hence, we have 

 ( ) ( ) ( ) ( ){ } ( )( ){ }∑ ∫∑ εσ==
l

l
V

l
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exl
l

exlex dV
l

vuv,uv,u  

and 

 ( ) ∫
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=
RR

3dsqv
U
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where lV  is the volume of the lth lamina in the laminate; v3 is the transverse component of test function v. 

V. Error Estimator for Local Quantity of Interest 
State of stress at a point plays a key role in the first-ply failure analysis of laminates. When the finite element 

analysis is employed the issue of modeling error (error due to model employed in the analysis of laminate, as 
compared to three dimensional elasticity) and discretization error becomes important. Adaptive methods for the 
control of discretization error are available in literature (see Ref. 7-Ref. 9). These are based on the control of energy 
norm of the error, )e(||e|| 2=Ω  (where )e(  is the strain energy of the error). This does not guarantee that the 
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quantity of interest is also accurate. In Ref. 10-Ref. 12 it was shown that the error in the quantity of interest can be 
given in terms of error in the solution of auxillary problem. The aim of Ref. 12 and Ref. 13 was to control 
“pollution” error in the quantity of interest. Various smoothening based a-posteriori error estimation techniques for 
laminated composites have been proposed by the authors for the local quantity of interest.14 Further, estimation and 
control of the error in the quantity of interest and “one-shot” adaptive approach for the control of discretization error 
was proposed in Ref. 15 and used for the accurate analysis of first-ply failure loads in Ref. 16. In the present paper 
the issue of control of modeling error is not addressed. Reference 17 can be referred as an example for the modeling 
error. In the following sections the main steps of error estimation for local quantity of interest and one shot 
adaptivity are given from Ref. 15. 

A. Definition of Error Estimator 
The variational formulation in Eq. (7) is used to obtain the finite element solution ( )VHu °∈ hh , where 

( ) [ ] ( ){ }D
p

ih on321iS xy Γ=∞<=∈φ== τ
° 0MU,u|,,,;UuVH LU . 

Letting D2ϖ  be the plate mid surface with boundary D2ϖ∂ , we define xyp
τS  as the set of globally continuous 

piecewise polynomials of order xyp  over each element ( )D2ϖ∈ττ . 

 ( ) ( ) ( )VHvvv,u °∈∀= hhhhh  (8) 

Note that [ ] hh Uu φ=  is the representation of hu , following (1). The error in the solution can be given as 

hex uue −= . An approximation to the error can be given as huue ** −=  where kp* xy+
τ∈ Su  is obtained for each 

element τ  as described below (see Ref. 14 for details). In all the numerical examples 2k =  has been employed. 
For an element τ  let τP  be the patch of elements in a one-layer neighborhood of τ , as shown in Fig. 1. 
Over the patch τP , define  
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The coefficients ijA  are obtained by minimizing ∫
τ
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PA

2
h dA

2
1J |UU| *  where 

τPA  is the area of the patch τP  

(where D2PA ϖ⊂
τ

). This definition is called the 2L  projection based error estimator (see Ref. 14 for details). 
 
 
 
 
 
 
 
 
 
 

Fig. 1 One layer neighborhood patch around element τ Fig. 2 Plate domain 



 
American Institute of Aeronautics and Astronautics 

 

7

B. Auxillary Problem 
Let us consider the domain of Fig. 2. Let us further assume that we are interested in the value of stress 

component yyσ  in the topmost layer, for all points in the element τ  (shown in Fig. 2). 

In order to accurately obtain the pointwise information in τ , we will let ∫σ=σ
τ l

tv

yyl
l

avgyy dv
v
1)(

,  as the quantity of 

interest. Here, l
l tAV ττ =  is the volume enclosed by the element τ  in the thl  layer. Hence,  

 ( )∫ ∫
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z

zz A
yy
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l
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tA
1)(

,  (10) 

with lt  as the thickness of the thl  layer; 1lz −  and lz  as the lower and upper z  coordinates for the thl  layer; τA  
is the area of element τ  (or group of elements). 
Remark: In this study, the quantity of interest used is the stress component which contributes maximum to the failure 
index for the Tsai-Wu criterion. 

Corresponding to )(
,

l
avgyyσ  we define the following auxillary problem: 

Find ( )VHG °∈  such that 

 ( ) ( ) ( ) ( )VHvvvv,G )(
,

°∈∀=σ= l
avgyy  (11) 

Letting ( )vHG °∈ hh  be the finite element solution for G , we have 

 ( ) ( ) ( ) ( )VHvvvv,G )(
,

°∈∀=σ= hhh
l

avgyyhh  (12) 

Note that hu  and hG  can be solved simultaneously (see Ref. 15). Multiple regions can be handled 
simultaneously. 

C. Estimators for Error in Quantity of Interest 
From the previous section we have: 

 ( ) ( ) ( ) ( ) ( )euuuuuu,G =−=−=− hexhexhex  (13) 

From the orthogonality property of the error in the finite element solution, we have: 

 ( ) ( ) |e||uu,GG| =−− hexh  (14) 

or 

 ( ) ( ) ( ) ||e||||e||||e||||e|||uu,GG||uu,GG||e| GuGu ≤≤−−≤−−= τ
τ

τ
τ

∑∑ hexhhexh  (15) 

where eeu =  stands for the error in the actual solution and Ge  stands for the error in the auxillary problem. 

D. Definition of a-posteriori Error Estimators for Local Quantity of Interest 
Replacing ue  with *

ue  and Ge  with the estimate *
Ge , we can get many definitions of the estimators (see Ref. 

15), for the error in the quantity of interest. Here we employ 
Estimator (E): 
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E. One Shot Adaptivity for Quantity of Interest 
We let ( )xyp

hu , ( )xyp
hG  be the finite element solutions of the order xyp  for exu  and G . Thus, we can approximate 

error ue  as ( ) ( ) ( )xyxyxy p
h

1p
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1p uuee uu −=≈ ++  and hence ( ) ( )( )1pxy +≈ uee . It can be shown that 
( )( ) ( ) ( )( )∑
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+++ = 1p1p1p xyxyxy
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Letting τ  be the element of interest and P the one-layer neighborhood of τ , the total error can be partitioned 
into two parts as follows: 

 ( ) ( ) ( ) |e||e||e| 21 +≤  

where 

 ( ) ( ) ( ) ( )∑ ∑
∈τ ∈τ
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P P

21
'
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where 'P  is the set of elements lying outside P. Following Ref. 12, ( )e1  is the local part of the error and 
( )e2  is the “pollution” in the quantity of interest (i.e. far-field influence). Following Ref. 13 and Ref. 15, we have: 

 ( ) ∑
∈τ

≤≤
P

p
1

xyhC||e||||e|||e| Gu  (18) 

Beyond P, the auxillary function is well behaved and hence 

 ( ) ∑
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'

||e||||e|||e| Gu
P

p2
2
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The goal of the adaptive process is to refine the given mesh selectively such that the total error is below the 
specified tolerance, i.e. 

 ( ) ( ) |u||e| hη≤  (20) 

where ( ) |u| h  is the computed value of the desired quantity of interest; ( ) ( ) EeFeF |||| =  is obtained using 

definition E for the error. Following Ref. 8, we will define 
h

h
r d=τ  as the ratio of the desired ( )dh  to the actual 

mesh size (h) of the element τ . The desired mesh should have the least number of elements, of all possible meshes. 
Hence, following Ref. 8, Ref. 15, we minimize 

 ∑
τ τ

2r
1  (21) 

subject to constraint Eq. (20). Thus, we define new objective function (to be minimized) as, 



 
American Institute of Aeronautics and Astronautics 

 

9

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−χλ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−χλ+= ∑∑ ∑

∈ττ ∈ττ
ττ

'
,, ,,

P
2d

2
2

P
1d

2
12 ddr

1J  (22) 

where ( ) |ê,ê| Gu, =χ τd  is the desired contribution to the total error from element τ ; uê , Gê  are the desired 
errors in the element τ ; 1λ  and 2λ  are the Lagrange multipliers; ( ) |u|, h11d η=  and ( ) |u|, h22d η=  are 

the desired errors in the region P and 'P , respectively (here 21 η+η=η ). Using Eq. (18) and Eq. (19) 2
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Minimizing J with respect to τr , 1λ  and 2λ  we get:  
For P∈τ , 
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Using the computed values of τr , the desired mesh sizes can be computed. The mesh can be locally refined 
several times based on the desired mesh size. This leads to a final adaptively refined mesh. 
Remark: The partition of the contribution to the error from P and P’ is based on the user. The final mesh depends on 
the choice of 1η  and 2η . In this study 221 /η=η=η  is taken. In all the computations in this study, %10=η  is 
used. 

VI. Tsai-Wu Failure Criterion 
It is a complete polynomial criterion and is an extension of the criterion used for anisotropic materials (see Ref. 

18). 
The Tsai-Wu criterion is given by 

 1≥+= jiijiiTW FFFI σσσ  (27) 

where iji FF ,  are the strength tensor terms and iσ  are the stress components and  
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CT XX

F 11
1 −= ; 

CT YY
F 11

2 −= ; 
CT ZZ

F 11
3 −=   

 
CT XX

F 1
11 = ; 

CT YY
F 1

22 = ; 
CT ZZ

F 1
33 =   

 244
1

R
F = ; 255

1
S

F = ; 266
1

T
F =   

 CTCT YYXXF
2
1

12 −= ; CTCT ZZXXF
2
1

13 −= ; CTCT ZZYYF
2
1

23 −=  (28) 

where YX ,  and Z  are strengths in 1, 2 and 3 directions, respectively. Subscript T  denotes tensile strength, and 
C  denotes compressive strength. R , S  and T are shear strengths in 12 , 13 , and 23  planes, respectively. 

VII. Numerical Results 
One of the main goals of this study is to compare the various families of plate models, with respect to the quality 

of the pointwise stresses obtained using the models. All the models are compared for the transverse maximum 
deflection and stress profiles for various ply orientations, stacking sequences and boundary conditions under 
transverse loadings. In the present study, three types of transverse loadings are considered: uniform pressure, 
sinusoidal and cylindrical bending. 

In the first section of numerical results, the effect of plate models on the accuracy of pointwise data i.e. 
transverse deflection and all the stress components at a point, is addressed. The stress components are either directly 
computed using constitutive equations, or the equilibrium approach to obtain transverse normal and shear stresses. 

In the second section, the effect of the plate models on the accuracy of first-ply failure load is addressed. 

Effect of Models on Accuracy of Pointwise Data 
Comparison of Transverse Deflection 

In this section the transverse deflection component obtained using different plate models and in-plane 
discretization is compared with the exact three-dimensional elasticity results reported in Ref. 19, for cross-ply 
laminate sequence with material properties given in Table 1. The plate has dimension a  along x -axis and b  along 
y -axis, and is subjected to sinusoidal loading of the form 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

b
y

a
xyxqyxq ππ sinsin,, 0  (29) 

All edges of the plate are simply supported (see Table 2 for all BC’s used). The transverse deflection at 

⎟
⎠
⎞

⎜
⎝
⎛ 0,

2
,

2
ba  is reported in Tables 3 and 4. Note that in all the computations the layerwise model uses (3,3,2) model 

(unless specified), that is, transverse approximation for u  and v  is cubic and quadratic for w . For the hierarchic 
family 11 field model is used, while for the HSDT model (3,3,0) approximation is used. Square plate with cross ply 
laminae, such that outer laminae have orientation o0 , and total thickness of o0  laminae is equal to total thickness of 

o90  laminae. Also laminae with same orientation have equal thickness. In this study, 7 and 9-layered laminate is 

studied. The transverse deflection is nondimensionalised as 
tSq

Qww 4
0

4
*

12
π

= , where 

( )[ ] ( )211223221112 1/214 ννν −+++= EEGQ . Here, 3=xyp  is used for all models. Numbers in parenthesis show 
the % error with respect to exact solution. 

From tables 3 and 4 we observe that: 
1. The layerwise model predicts the transverse deflection accurately for all the aspect ratios. The error in 

the values ranges from 0-0.15 %. 
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2. The HSDT and hierarchic model are far from the exact one for the aspect ratios upto 10=S . The error 
for this aspect ratios ranges from 5-16 %. 

3. For the HSDT and hierarchic model with aspect ratios 10>S  the displacement is close to exact. The 
error is 0.1-3 %.  

4. The hierarchic theory is closer to the exact one; as compared to the higher order shear deformable 
theories. 

 
Table 1 Material Properties for Ref. 18-Ref. 20. 

 
Property E1 E2 G12 G23 υ 12=υ 23 
Value 25×106 psi 106 psi 0.5×106 psi 0.2×106 psi 0.25 

 
Table 2: Boundary conditions 

 
Boundary Condition At y=0 and y=b At x=0 and x=a 
Soft Simple Support v=w=0 u=w=0 
Clamped u=v=w=0 u=v=w=0 
Free u, v, w≠0 u, v, w≠0 

 
Table 3:Non-dimensional transverse deflection ( )*w  for 7 layered cross-ply laminate. 

 
S Pagano19 Layer-wise HSDT Hierarchic 
2 12.342 12.341 (0.00) 10.918 (11.54) 10.358 (16.07) 
4 4.153 4.153 (0.00) 3.594 (13.46) 3.575 (13.92) 

10 1.529 1.529 (0.00) 1.417 (7.33) 1.444 (5.56) 
20 1.133 1.133 (0.00) 1.096 (3.26) 1.113 (1.76) 
50 1.021 1.021 (0.00) 1.005 (1.56) 1.017 (0.39) 
100 1.005 1.005 (0.00) 0.993 (1.19) 1.004 (0.09) 

 
Table 4:Non-dimensional transverse deflection ( )*w  for 9 layered cross-ply laminate. 

 
S Pagano19 Layer-wise HSDT Hierarchic 
2 12.288 12.306 (-0.15) 10.703 (12.89) 11.632 (5.34) 
4 4.079 4.079 (0.00) 3.530 (13.46) 3.664 (10.17) 

10 1.512 1.512 (0.00) 1.406 (7.01) 1.438 (4.89) 
20 1.129 1.129 (0.00) 1.093 (3.18) 1.110 (1.68) 
50 1.021 1.020 (0.09) 1.001 (1.96) 1.017 (0.39) 
100 1.005 1.005 (0.00) 1.004 (0.09) 0.993 (1.19) 

 
Comparison of Stresses 

Here, various stress components for symmetric and antisymmetric laminates, under cylindrical bending, are 
compared with the exact values given in Ref. 19-Ref. 21. 

 
Case 1: In this case [0/90/0], square laminate with all edges simple supported is considered. All the laminae are 

of equal thickness. The sinusoidal loading is of the same form as above. The in-plane stresses are 

nondimensionalised as ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= zzbazba

Sq xyyyxxxyyyxx ,0,0,,
2

,
2

,,
2

,
2

1,, 2
0

τσστσσ  and the transverse stresses 

as ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= zazb

Sq yzxzyzxz ,0,
2

,,
2

,01,
0

ττττ . The in-plane stress components are shown in Fig. 3 and transverse 

stress component is shown in Fig. 4. 
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Case 2: In this case, [165/-165] laminate under cylindrical loading is considered. The loading is of the form 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ π=

a
xxqyxq 0 sin, . The plate is infinite along y -direction. All the laminae are of equal thickness. The stress 

components are nondimensionalised as ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛= za

Sq xxxx ,
2

1
2

0
σσ  and ( ) ( ) ( )( )zz

Sq yzxzyzxz ,0,,01,
0

ττττ = . The in-

plane stress components are shown in Fig. 5 and transverse stress components are shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 [0/90/0] laminate; all edges simply supported, in-plane stresses. 

Fig. 4 [0/90/0] laminate; all edges simply supported, transverse stresses. 

Equilibrium stressesDirect stresses

Fig. 5 [165/-165] laminate under cylindrical bending, in-plane stresses. 
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Case 3: The problem description is same as previous sub-subsection. The stress components are 

nondimensionalised as case 1 above. The point-wise stress values are given for layerwise model in Tables 5 and 6. 
In these tables the first row gives the value at 0=z  while in the second maximum values and in the third row their 
location quoted in parenthesis is reported for the components xzτ  and yzτ . 

From the results it is observed that: 
1. The in-plane stress components are accurately predicted by all higher order models.  
2. The transverse shear stress components computed directly from finite element solution is accurate for 

the layerwise model whereas, those obtained by HSDT and hierarchic models are significantly different 
both qualitatively and quantitatively. 

3. Using the equilibrium approach of post-processing leads to more accurate transverse stress components 
for all the models.  

4. The layerwise model predicts accurately the point-wise values of the stress components for all the 
values of S . 

Effect of Models on Accuracy of Predicted Failure Load 
The laminates considered are [0/90]S and [-45/45/-45/45]. The plate is either clamped on all edges or simple 

supported. The top face of the plate is subjected to uniform transverse load ( ) 0, qyxq = . The plate dimensions are 
)9(9.228 inmma =  and )5(127 inmmb = . The material properties are given in Table 7. The first-ply failure load 

is nondimensionalised as 4

22

0 S
E
q

FLD = . The results obtained from the present analysis are compared with those 

reported in Ref. 22. 
 

Direct stresses 

Equilibrium stresses 

Fig. 6 [165/-165] laminate under cylindrical bending, transverse stresses. 
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Table 5:Comparison of non-dimensional stresses for 7 layered cross-ply laminate. 
 

S )
2
1,

2
,

2
( ±

aa
xxσ  )

8
3,

2
,

2
( ±

aa
yyσ  )0,

2
,0( a

xzτ  )0,0,
2

(a
yzτ  )

2
1,0,0( ±xyτ  

 Exact Layer Exact Layer Exact Layer Exact Layer Exact Layer 
 1.284 1.287 1.039 1.040 0.178 0.177 0.238 0.238 -0.0775 -0.0776 

2 -0.880 -0.882 -0.838 -0.839 0.229 0.229 0.239 0.240 0.0579 0.0580 

     (0.16) (0.16) (0.02) (0.02)   
 0.679 0.678 0.623 0.623 0.219 0.219 0.236 0.237 -0.0356 -0.0357 

4 -0.645 -0.646 -0.610 -0.610 0.223 0.223   0.0347 0.0347 

     (0.12) (0.12)     
 0.548 0.548 0.457 0.457 0.255 0.255 0.219 0.220 -0.0237 -0.0237 

10 -0.548 -0.549 -0.458 -0.458 0.255 0.255   0.0238 0.0239 

     (-0.02) (-0.02)     

20 0.539 0.540 0.419 0.420 0.267 0.267 0.210 0.214 -0.0219 -0.0219 
-0.539 -0.541 -0.420 -0.420     0.0219 0.0220 

50 0.539 0.541 0.407 0.408 0.271 0.277 0.206 0.0225 -0.0214 -0.0215 
-0.539 -0.541 -0.407 -0.408     0.0214 0.0215 

100 
0.539 0.545 0.405 0.409 0.272 0.291 0.205 0.262 -0.0213 -0.0216 

-0.539 -0.545 -0.405 -0.409     0.0213 0.0216 
 
 
 
 

Table 6:Comparison of non-dimensional stresses for 9 layered cross-ply laminate. 
 

S )
2
1,

2
,

2
( ±

aa
xxσ  )

8
3,

2
,

2
( ±

aa
yyσ  )0,

2
,0( a

xzτ  )0,0,
2

(a
yzτ  )

2
1,0,0( ±xyτ  

 Exact Layer Exact Layer Exact Layer Exact Layer Exact Layer 
 1.260 1.263 1.051 1.052 0.204 0.204 0.194 0.194 -0.0722 -0.0723 

2 -0.866 -0.868 -0.824 -0.825 0.224 0.224 0.211 0.229 0.0534 0.0535 

     (0.23) (0.235) (-0.1) (0.1)   
 0.684 0.685 0.628 0.628 0.223 0.223 0.223 0.223 -0.0337 -0.0338 

4 -0.649 -0.650 -0.612 -0.612 0.223 0.223 0.225 0.226 0.0328 0.0329 

     (0.01) (0.01) (-0.06) (±0.08)   
 0.551 0.552 0.477 0.477 0.247 0.247 0.226 0.226 -0.0233 -0.0234 

10 -0.551 -0.552 -0.477 -0.477   0.226 0.227 0.0235 0.0235 

       (-0.01) (±0.05)   
 0.541 0.542 0.444 0.444 0.255 0.255 0.221 0.223 -0.0218 -0.0219 

20 -0.541 -0.542 -0.444 -0.444    0.224 0.0218 0.0219 

        (±0.05)   
 0.539 0.542 0.433 0.435 0.258 0.262 0.219 0.232 -0.0214 -0.0215 

50 -0.539 -0.542 -0.433 -0.433    0.237 0.0214 0.0215 

        (±0.05)   
 0.539 0.546 0.431 0.436 0.256 0.266 0.219 0.258 -0.0213 -0.0216 

100 -0.539 -0.546 -0.431 -0.436  0.273  0.275 0.0213 0.0216 
      (±0.05)  (0.05)   

 
 
 
 

Table 7: Material properties for T300/5208 Graphite/Epoxy (Pre-preg) (Ref.21). 
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Property Value Property Value 

11E  132.5 GPa TX  1515 MPa 

3322 EE =  10.8 GPa CX  1697 MPa 

1312 GG =  5.7 GPa CTCT ZZYY ===  43.8 MPa 

23G  3.4 GPa R  67.6 MPa 

1312 νν =  0.24 TS =  86.9 MPa 

23ν  0.49 Ply thickness, it  0.127 mm 
 
The computed failure load depends on the accuracy of the lamina level stress. In general, there is no a-priori 

information about the quality of the local stress. Hence, an adaptive approach with the capability to estimate error in 
the local stresses and refine mesh accordingly to bring the error down to acceptable tolerance, is devised. For the 
fixed model, the focussed adaptive approach (as discussed in earlier section) is employed to recompute the failure 
load. Here, the stress component contributing maximum to the Tsai-Wu first-ply failure criterion is used as the 
quantity of interest. In Tables 8-15 the first-ply failure loads are given. In these tables, 

1. The superscript a  shows all the values of failure loads and corresponding failure index obtained using 
mesh shown in Fig.7a. 

2. The superscript b  shows the value of the failure index obtained with the same load as in a  and the 
adapted mesh. (e.g. see Fig.7b). 

3. The superscript c  shows the first-ply failure load for the adapted mesh. The initial mesh and final 
adapted mesh for HSDT and hierarchic models for a representative problem are shown in Fig. 7b,c,d. 

Note that the first-ply failure load for layerwise model is computed using only the initial mesh. In the present 
study, the stress components obtained directly from the finite element computation, as well as the transverse 
components obtained from the equilibrium approach, have been used in computing the failure load. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) HSDTa) Initial Mesh  

 

Fig. 7 Adapted meshes for [0/90]S clamped laminate. 

d) 11-fieldc) 8-field 
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Table 8: First-ply failure loads; all edges clamped, [0/90]S laminate under uniform transverse loading, 

(direct stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 19050.9 ≈5.00 ≈65.00 1 bottom -  
HSDTa 20265.4 112.04 0.67 1 bottom 1.00 yyσ  
HSDTb 20265.4 113.85 0.16 1 bottom 1.82  
HSDTc 15032.5 113.85 0.16 1 bottom 1.00  
5-fielda 20277.8 112.04 0.66 1 bottom 1.00 yyσ  
5-fieldb 20277.8 113.85 0.16 1 bottom 1.82  
5-fieldc 15047.6 113.85 0.16 1 bottom 1.00  
8-fielda 20269.1 112.04 0.66 1 bottom 1.00 yyσ  
8-fieldb 20269.1 113.85 0.16 1 bottom 1.82  
8-fieldc 15034.5 113.85 0.16 1 bottom 1.00  

11-fielda 19533.4 112.04 0.66 4 top 1.00 yyσ  
11-filedb 19533.4 112.04 0.66 4 top 1.98  
11-fieldc 14539.0 112.04 0.66 4 top 1.00  

Layer 19791.7 107.52 0.56 4 top 1.00 yyσ  

 
 
 
 
Table 9: First-ply failure loads; all edges clamped, [0/90]S laminate under uniform transverse loading, 

(equilibrium stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 19050.9 ≈5.00 ≈65.00 1 top -  
HSDTa 17172.8 107.51 0.56 4 top 1.00 yyσ  
HSDTb 17172.8 112.71 0.14 4 top 1.85  
HSDTc 12612.9 112.71 0.14 4 top 1.00  
5-fielda 17180.3 107.51 0.56 4 top 1.00 yyσ  
5-fieldb 17180.3 112.71 0.14 4 top 1.85  
5-fieldc 12612.7 112.71 0.14 4 top 1.00  
8-fielda 17175.3 107.51 0.56 4 top 1.00 yyσ  
8-fieldb 17175.3 112.71 0.14 4 top 1.85  
8-fieldc 12612.0 112.71 0.14 4 top 1.00  

11-fielda 16531.3 107.51 0.56 4 top 1.00 yyσ  
11-filedb 16531.3 112.71 0.14 4 top 1.80  
11-fieldc 12322.5 112.71 0.14 4 top 1.00  

Layer 17123.6 107.51 0.56 4 top 1.00 yyσ  
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Table 10: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse 

loading, (direct stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 39354.8 ≈115. ≈125.0 1 bottom -  
HSDTa 39036.9 112.04 0.66 1 bottom 1.00 yyσ  
HSDTb 39036.9 119.52 0.33 1 bottom 1.65  
HSDTc 30258.2 119.52 0.33 1 bottom 1.00  
5-fielda 39077.6 112.04 0.66 1 bottom 1.00 yyσ  
5-fieldb 39077.6 119.52 0.33 1 bottom 1.65  
5-fieldc 30281.4 119.52 0.33 1 bottom 1.00  
8-fielda 38990.7 112.04 0.66 1 bottom 1.00 yyσ  
8-fieldb 38990.7 119.52 0.33 1 bottom 1.65  
8-fieldc 30224.8 119.52 0.33 1 bottom 1.00  

11-fielda 39436.3 121.38 126.43 1 bottom 1.00 yyσ  
11-filedb 39436.3 116.81 126.85 1 bottom 1.71  
11-fieldc 30009.2 116.81 126.85 1 bottom 1.00  

Layer 39581.4 107.52 0.56 1 bottom 1.00 yyσ  

 
 
 
 
Table 11: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse 

loading, (equilibrium stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 39354.8 ≈115.0 ≈125.0 1 bottom -  
HSDTa 31463.7 107.51 0.56 4 top 1.00 yyσ  
HSDTb 31463.7 112.71 0.14 4 top 1.82  
HSDTc 23377.6 112.71 0.14 4 top 1.00  
5-fielda 31486.1 107.51 0.56 4 top 1.00 yyσ  
5-fieldb 31486.1 112.71 0.14 4 top 1.82  
5-fieldc 23383.7 112.71 0.14 4 top 1.00  
8-fielda 31403.1 107.51 0.56 4 top 1.00 yyσ  
8-fieldb 31403.1 112.71 0.14 4 top 1.82  
8-fieldc 23350.7 112.71 0.14 4 top 1.00  

11-fielda 31672.2 121.38 126.43 4 top 1.00 yyσ  
11-filedb 31672.2 116.18 126.85 4 top 1.75  
11-fieldc 23955.1 116.18 126.85 4 top 1.00  

Layer 32549.2 107.51 0.56 1 bottom 1.00 yyσ  
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Table 12: First-ply failure loads; all edges simple supported, [0/90]S laminate under uniform transverse 

loading, (direct stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 11646.5 ≈5.00 ≈5.00 4 top -  
HSDTa 11951.7 115.65 43.66 4 top 1.00 yyσ  
HSDTb 11951.7 115.65 63.33 4 top 1.05  
HSDTc 11681.0 115.65 63.33 4 top 1.00  
5-fielda 11957.0 115.46 46.18 4 top 1.00 yyσ  
5-fieldb 11957.0 115.65 63.33 4 top 1.05  
5-fieldc 11687.6 115.65 63.33 4 top 1.00  
8-fielda 11952.3 115.65 43.66 4 top 1.00 yyσ  
8-fieldb 11952.3 115.65 63.33 4 top 1.05  
8-fieldc 11681.6 115.65 63.33 4 top 1.00  

11-fielda 11956.6 115.65 43.66 4 top 1.00 yyσ  
11-filedb 11956.6 115.65 63.33 4 top 1.03  
11-fieldc 11755.2 115.65 63.33 4 top 1.00  

Layer 12332.8 119.20 50.27 4 top 1.00 yyσ  

 
 
 
 
 
Table 13: First-ply failure loads; all edges simple supported, [0/90]S laminate under uniform transverse 

loading, (equilibrium stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 11646.5 ≈5.00 ≈5.00 4 top -  
HSDTa 9948.9 115.46 46.18 4 top 1.00 yyσ  
HSDTb 9948.9 117.91 62.67 4 top 1.07  
HSDTc 9620.2 117.91 62.67 4 top 1.00  
5-fielda 9951.1 119.20 50.27 4 top 1.00 yyσ  
5-fieldb 9951.1 117.91 62.67 4 top 1.07  
5-fieldc 9623.1 117.91 62.67 4 top 1.00  
8-fielda 9949.1 115.46 46.18 4 top 1.00 yyσ  
8-fieldb 9949.1 117.91 62.67 4 top 1.07  
8-fieldc 9620.5 117.91 62.67 4 top 1.00  

11-fielda 10055.6 115.65 43.66 4 top 1.00 yyσ  
11-filedb 10055.6 117.91 62.67 4 top 1.05  
11-fieldc 9786.7 117.91 62.67 4 top 1.00  

Layer 11954.4 115.65 43.66 1 bottom 1.00 yyσ  
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Table 14: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate under uniform 

transverse loading, (direct stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 32513.5 ≈115.0 ≈65.0 4 top -  
HSDTa 32367.0 75.09 83.33 4 top 1.00 yyσ  
HSDTb 32367.0 142.46 78.71 4 top 1.03  
HSDTc 31914.2 142.46 78.71 4 top 1.00  
5-fielda 32359.6 75.09 83.33 4 top 1.00 yyσ  
5-fieldb 32359.6 142.46 78.71 4 top 1.03  
5-fieldc 31924.8 142.46 78.71 4 top 1.00  
8-fielda 32463.4 71.54 50.27 4 top 1.00 yyσ  
8-fieldb 32463.4 142.46 78.71 4 top 1.03  
8-fieldc 32038.2 142.46 78.71 4 top 1.00  

11-fielda 32537.5 1.20 107.16 4 top 1.00 yyσ  
11-filedb 32537.5 13.00 126.86 4 top 1.29  
11-fieldc 28595.0 13.00 126.86 4 top 1.00  

Layer 32742.6 1.20 107.16 4 top 1.00 yyσ  

 
 
 
 
 
Table 15: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate under uniform 

transverse loading, (equilibrium stresses) 2=xyp . 
 

Model FLD Xco Yco Layer Location TWFI  Max. σ  
Reddy22 32513.5 ≈115.0 ≈65.0 4 top -  
HSDTa 25802.4 138.28 66.13 4 top 1.00 yyσ  
HSDTb 25802.4 136.99 73.26 4 top 1.08  
HSDTc 24729.1 136.99 73.26 4 top 1.00  
5-fielda 25807.7 90.62 60.86 4 top 1.00 yyσ  
5-fieldb 25807.7 91.91 53.73 4 top 1.09  
5-fieldc 24729.5 91.91 53.73 4 top 1.00  
8-fielda 25687.1 90.62 60.86 4 top 1.00 yyσ  
8-fieldb 25687.1 91.91 53.73 4 top 1.08  
8-fieldc 24727.7 91.91 53.73 4 top 1.00  

11-fielda 30791.5 31.22 0.56 4 bottom 1.00 yyσ  
11-filedb 30791.5 0.25 0.96 4 top 1.39  
11-fieldc 26173.7 0.25 0.96 4 top 1.00  

Layer 31078.2 1.20 107.16 4 top 1.00 yyσ  
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The results are given in Tables 8-15. When direct stresses are used, we observe that: 
 

1. For the initial mesh with the direct stresses computed from finite element analysis (shown with 
superscript a ) the failure loads computed are very close to those obtained Ref. 22 for all models. 

2. The locations predicted by all the models are either close to one obtained in Ref. 22 or are 
corresponding symmetric points. 

3. The failure loads obtained by HSDT and hierarchic models are close. 
4. For the same mesh the failure loads obtained by layerwise model is higher, in general, than the values 

obtained by HSDT and hierarchic models. 
5. When the discretization error is controlled (using focussed adaptivity) for HSDT and hierarchic models, 

with the same initial load and adapted mesh the failure index goes above 1 (rows with superscript b ). 
The increase in the values ranges between 1% to 98%.  

6. With the adapted mesh, the failure loads reduce drastically compared to that obtained without control 
over discretization error (rows with superscript c ). The error in the failure load can be close to 20%. 

7. The failure locations for the HSDT and hierarchic models are in the same region before and after the 
use of discretization error control. 

 
With equilibrium stresses we observe that: 

1. For the initial mesh, the failure loads predicted by all the models are lower than those obtained in Ref. 
22 (shown with superscript a ) and those obtained by using direct stresses. 

2. The locations predicted by all the models are either close to one obtained in Ref. 22 or are 
corresponding symmetric points. The locations for both direct stresses and equilibrium stresses are 
same (or corresponding symmetry points). 

3. Failure loads predicted by the HSDT and hierarchic models are close while those predicted by layerwise 
are slightly higher than these. 

4. When the discretization error control is used the failure index, for the failure load obtained using 
adapted mesh, increases upto 85%. This is due to the increased flexibility of the numerical solution for 
the adapted mesh. 

5. With the adapted mesh the error in the failure load computations can be close to 25%. 
6. The failure locations for the HSDT and hierarchic models are in the same region before and after the 

use of discretization error control. 
 
It is obvious that a suitably refined mesh, along with proper post-processed values of the transverse stresses, is 

necessary to obtain reliable values of the first-ply failure load. 

VIII. Conclusion 
A comprehensive study of pointwise quality of the stress components, obtained using various families of plates 

models has been done. From this study it can be concluded that: 
1. The pointwise displacement obtained using HSDT and hierarchic model are not very accurate for 

thick laminates. The accuracy improves as the plate becomes thinner. This is because of the more 
pronounced shear effects in thicker laminates, leading to a piecewise higher order polynomial 
behavior of the exact solution. The layerwise theory accurately captures this behavior for all cases. 

2. The HSDT and hierarchic models are more reliable for thin plates while for thicker plates these 
models can lead to erroneous results. 

3. The layerwise model accurately captures the local state of stress for all laminated composite 
plates, for different plate thickness. 

4. The in-plane stress components computed by all the models are accurate, for almost all the cases. 
5. The in-plane stress components computed by direct use of finite element data for layerwise model 

are in good agreement with exact one. The transverse stress components computed by direct use of 
finite element data for HSDT and hierarchic models are significantly different both qualitatively 
and quantitatively. 

6. The equilibrium approach for computing transverse stresses is accurate for all the models. 
7. Computed failure load is sensitive to the mesh, order of approximation and model used. However, 

proper mesh design is necessary to ensure that the local transverse stresses are computed 
accurately, when using post-processing. 
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8. When the equilibrium approach for computing transverse stresses is used the failure load 
computations can show reduction upto 20%. 

9. When the discretization error is controlled (using focused adaptivity) failure load computed using 
direct stresses can go down by more than 23%. 

10. When proper discretization error control is used, failure load computed using equilibrium 
approach for transverse stresses the failure load can go down by 25%. 

11. From design point of view, proper mesh design is essential, as the actual failure load can be 
significantly smaller than the computed one. 

12. In general, for symmetric and antisymmetric laminates, the HSDT and hierarchic models are 
effective, when equilibrium approach is used to obtain the transverse stresses. 
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