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In the present study a family of plate models available for the analysis of laminated
structures is compared under transverse loading for the point-wise data like maximum
transverse deflection and local state of stress. Here, the plate models compared are Higher-
order-Shear-Deformable (HSDT) model, Hierarchic model and Layerwise model. It is seen that
all the models predict the deflections accurately. The local state of stress is computed using
direct finite element data and equilibrium approach of post processing as well. It is seen for
HSDT and hierarchic models that the state of stress computed using direct finite element
data is significantly different from exact one, whereas for the layerwise model it is accurately
predicted. With equilibrium approach of post processing the local state of stress is
accurately predicted by all the models. Further, the effect of the model on first-ply failure
load obtained using the equilibrium approach of transverse stress extraction and Tsai-Wu
failure criterion is studied. The effect of discretization error control by a one shot adaptive
approach has been studied for the first-ply failure loads. It is seen that the control of
discretization error together with equilibrium approach of post processing leads to
significant reduction in the computed values of failure load.

Nomenclature

X,y,Z = global coordinates

ab plate dimensions

t laminate thickness

t; i™ lamina thickness

Pxy = in-plane approximation order

p; = transverse approximation order

S = aspect ratio

Jdo = intensity of transverse loading
u(x,y,z) = generalized displacement

z = non-dimensionalised plate thickness

l. Introduction

HIN structures made of composite laminates are increasingly used in the manufacture of structural components.

The enhanced strength to weight ratios make composites especially attractive for aerospace applications.
However, being heterogeneous in nature microscopically, the macroscopic behavior of these structures can be
complex. One important aspect of the response of laminated structures that a designer should consider is the onset of
failure in a laminated structure. Onset of failure in composite laminated plates requires the local stress state to be
known in the structure, particularly near structural details; at interlamina interface and in the individual lamina.
Accurate prediction of the local stress state becomes important for a reliable estimate of the failure load, which may
be crucial for a safe design of the component.

With an increasing demand to maximize payload carrying capabilities of aerial vehicles, shape and topology
optimization of structural components has become an important thrust area. All the optimization problems posed in
this context are constrained approximation problem with constraints on failure load, maximum transverse deflection,
buckling load, natural frequency, etc. In order to obtain an acceptable optimally designed component, from a
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computational analysis, it becomes imperative to estimate the constraint quantities accurately, at each step of the
optimal design process.

The goal of this study is to determine the quality of the local quantities of interest, obtained using various
families of plate models commonly used in engineering practice. The comparisons will be done with respect to the
exact three-dimensional elasticity solutions, for both symmetric and anti-symmetric stacking of the laminae. The
values of the in-plane stresses obtained directly from the finite element computations will be compared to the
elasticity solution. For the transverse stress components, the values obtained from the finite element solution
directly, and those obtained using the equilibrium approach of post-processing, will be compared to the exact ones.
Further, the study aims at clearly demonstrating the need for proper mesh design in the computation of critical
failure loads.

1. Plate Models

Several plate theories have been proposed in the literature.'” The goal is generally to give a higher order
representation of the transverse shear terms, as in Ref. 1, or to design families of plate theories with guaranteed
convergence to the three-dimensional solutions in some norm, as in Ref. 2. However, not much can be said about the
accuracy of the local stress state and displacements. In the third type of plate models the individual lamina have
continuous through thickness representation of displacements (see Ref. 3). The goal of this study is to determine the
quality of the local state of stress, obtained using various families of plate models commonly used in engineering
practice. A detailed comparison will be done with respect to the exact three-dimensional elasticity solutions'®>" for
both symmetric and anti-symmetric stacking sequence of the laminae. The values of the in-plane stresses obtained
directly from the finite element computations will be compared to the three-dimensional elasticity solution. The
effect of model order and in-plane approximation order, on the accuracy of these stresses will be demonstrated. For
the transverse stress components, the values obtained from the finite element solution directly, and those obtained
using the equilibrium approach of post-processing, will be compared to the exact ones. Further, the study aims at
clearly demonstrating the need for proper mesh design in the computation of critical failure loads. Another important
goal of this study is to obtain reliable values of the first-ply failure load, using the available models, and compare
them with those given in Ref. 22. It will be demonstrated that depending on the applied boundary conditions,
stacking sequence and ply orientation, the reliable values of the first-ply failure load can be significantly lower than
those obtained using the commonly used meshes and polynomial approximations.

Traditionally, for the plate and shell like thin structures, several plate theories have been proposed. These can be
broadly classified as:

1. higher order shear deformable theories (HSDT);
2. hierarchic plate theories and
3. layerwise theories

A. Higher Order Shear Deformable Theories (HSDT)

Here, one such theory due to Reddy' is taken as representative theory from this group. It is a third order shear
deformable theory with a parabolic distribution of transverse shear strains through thickness of the plate, in order to
satisfy the condition of zero transverse shear stress on the top and bottom face of the plate.

B. Hierarchic Plate Theories

In these, the displacement components have a zig-zag or hierarchic representation through the thickness. The
hierarchic plate models are a sequence of mathematical models, the exact solutions of which constitute a converging
sequence of functions in the norm or norms appropriate for the formulation and objectives of analysis. The
construction of hierarchic models for homogeneous isotropic plates and shells was given by Szabé and Sharmann’
and later for laminated plates by Babuska, Szabo, and Actis* and Actis Szabo and Schwab’. The solutions of the
lower order models are embedded in the highest order model and these models can be adapted according to the
requirement.

In these models the displacement field is given as product of functions that depend upon the variables associated
with the plate, shell middle surface, and functions of the transverse variable. The transverse functions are derived on
the basis of the degree to which the equilibrium equations of three-dimensional elasticity are satisfied. The Fourier
transform of the equations of motion is performed which results in two-point boundary value problem for the
transverse functions. These are characterized by the geometric parameters and wave vector. These functions are
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expanded in powers of wave vector around zero. The transverse functions are obtained by solving equations
obtained by substituting the expanded functions into the transformed form of equations of motion.

C. Layerwise Theories

In these theories, the individual lamina has continuous through thickness representation of displacements. In the
present study, the layer-by layer model proposed by Ahmed and Basu® is adopted. In this model, all the
displacement components are represented as product of in-plane and out-of-plane approximating functions of same
order. The hierarchic approximating functions were used.

I1l.  Mathematical Formulation of Plate Theories
The generic representation of the displacement field for the plate models is given as:

u(x,y,z)
u(x,y,2) =4 v(x,y.2) p = [0(z)JU(x,y) (1
w(x,y,z)
where
#(2) 0 ¢(2) 0 4z 0 0
p@l=| 0 @) 0o 4G o 0 4@ o - @
0 0 0 0 ¢ 0o 0 ¢@)
and
U6y = {01 (x,y)UL (6 9)U5 (x, y)US (6, y ) Us (o)) (3)
Note that U, (X, y),U 3 (X, y),U p (X, y)- T are the in-plane components of displacement terms U(X, Y, Z).

Similarly, U, (X, y),U 4(X, y),U ; (X, y) -+ are the in-plane components of displacement terms V(X, Y, Z) . The in-
plane components of transverse displacement W(X, Y, Z)are given by US(X, y),Ug(x, y) The transverse

functions are given in terms of the normalized transverse coordinate Z = (2/1t)Z (where 1 is the thickness of the
laminate).
For the higher order shear deformable model the functions ¢(2) are given as:

01(2)=0,(2)=s5(2)=1, ¢,(2)=u(2)=2,

d5(2)=8;(2)=d(2)= 4, (2) = 0, ¢9(Z) = ¢10(Z) =7

Remark: The in-plane displacement components have cubic representation and transverse component is constant in
laminate thickness. The quadratic term of in-plane displacement components drop out when the zero shear condition
on the top and bottom face of the plate is enforced.

For the hierarchic family of the plate models the transverse functions ¢(2) are given as:
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01(2)=0,(2)=¢s(2) =1, ¢;(2) =4(2) =2
0@ =3 10:@-0:0F 6:0) =7 1w:@-v: 0} 6= E-pi(O)

|~

SR S ~ R T
4)9(2):?(1)3(2); ¢1o(Z)=T\V3(Z); 4)11(2)27132(2)
where
0, (2) = QM(@ v, (2) = QM(Q;

1QuQss - Qis 1QuQss - Qis

~ z 1 =
pi0)=[ 50
13

Where Qj are the coefficients of the global constitutive relation, in the global XYZ -coordinate system. For other

transverse functions see Ref. 5.

The layerwise model used in this paper is adapted from Ref. 3. The present layerwise plate model is an
improvement over the model given in Ref. 3, as the original layerwise model had same order transverse
representation for all three displacement components, whereas the present layerwise model can have different
approximation in transverse direction for individual displacement components. The different approximation for
displacement components is used as suggested by Schwab®, for a single lamina, to take into account the bending and

membrane actions. The displacement component u' , for an element in the | layer, is given as

( pxy+1)( pxy+2) pg +1

voey. = Y DN Y)ME ()
k

i1

where Py and p; are the in-plane and transverse approximation order (for component u' yand N j (X, y) and

Mk(z) are in-plane and transverse approximation functions, respectively. Similarly the other components V' and

w' can be expressed. The transverse approximation orders for U and V displacement components will be the

same, while that for the component W can be different. Hierarchic basis functions will be used for in-plane and
transverse representations of the solution components. In this study, p,, =2 or 3 and pf , py=1,2, 3 and

p; =0, 1,2, 3 will be used.

The solution of the plate problem is decomposed into a membrane and a bending part by Schwab.® For the
membrane part the in-plane displacement components have symmetric representation, whereas, the transverse
displacement has anti-symmetric representation. (0,0,1), (2,2,1), (2,2,3) etc. are the transverse representations of
displacement components for membrane part in increasing model order. For the bending part, the in-plane
displacement components have anti-symmetric representation, whereas, the transverse displacement has symmetric
representation. (1,1,0), (1,1,2), (3,3,2) etc. are the transverse representations of displacement components for
bending part in increasing model order. When the problem is dominated both by membrane and bending actions
then the representations of displacements has to be chosen to satisfy both membrane and bending requirements. In
this case (1,1,1), (2,2,2), (3,3,3) etc. representations are used. The authors have developed this capability and
implemented it successfully in this study.

Further, In the present study all the displacement components have same order of approximation in the in-plane
direction (i.e. the XY -direction).

Remark: The higher-order shear deformation model and hierarchic model do not enforce transverse stress continuity
at the interfaces. In the layerwise model the continuity of transverse stress and zero transverse stress on top and
bottom faces of laminate can be enforced. Although, in the present layerwise model these conditions are not
imposed, it will be shown through numerical examples that the transverse shear stress components show much
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smaller ( it is close to zero in most of the examples studied) jumps than those computed by using higher-order shear
deformable and hierarchic models, and the stresses are close to zero on top and bottom faces of the laminate.

V. Finite Element Formulation

For a given I™ lamina, the constitutive relationship in principal material directions is given as:
©ni=lcolEn 4)

h R () R () R () R () R ( R} R h f he 1
where o) =10)] Oy 033 Oy 073 Oy; | are  the  stress  components or the ayer, and

al=t® & 0 L0 L0 O e ts of strain. The subscripts 1, 2 and 3 denote th
0) 11 20 33 }/23 7/13 }/12 are € components ol Strain. € subscripts [, an enote (]

three principal material directions. The constitutive relationship in global Xyz coordinates can be obtained by usual
transformations.
The potential energy, I1, for the laminate is given by

- % [oyelav -] awas ()

Where V is the volume enclosed by the plate domain, R and R™ are the top and bottom faces of plate and q(x,y) is
the transverse applied load. The solution to this problem U, is the minimizer of the potential energy IT. It is obtained
by the solution of following weak problem:

Findu,, € H (V) such that

&uev)==(v) v(v)eH'(V) (©)

where HO(V): {U = [(I)}J | (u)< oo and MU =0 on FD}, 49 is the strain energy with ﬁ%&(u,u). Here,

I' =Ty U, is the lateral boundary of the plate with Dirichlet part T'; and Neumann part I'y . Note that in this

study Dirichlet means the part of lateral boundary where geometric constraints are imposed, while Neumann stands
for the stress-free parts of the lateral boundary. Further, M depends on the type of Dirichlet conditions on the edge,
i.e. soft-simple support; hard simple-support; clamped etc.

Hence, we have

&(U ex V) = Z &, (U ex 1 V) :z I{G(l)(uex )}T {8(1)(V)}1V1

1\/l

and

& (v)= qu3ds (7
RTUR™

where V, is the volume of the 1™ lamina in the laminate; v is the transverse component of test function V.

V.  Error Estimator for Local Quantity of Interest

State of stress at a point plays a key role in the first-ply failure analysis of laminates. When the finite element
analysis is employed the issue of modeling error (error due to model employed in the analysis of laminate, as
compared to three dimensional elasticity) and discretization error becomes important. Adaptive methods for the
control of discretization error are available in literature (see Ref. 7-Ref. 9). These are based on the control of energy

norm of the error, ||€||o=+/24%®e) (where #e) is the strain energy of the error). This does not guarantee that the
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quantity of interest is also accurate. In Ref. 10-Ref. 12 it was shown that the error in the quantity of interest can be
given in terms of error in the solution of auxillary problem. The aim of Ref. 12 and Ref. 13 was to control
“pollution” error in the quantity of interest. Various smoothening based a-posteriori error estimation techniques for
laminated composites have been proposed by the authors for the local quantity of interest.'* Further, estimation and
control of the error in the quantity of interest and “one-shot” adaptive approach for the control of discretization error
was proposed in Ref. 15 and used for the accurate analysis of first-ply failure loads in Ref. 16. In the present paper
the issue of control of modeling error is not addressed. Reference 17 can be referred as an example for the modeling
error. In the following sections the main steps of error estimation for local quantity of interest and one shot
adaptivity are given from Ref. 15.

A. Definition of Error Estimator
The variational formulation in Eq. (7) is used to obtain the finite element solution Uy € H;(V), where
H, (V)= {u =[¢o]Ju;u, esP¥,i=123--| 4u)< o, MU=0o0n rD}.

Letting @,;, be the plate mid surface with boundary dw,p,, we define S™ as the set of globally continuous

piecewise polynomials of order p,, over each element t (r € Wy )

By, vy)==(v,) Vv, eHL(V) (3

Note that u, = [(])]Uh is the representation of u,, following (1). The error in the solution can be given as

€ =Uu,, —U;, . An approximation to the error can be given as e =u" - u, where u' e Sf w** is obtained for each
element t as described below (see Ref. 14 for details). In all the numerical examples k = 2 has been employed.

For an element 1 let P, be the patch of elements in a one-layer neighborhood of t, as shown in Fig. 1.

Over the patch P,, define

u NDOF
u =4v" [(I)]U where U = Z:AuqJ X, y) with NDOF = (ny +1+1<Xpxy +2+k)/2; qj(x,y) as the
w =1

monomials of order <p,, +k (see Ref. 14 for details) defined in terms of local coordinates X=X—-X.,y=y-ye.

Here x_,y; are the centroidal coordinates for element t. The q j(x, y) can be given as:

alxy)=l aloy)=x aky)=5 )

da(x,y)=%2, (,Y)=xy, q6(x,y)=7

The coefficients Aj; are obtained by minimizing J =% J. | U - Uy |2 dA where Ajp_is the area of the patch P,
Ap,

(where Ap < @,p ). This definition is called the L, projection based error estimator (see Ref. 14 for details).

Fig. 1 One layer neighborhood patch around element t© Fig. 2 Plate domain
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B. Auxillary Problem
Let us consider the domain of Fig. 2. Let us further assume that we are interested in the value of stress
component G, in the topmost layer, for all points in the element t (shown in Fig. 2).

In order to accurately obtain the pointwise information in t, we will let G(yl;'avg = —ljcyydv as the quantity of
v

T !
Vi

interest. Here, V! = A_t, is the volume enclosed by the element T in the 1" layer. Hence,

2
1 1
G(y;,avg TA _[ _[(nydA)dZ (10)
Tl A

Z=Z) A

with t; as the thickness of the 1™ layer; z,_; and z,; as the lower and upper z coordinates for the 1™ layer; A,
is the area of element 1t (or group of elements).
Remark: In this study, the quantity of interest used is the stress component which contributes maximum to the failure

index for the Tsai-Wu criterion.

O]
yy,ave

Find G € H'(V) such that

Corresponding to ¢ we define the following auxillary problem:

&(G,v)=cW . (V)==(v)vveH (V) (11)

yyavg
Letting G, € H,, (V) be the finite element solution for G, we have

8(Gy, Vi) =00 (Va) = =(v; )V ve Hy (V) (12)

Yy,avg

Note that u, and G, can be solved simultaneously (see Ref. 15). Multiple regions can be handled
simultaneously.

C. Estimators for Error in Quantity of Interest
From the previous section we have:

8(G,Uey —Up )= (U ) - =(uy ) = = (U —uy ) = = (e) (13)
From the orthogonality property of the error in the finite element solution, we have:
| 8(G -G, ue —uy ) H =(e)] (14)
or

| 7€) HB(G -Gy Uy —uy )< DI R(G =Gyt —uy )< D lley Il lleg Il<lley lllleg |l (15)

where e, =e stands for the error in the actual solution and e stands for the error in the auxillary problem.

D. Definition of a-posteriori Error Estimators for Local Quantity of Interest
Replacing e, with e: and eg with the estimate eg , we can get many definitions of the estimators (see Ref.

15), for the error in the quantity of interest. Here we employ
Estimator (E):
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@)=Y 185 e5 ) (16)

E. One Shot Adaptivitgl for Quantity of Interest

We let ufqp“) , Ggp 7 be the finite element solutions of the order p,, for u., and G . Thus, we can approximate

error €, as euze&pxy+l)=u£f‘y+l)—u£p‘y) and hence @(e)z @(efj’xy”)). It can be shown that
@(eﬁpwl)): Z &(e(g””), ef}’“”)).
T

Letting t be the element of interest and P the one-layer neighborhood of t, the total error can be partitioned
into two parts as follows:

| =(e)I<l =i (e)|+| = ()]

where

7ie)=D Blewes) =)D Bley.ec) (17)

teP TeP’

where P is the set of elements lying outside P. Following Ref. 12, & (e) is the local part of the error and
&, (e) is the “pollution” in the quantity of interest (i.e. far-field influence). Following Ref. 13 and Ref. 15, we have:

| =)< D lley lllleg lI< Ch™ (18)

1eP

Beyond P, the auxillary function is well behaved and hence

|=2()1< D lley lllleg ll< Ch*™ (19)

teP’

The goal of the adaptive process is to refine the given mesh selectively such that the total error is below the
specified tolerance, i.e.

|=(e)l<n| = (uy)| (20)

where |@’(uh)| is the computed value of the desired quantity of interest; |F(e) = F(e)|E is obtained using

h
definition E for the error. Following Ref. 8, we will define r, = Td as the ratio of the desired (h d) to the actual

mesh size (h) of the element t. The desired mesh should have the least number of elements, of all possible meshes.
Hence, following Ref. 8, Ref. 15, we minimize

> en

subject to constraint Eq. (20). Thus, we define new objective function (to be minimized) as,
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J= 2%2%{2)(?“ —@'01,1]4'%2[2?63r - @-d,Zj (22)

T TeP teP

where 4. = &(éu ec )l is the desired contribution to the total error from element t; €,, €g are the desired

errors in the element t; A; and A, are the Lagrange multipliers; &, =m, | C?’(uh)| and &y, =1, | @’(uh)| are
the desired errors in the region P and P, respectively (here n =mn; +n,). Using Eq. (18) and Eq. (19) X(ZM can be

given in terms of the actual error Xﬁ,r (where Xi,r = &(eu e )| in the element 1), as

2 Xy o 2
For teP Ad :rf "Yax

. 2x
For teP Xﬁr :rtpy)(jT

Thus (22) becomes

teP 1eP’

1 X 2 X
J= Zr_2+7‘1[zrrp ijt _Td,1J+7¥2[erp yXZ —?d,zJ (24)
T T

Minimizing J with respect to 1., A, and A, we get:

For teP,
1/p
[
r, = d"”pxy (25)
41(p,+2 2/(p,, +2
(ZXa,r(p v )J Xa,gp a )
1eP
For teP’
@:I/pry
ro = (26)
Xy
[in,ﬁ(p““)J /1)
1eP’

Using the computed values of r_, the desired mesh sizes can be computed. The mesh can be locally refined

several times based on the desired mesh size. This leads to a final adaptively refined mesh.
Remark: The partition of the contribution to the error from P and P is based on the user. The final mesh depends on
the choice of m; and 7, . In this study n; =n, =n/2 is taken. In all the computations in this study, n=10% is

used.

VI. Tsai-Wu Failure Criterion

It is a complete polynomial criterion and is an extension of the criterion used for anisotropic materials (see Ref.
18).
The Tsai-Wu criterion is given by

FITW :Fi0i+FijO-iO-j >1 (27)

where F; F are the strength tensor terms and o; are the stress components and
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Xr Xe 2 Yy Yo B Zy Ze
1 1 1
Fll_xx ;s Fa vy, ¥ T7 5
TAC T'c T4C
1 1 1
F44:¥, Fsszs_za F66:T_2

1 1 1
Fia :_E\/XTXCYTY s Fis :_E\/XTXCZTZC s Fys :_EVYTYCZTZC (28)

where X,Y and Z are strengths in 1, 2 and 3 directions, respectively. Subscript T denotes tensile strength, and
C denotes compressive strength. R, S and T are shear strengths in 12, 13, and 23 planes, respectively.

VII. Numerical Results

One of the main goals of this study is to compare the various families of plate models, with respect to the quality
of the pointwise stresses obtained using the models. All the models are compared for the transverse maximum
deflection and stress profiles for various ply orientations, stacking sequences and boundary conditions under
transverse loadings. In the present study, three types of transverse loadings are considered: uniform pressure,
sinusoidal and cylindrical bending.

In the first section of numerical results, the effect of plate models on the accuracy of pointwise data i.e.
transverse deflection and all the stress components at a point, is addressed. The stress components are either directly
computed using constitutive equations, or the equilibrium approach to obtain transverse normal and shear stresses.

In the second section, the effect of the plate models on the accuracy of first-ply failure load is addressed.

Effect of Models on Accuracy of Pointwise Data
Comparison of Transverse Deflection

In this section the transverse deflection component obtained using different plate models and in-plane
discretization is compared with the exact three-dimensional elasticity results reported in Ref. 19, for cross-ply
laminate sequence with material properties given in Table 1. The plate has dimension a along X -axis and b along
y -axis, and is subjected to sinusoidal loading of the form

a(x.y)= g x. y)sin(%]sin[ﬂ] (29)

b

All edges of the plate are simply supported (see Table 2 for all BC’s used). The transverse deflection at

(%,g,oj is reported in Tables 3 and 4. Note that in all the computations the layerwise model uses (3,3,2) model

(unless specified), that is, transverse approximation for U and Vv is cubic and quadratic for w. For the hierarchic
family 11 field model is used, while for the HSDT model (3,3,0) approximation is used. Square plate with cross ply

laminae, such that outer laminae have orientation 0°, and total thickness of 0° laminae is equal to total thickness of
90° laminae. Also laminae with same orientation have equal thickness. In this study, 7 and 9-layered laminate is

4
studied. The transverse deflection is nondimensionalised as w = %, where
QoS't
Q=4G,, + [E11 +Eyp (1+ 2Vy3 )]/(1—1/121/21). Here, p,, =3 is used for all models. Numbers in parenthesis show

the % error with respect to exact solution.
From tables 3 and 4 we observe that:
1. The layerwise model predicts the transverse deflection accurately for all the aspect ratios. The error in
the values ranges from 0-0.15 %.
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2. The HSDT and hierarchic model are far from the exact one for the aspect ratios upto S =10. The error
for this aspect ratios ranges from 5-16 %.
3. For the HSDT and hierarchic model with aspect ratios S >10 the displacement is close to exact. The

error is 0.1-3 %.
4. The hierarchic theory is closer to the exact one; as compared to the higher order shear deformable

theories.
Table 1 Material Properties for Ref. 18-Ref. 20.
Property E; E, Gy Gas D=0
Value 25%10° psi 10° psi 0.5x10° psi 0.2 10° psi 0.25
Table 2: Boundary conditions
Boundary Condition At y=0 and y=b At x=0 and x=a
Soft Simple Support v=w=( u=w=0
Clamped u=v=w=0 u=v=w=0
Free u, v, w0 u, v, w20

Table 3:Non-dimensional transverse deflection (W) for 7 layered cross-ply laminate.

S Pagano' Layer-wise HSDT Hierarchic
2 12.342 12.341 (0.00) 10.918 (11.54) 10.358 (16.07)
4 4.153 4.153 (0.00) 3.594 (13.46) 3.575 (13.92)
10 1.529 1.529 (0.00) 1.417 (7.33) 1.444 (5.56)
20 1.133 1.133 (0.00) 1.096 (3.26) 1.113 (1.76)
50 1.021 1.021 (0.00) 1.005 (1.56) 1.017 (0.39)
100 1.005 1.005 (0.00) 0.993 (1.19) 1.004 (0.09)

Table 4:Non-dimensional transverse deflection (W*) for 9 layered cross-ply laminate.

S Pagano"’ Layer-wise HSDT Hierarchic
2 12.288 12.306 (-0.15) 10.703 (12.89) 11.632 (5.34)
4 4.079 4.079 (0.00) 3.530 (13.46) 3.664 (10.17)
10 1.512 1.512 (0.00) 1.406 (7.01) 1.438 (4.89)
20 1.129 1.129 (0.00) 1.093 (3.18) 1.110 (1.68)
50 1.021 1.020 (0.09) 1.001 (1.96) 1.017 (0.39)
100 1.005 1.005 (0.00) 1.004 (0.09) 0.993 (1.19)

Comparison of Stresses
Here, various stress components for symmetric and antisymmetric laminates, under cylindrical bending, are

compared with the exact values given in Ref. 19-Ref. 21.

Case 1: In this case [0/90/0], square laminate with all edges simple supported is considered. All the laminae are
of equal thickness. The sinusoidal loading is of the same form as above. The in-plane stresses are

. . . — = = 1 ab_ ab _ _
nondimensionalised as (axx,ayy,rxy):—2 O yx [—,—,ZJ,GW(—,—,ZJ,TW (0,0,Z) and the transverse stresses
gy S 2°2 22
(— - ) 1 b _ a . - . R
as \txz,7yz :q_S Ty, O,E, Z|,7y, E,O, Z | |. The in-plane stress components are shown in Fig. 3 and transverse
0
stress component is shown in Fig. 4.
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Case 2: In this case, [165/-165] laminate under cylindrical loading is considered. The loading is of the form

q(x, y) = qo(x)sin % . The plate is infinite along Y -direction. All the laminae are of equal thickness. The stress

components are nondimensionalised as (EXX):% Oy (%, 7] and (;xz ,;yz ):qLS(TXZ (0, 7),ryz (0, 7)) The in-
Ao 0

plane stress components are shown in Fig. 5 and transverse stress components are shown in Fig. 6.
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alfF — [ -
Z of 1 zZof 1
ol B ol _
01 b a1r B
01 — ai1r = -
04 2R s E 04t B, B
o5 Graf ) : 1 1 a5 1 1 1 1 iy 1 *Erg
B - Y B X o as L L5 2 2 0.2 -0.l5 0.l —00s a 0.05 ol 0.15 o
(o Ty
Fig. 3 [0/90/0] laminate; all edges simply supported, in-plane stresses.
2 &
0.5 e g T T T 0.5 —Tae
g4 b B Pagano T
0.3 [—s— Paganc =T n 0.3 --+-- Layerwise T
L. i =N i |-B--HSDT ot
02 __;__ [E[.:-Lsyslrmsc """""""""" B-m R Hietarchic
QL 7 ol
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ol 7 oL
- s LoET 4 e}
=03 s & —naf
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a5 R b I I 1 I ——=Y
. -5
Zops o0 o0 oL 0Us ©r 035 03 035 04 045 08 a o0s o1 015 o1 o015 o1
Txzionns Txz oo
Direct stresses Fanilibrinm stresses
Fig. 4 [0/90/0] laminate; all edges simply supported, transverse stresses.
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Fig. 5 [165/-165] laminate under cylindrical bending, in-plane stresses.
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Fig. 6 [165/-165] laminate under cylindrical bending, transverse stresses.

Case 3. The problem description is same as previous sub-subsection. The stress components are
nondimensionalised as case 1 above. The point-wise stress values are given for layerwise model in Tables 5 and 6.
In these tables the first row gives the value at Z =0 while in the second maximum values and in the third row their

location quoted in parenthesis is reported for the components 7,, and 7, .

From the results it is observed that:

1. The in-plane stress components are accurately predicted by all higher order models.

2. The transverse shear stress components computed directly from finite element solution is accurate for
the layerwise model whereas, those obtained by HSDT and hierarchic models are significantly different
both qualitatively and quantitatively.

3. Using the equilibrium approach of post-processing leads to more accurate transverse stress components
for all the models.

4. The layerwise model predicts accurately the point-wise values of the stress components for all the
values of S .

Effect of Models on Accuracy of Predicted Failure Load
The laminates considered are [0/90]s and [-45/45/-45/45]. The plate is either clamped on all edges or simple
supported. The top face of the plate is subjected to uniform transverse load q(x, y): do - The plate dimensions are

a=2289mm (9in) and b =127 mm (5in). The material properties are given in Table 7. The first-ply failure load

is nondimensionalised as FLD = S—OS“ . The results obtained from the present analysis are compared with those
2

reported in Ref. 22.
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Table 5:Comparison of non-dimensional stresses for 7 layered cross-ply laminate.

aa |1 aa 3 a a 1
S O xx (E»E:ia) Oy (E’E’ig) Txz (03550) Ty (E 30»0) Txy (O»O:ig)
Exact  Layer  Exact Layer Exact Layer Exact Layer Exact Layer
1.284 1.287  1.039 1.040  0.178 0.177 0.238 0.238  -0.0775  -0.0776
2 -0.880  -0.882  -0.838 -0.839  0.229 0.229 0.239 0.240 0.0579 0.0580
(0.16) (0.16) (0.02)  (0.02)
0.679  0.678  0.623 0.623  0.219 0.219 0.236 0.237  -0.0356  -0.0357
4 -0.645  -0.646  -0.610 -0.610  0.223 0.223 0.0347 0.0347
(0.12) (0.12)
0.548  0.548  0.457 0.457  0.255 0.255 0.219 0.220  -0.0237  -0.0237
10 -0.548 -0.549 -0.458 -0458 0255 0.255 0.0238 0.0239
(-0.02)  (-0.02)
20 0.539  0.540 0.419 0.420  0.267 0.267 0.210 0.214  -0.0219  -0.0219
-0.539  -0.541 -0.420 -0.420 0.0219 0.0220
50 0.539  0.541 0.407 0.408  0.271 0.277 0206  0.0225 -0.0214  -0.0215
-0.539  -0.541 -0.407 -0.408 0.0214 0.0215
0.539  0.545  0.405 0.409 0.272 0.291 0.205 0.262  -0.0213  -0.0216
100 -0.539  -0.545 -0.405 -0.409 0.0213 0.0216
Table 6:Comparison of non-dimensional stresses for 9 layered cross-ply laminate.
s o, 20:L 5 22,3 7,(0,2.0) 7., (2.0,0) (0.0,
¥ 272772 W28 @l i WEPTT
Exact  Layer Exact Layer Exact Layer Exact Layer Exact Layer
1.260  1.263 1.051 1.052  0.204 0.204 0.194 0.194  -0.0722 -0.0723
2 -0.866 -0.868 -0.824 -0.825  0.224 0.224 0.211 0.229 0.0534  0.0535
(0.23)  (0.235) (-0.1) (0.1)
0.684  0.685  0.628 0.628 0.223 0.223 0.223 0.223  -0.0337 -0.0338
4  -0.649 -0.650 -0.612 -0.612  0.223 0.223 0.225 0.226 0.0328  0.0329
(0.01)  (0.01) (-0.06)  (£0.08)
0.551 0.552 0477 0.477  0.247 0.247 0.226 0.226  -0.0233  -0.0234
10 -0.551 -0.552 -0.477 -0.477 0.226 0.227 0.0235  0.0235
(-0.01)  (£0.05)
0.541 0542  0.444 0.444  0.255 0.255 0.221 0.223  -0.0218 -0.0219
20 -0.541 -0.542 -0.444 -0.444 0.224 0.0218  0.0219
(0.05)
0.539 0542 0433 0.435 0.258 0.262 0.219 0.232  -0.0214 -0.0215
50  -0.539 -0.542 -0.433 -0.433 0.237 0.0214  0.0215
(0.05)
0.539  0.546 0431 0.436  0.256 0.266 0.219 0.258  -0.0213 -0.0216
100 -0.539 -0.546 -0.431 -0.436 0.273 0.275 0.0213  0.0216
(£0.05) (0.05)

Table 7: Material properties for T300/5208 Graphite/Epoxy (Pre-preg) (Ref.21).
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Property Value Property Value

= 132.5 GPa Xy 1515 MPa
E,, =Ey3 10.8 GPa Xc 1697 MPa
G, =Gj3 5.7 GPa Yr =Ye =2y =Z¢ 43.8 MPa
G, 3.4 GPa R 67.6 MPa
Vi) = Vi3 0.24 S=T 86.9 MPa
Va3 0.49 Ply thickness, t; 0.127 mm

The computed failure load depends on the accuracy of the lamina level stress. In general, there is no a-priori
information about the quality of the local stress. Hence, an adaptive approach with the capability to estimate error in
the local stresses and refine mesh accordingly to bring the error down to acceptable tolerance, is devised. For the
fixed model, the focussed adaptive approach (as discussed in earlier section) is employed to recompute the failure
load. Here, the stress component contributing maximum to the Tsai-Wu first-ply failure criterion is used as the
quantity of interest. In Tables 8-15 the first-ply failure loads are given. In these tables,

1. The superscript a shows all the values of failure loads and corresponding failure index obtained using
mesh shown in Fig.7a.

2. The superscript b shows the value of the failure index obtained with the same load as in a and the
adapted mesh. (e.g. see Fig.7b).

3. The superscript ¢ shows the first-ply failure load for the adapted mesh. The initial mesh and final
adapted mesh for HSDT and hierarchic models for a representative problem are shown in Fig. 7b,c,d.

Note that the first-ply failure load for layerwise model is computed using only the initial mesh. In the present
study, the stress components obtained directly from the finite element computation, as well as the transverse
components obtained from the equilibrium approach, have been used in computing the failure load.

a) Initial Mesh b) HSDT

c) 8-field d) 11-field

Fig. 7 Adapted meshes for [0/90]s clamped laminate.
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Table 8: First-ply failure loads; all edges clamped, [0/90]s laminate under uniform transverse loading,
(direct stresses) p,, =2.

Model FLD Xco Yco Layer Location Flow Max. o
Reddy* 19050.9 ~5.00 ~65.00 1 bottom -

HSDT? 20265.4 112.04 0.67 1 bottom 1.00 Oy
HSDT® 20265.4 113.85 0.16 1 bottom 1.82

HSDT® 15032.5 113.85 0.16 1 bottom 1.00

5-field® 20277.8 112.04 0.66 1 bottom 1.00 Oyy
5-field® 20277.8 113.85 0.16 1 bottom 1.82

5-field® 15047.6 113.85 0.16 1 bottom 1.00

8-field® 20269.1 112.04 0.66 1 bottom 1.00 Oyy
8-field" 20269.1 113.85 0.16 1 bottom 1.82

8-field® 15034.5 113.85 0.16 1 bottom 1.00
11-field® 195334 112.04 0.66 4 top 1.00 Oy
11-filed® 195334 112.04 0.66 4 top 1.98
11-field® 14539.0 112.04 0.66 4 top 1.00

Layer 19791.7 107.52 0.56 4 top 1.00 Oyy

Table 9: First-ply failure loads; all edges clamped, [0/90]s laminate under uniform transverse loading,
(equilibrium stresses) p,, =2.

Model FLD Xco Yco Layer Location Floy Max. o
Reddy* 19050.9 ~5.00 ~65.00 1 top -

HSDT® 17172.8 107.51 0.56 4 top 1.00 Oy
HSDT® 17172.8 112.71 0.14 4 top 1.85

HSDT® 12612.9 112.71 0.14 4 top 1.00

5-field® 17180.3 107.51 0.56 4 top 1.00 Ty
5-field® 17180.3 112.71 0.14 4 top 1.85

5-field® 12612.7 112.71 0.14 4 top 1.00

8-field® 17175.3 107.51 0.56 4 top 1.00 Oyy
8-field® 17175.3 112.71 0.14 4 top 1.85

8-field® 12612.0 112.71 0.14 4 top 1.00
11-field® 16531.3 107.51 0.56 4 top 1.00 Oy
11-filed” 16531.3 112.71 0.14 4 top 1.80
11-field® 12322.5 112.71 0.14 4 top 1.00

Layer 17123.6 107.51 0.56 4 top 1.00 Ty
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Table 10: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse
loading, (direct stresses) p,, =2.

Model FLD Xco Yco Layer Location Flow Max. o
Reddy* 39354.8 ~115. ~125.0 1 bottom -

HSDT? 39036.9 112.04 0.66 1 bottom 1.00 Oy
HSDT® 39036.9 119.52 0.33 1 bottom 1.65

HSDT® 30258.2 119.52 0.33 1 bottom 1.00

5-field® 39077.6 112.04 0.66 1 bottom 1.00 Oy
5-field® 39077.6 119.52 0.33 1 bottom 1.65

5-field® 30281.4 119.52 0.33 1 bottom 1.00

8-field” 38990.7 112.04 0.66 1 bottom 1.00 Oy
8-field" 38990.7 119.52 0.33 1 bottom 1.65

8-field* 30224.8 119.52 0.33 1 bottom 1.00
11-field® 39436.3 121.38 126.43 1 bottom 1.00 Oy
11-filed® 39436.3 116.81 126.85 1 bottom 1.71
11-field* 30009.2 116.81 126.85 1 bottom 1.00

Layer 39581.4 107.52 0.56 1 bottom 1.00 Oyy

Table 11: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse
loading, (equilibrium stresses) p,, =2.

Model FLD Xco Yco Layer Location Flmy Max. o
Reddy* 39354.8 ~115.0 ~125.0 1 bottom -

HSDT* 31463.7 107.51 0.56 4 top 1.00 Oy
HSDT® 31463.7 112.71 0.14 4 top 1.82

HSDT® 23377.6 112.71 0.14 4 top 1.00

5-field® 31486.1 107.51 0.56 4 top 1.00 Oy
5-field” 31486.1 112.71 0.14 4 top 1.82

5-field® 23383.7 112.71 0.14 4 top 1.00

8-field® 31403.1 107.51 0.56 4 top 1.00 Oyy
8-field® 31403.1 112.71 0.14 4 top 1.82

8-field® 23350.7 112.71 0.14 4 top 1.00
11-field® 31672.2 121.38 126.43 4 top 1.00 Oy
11-filed" 31672.2 116.18 126.85 4 top 1.75
11-field 23955.1 116.18 126.85 4 top 1.00

Layer 32549.2 107.51 0.56 1 bottom 1.00 Oyy
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Table 12: First-ply failure loads; all edges simple supported, [0/90]s laminate under uniform transverse
loading, (direct stresses) p,, =2.

Model FLD Xco Yco Layer Location Flow Max. o
Reddy* 11646.5 ~5.00 ~5.00 4 top -

HSDT? 11951.7 115.65 43.66 4 top 1.00 Oyy
HSDT® 11951.7 115.65 63.33 4 top 1.05

HSDT® 11681.0 115.65 63.33 4 top 1.00

5-field® 11957.0 115.46 46.18 4 top 1.00 Oyy
5-field” 11957.0 115.65 63.33 4 top 1.05

5-field® 11687.6 115.65 63.33 4 top 1.00

8-field® 11952.3 115.65 43.66 4 top 1.00 Oyy
8-field® 11952.3 115.65 63.33 4 top 1.05

8-field® 11681.6 115.65 63.33 4 top 1.00
11-field® 11956.6 115.65 43.66 4 top 1.00 Oyy
11-filed" 11956.6 115.65 63.33 4 top 1.03
11-field® 11755.2 115.65 63.33 4 top 1.00

Layer 12332.8 119.20 50.27 4 top 1.00 Oyy

Table 13: First-ply failure loads; all edges simple supported, [0/90]s laminate under uniform transverse
loading, (equilibrium stresses) p,, =2.

Model FLD Xco Yco Layer Location Flmy Max. o
Reddy* 11646.5 ~5.00 ~5.00 4 top -

HSDT* 9948.9 115.46 46.18 4 top 1.00 Ty
HSDT® 9948.9 117.91 62.67 4 top 1.07

HSDT® 9620.2 117.91 62.67 4 top 1.00

5-field® 9951.1 119.20 50.27 4 top 1.00 Ty
5-field” 9951.1 117.91 62.67 4 top 1.07

5-field" 9623.1 117.91 62.67 4 top 1.00

8-field® 9949.1 115.46 46.18 4 top 1.00 Ty
8-field" 9949.1 117.91 62.67 4 top 1.07

8-field" 9620.5 117.91 62.67 4 top 1.00
11-field® 10055.6 115.65 43.66 4 top 1.00 Ty
11-filed" 10055.6 117.91 62.67 4 top 1.05
11-field® 9786.7 117.91 62.67 4 top 1.00

Layer 11954.4 115.65 43.66 1 bottom 1.00 Ty
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Table 14: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate under uniform
transverse loading, (direct stresses) p,, =2.

Model FLD Xco Yco Layer Location Flow Max. o
Reddy* 32513.5 ~115.0 ~65.0 4 top -

HSDT? 32367.0 75.09 83.33 4 top 1.00 Oyy
HSDT® 32367.0 142.46 78.71 4 top 1.03

HSDT® 31914.2 142.46 78.71 4 top 1.00

5-field” 32359.6 75.09 83.33 4 top 1.00 Oyy
5-field® 32359.6 142.46 78.71 4 top 1.03

5-field® 31924.8 142.46 78.71 4 top 1.00

8-field” 32463.4 71.54 50.27 4 top 1.00 Oyy
8-field® 32463.4 142.46 78.71 4 top 1.03

8-field® 32038.2 142.46 78.71 4 top 1.00
11-field® 32537.5 1.20 107.16 4 top 1.00 Oyy
11-filed® 32537.5 13.00 126.86 4 top 1.29
11-field* 28595.0 13.00 126.86 4 top 1.00

Layer 32742.6 1.20 107.16 4 top 1.00 Oyy

Table 15: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate under uniform
transverse loading, (equilibrium stresses) p,, =2.

Model FLD Xco Yco Layer Location Flmy Max. o
Reddy* 32513.5 ~115.0 ~65.0 4 top -

HSDT? 25802.4 138.28 66.13 4 top 1.00 Oy
HSDT® 25802.4 136.99 73.26 4 top 1.08

HSDT* 24729.1 136.99 73.26 4 top 1.00

5-field® 25807.7 90.62 60.86 4 top 1.00 oy
5-field® 25807.7 91.91 53.73 4 top 1.09

5-field” 24729.5 91.91 53.73 4 top 1.00

8-field” 25687.1 90.62 60.86 4 top 1.00 Oyy
8-field" 25687.1 91.91 53.73 4 top 1.08

8-field* 24727.7 91.91 53.73 4 top 1.00
11-field® 30791.5 31.22 0.56 4 bottom 1.00 Oyy
11-filed® 30791.5 0.25 0.96 4 top 1.39
11-field" 26173.7 0.25 0.96 4 top 1.00

Layer 31078.2 1.20 107.16 4 top 1.00 oy
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The results are given in Tables 8-15. When direct stresses are used, we observe that:

1.

W

For the initial mesh with the direct stresses computed from finite element analysis (shown with
superscript a ) the failure loads computed are very close to those obtained Ref. 22 for all models.

The locations predicted by all the models are either close to one obtained in Ref. 22 or are
corresponding symmetric points.

The failure loads obtained by HSDT and hierarchic models are close.

For the same mesh the failure loads obtained by layerwise model is higher, in general, than the values
obtained by HSDT and hierarchic models.

When the discretization error is controlled (using focussed adaptivity) for HSDT and hierarchic models,
with the same initial load and adapted mesh the failure index goes above 1 (rows with superscript b ).
The increase in the values ranges between 1% to 98%.

With the adapted mesh, the failure loads reduce drastically compared to that obtained without control
over discretization error (rows with superscript € ). The error in the failure load can be close to 20%.
The failure locations for the HSDT and hierarchic models are in the same region before and after the
use of discretization error control.

With equilibrium stresses we observe that:

1.

2.

b

For the initial mesh, the failure loads predicted by all the models are lower than those obtained in Ref.
22 (shown with superscript a) and those obtained by using direct stresses.

The locations predicted by all the models are either close to one obtained in Ref. 22 or are
corresponding symmetric points. The locations for both direct stresses and equilibrium stresses are
same (or corresponding symmetry points).

Failure loads predicted by the HSDT and hierarchic models are close while those predicted by layerwise
are slightly higher than these.

When the discretization error control is used the failure index, for the failure load obtained using
adapted mesh, increases upto 85%. This is due to the increased flexibility of the numerical solution for
the adapted mesh.

With the adapted mesh the error in the failure load computations can be close to 25%.

The failure locations for the HSDT and hierarchic models are in the same region before and after the
use of discretization error control.

It is obvious that a suitably refined mesh, along with proper post-processed values of the transverse stresses, is
necessary to obtain reliable values of the first-ply failure load.

VIII. Conclusion

A comprehensive study of pointwise quality of the stress components, obtained using various families of plates
models has been done. From this study it can be concluded that:

1. The pointwise displacement obtained using HSDT and hierarchic model are not very accurate for
thick laminates. The accuracy improves as the plate becomes thinner. This is because of the more
pronounced shear effects in thicker laminates, leading to a piecewise higher order polynomial
behavior of the exact solution. The layerwise theory accurately captures this behavior for all cases.

2. The HSDT and hierarchic models are more reliable for thin plates while for thicker plates these
models can lead to erroneous results.

3. The layerwise model accurately captures the local state of stress for all laminated composite
plates, for different plate thickness.

4. The in-plane stress components computed by all the models are accurate, for almost all the cases.

5. The in-plane stress components computed by direct use of finite element data for layerwise model

are in good agreement with exact one. The transverse stress components computed by direct use of

finite element data for HSDT and hierarchic models are significantly different both qualitatively
and quantitatively.

The equilibrium approach for computing transverse stresses is accurate for all the models.

7. Computed failure load is sensitive to the mesh, order of approximation and model used. However,
proper mesh design is necessary to ensure that the local transverse stresses are computed
accurately, when using post-processing.

S
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8. When the equilibrium approach for computing transverse stresses is used the failure load
computations can show reduction upto 20%.

9.  When the discretization error is controlled (using focused adaptivity) failure load computed using
direct stresses can go down by more than 23%.

10. When proper discretization error control is used, failure load computed using equilibrium
approach for transverse stresses the failure load can go down by 25%.

11. From design point of view, proper mesh design is essential, as the actual failure load can be
significantly smaller than the computed one.

12. In general, for symmetric and antisymmetric laminates, the HSDT and hierarchic models are
effective, when equilibrium approach is used to obtain the transverse stresses.
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