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In this study a reliable shape optimization for laminated plate structures has been attempted. For a fixed
higher order plate model, a simple a-posteriori strain recovery algorithm, following ZZ type patch
recovery technique, has been developed. The recovery is seen to be accurate. The effect of higher
approximation order and mesh refinement on the quality of the obtained solution quantities like stress
components and displacements, is studied in detail. The shape of the cutout is optimized with weight
minimization as the objective function and the first-ply failure criterion as the constraint. It is observed
that control of the discretization error (via adaptive mesh refinements) leads to vastly different final
designs, as compared to those obtained using reasonably refined meshes, but without adaptivity. It is
seen that without adaptivity, the design obtained is unsafe, as either more material removal is predicted
or failure is predicted at higher loads, as compared to that obtained using adaptivity.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Composite materials are finding wide applications in critical
structural applications due to their capability of giving desired
enhanced properties. Moreover, one can tailor these properties
according to the requirements. These materials have very high
strength to weight ratios. Cutouts in these critical structural
components are inevitable. For example, in aerospace applications
cutouts are made in wing ribs to facilitate the easy passage of fuel.
Sometimes the cutouts are made to provide access for damage
inspection or electrical circuits. In aerospace applications, weight
saving is one of the important design criteria. Therefore, the
cutouts are made just to reduce the weight of the structures.
Since, these components are used for critical applications one
should have confidence in the design procedure adopted.

A typical optimization based designing procedure involves
evaluation of an objective function subjected to one or more con-
straints. For example, the objective function could be cost or weight
minimization or profit maximization. Optimization problems, from
engineering discipline, involve evaluation of the constraints which
may include state of stress at a point; or a function which is a
combination of stress components; deflection at a particular point;
thermal stresses; buckling load, etc. Accurate computation of these
constraints plays an important role in a reliable optimum design. In
engineering design and optimization of large sized critical compo-
nents, the use of finite element technique has become an integral
part. Therefore, accurate evaluation of the finite element data,
which in turn, is used in constraint evaluation, is very important.

Many researchers have attempted to optimize the composite
laminate with design variables like ply thickness and ply orienta-
tion in order to obtain minimum weight designs subjected to
several constraints, such as maximum deflection, maximum
strength, maximum stress, von-Mises stress, first ply failure load
(or reliability requirements), etc. (see [1–4]). The optimum design
of laminated plates for maximum buckling load has also been
attempted in [5–8] with constraint on the natural frequency.
Botkin [9] has worked on shape optimization of stamped sheet
metal parts with buckling and stress constraints. Sometimes the
cutouts are just unavoidable in laminated structures. Hence, the
shape optimization of laminated plates with cutouts for weight
minimization has gained importance. For example, one can see
the work on the optimization of composite plates with a cutout in
[10,11]. Sivakumar et al. [12] have worked on optimization with
dynamic constraints.

A survey on structural optimization can be seen in [13,14]. The
optimization of aerospace structures with minimum weight objec-
tive, subjected to various constraints is reviewed in [15,16].

In general, the focus in all the studies mentioned above has
been to demonstrate the effect of optimization on the final design.
Thus, a fixed finite element mesh has been used, with a suitable
order of approximation, to obtain the results. The effect of the
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discretization error on the final optimal design was not studied.
The early work which involves the study of effect of discretization
error, on the final optimum shape, was seen due to Kikuchi et al.
[17]. In the shape optimization procedure, due to change in shape,
the mesh gets distorted and the final design is sensitive to the
approximation error associated with the discretization. Thus,
improvement in the quality of the approximation is needed [17].
In this work global error estimates were developed for adaptive
refinement strategies. A similar work was carried out by Hinton
et al. [18]. Weck et al. [19] have worked on saving the computa-
tional cost during optimization of composite structures with
ply-orientations and thickness as optimization variables using
adaptive meshing technique. Benneet and Botkin [20] aimed to
provide more accurate estimate of the true optimal solution with
the effect of adaptive meshing on stresses used in constraint
evaluation. Schleupen et al. [21] developed both global (based on
error of the strain energy of overall structure) and local error esti-
mates (based on error in a particular quantity of interest like dis-
placement or stress component) for global and local adaptive
refinements separately. The potential of these two techniques were
then compared through two dimensional shape optimization prob-
lems. Morin et al. [22] developed an algorithm based on adaptive
finite element method to equidistribute the errors due to shape
optimization and discretization to optimize the computational
cost. An application to X-FEM based structural optimization can
be seen in [23]. An evolutionary technique was used along with
sensitivity analysis, for a low cost adaptive remeshing, in shape
optimization problems by Bugeda et al. [24].

The application of adaptive meshing using goal oriented error
control for topology optimization was done by Bruggi and Verani
[25]. Another application of adaptive refinement approach to
topology optimization can be seen in Wang et al. [26].

In the present work a design of laminated composite plate, with
a centrally located cutout for minimum weight, subjected to a con-
straint that the plate should not fail under first-ply failure load cri-
terion, has been studied. Here, an attempt is made to demonstrate
the effect of reliability of constraints on the final optimal solution.
Initially, the final optimal solution is obtained without considering
reliability of the computed data used in the evaluation of first-ply
failure load constraint. The process is then repeated with a control
on the reliability of the computed data, i.e. effect of discretization
error control on final optimal shape. In the present work a higher
order shear deformable plate theory proposed by Reddy [27] has
been adopted and implemented in a finite element code. Further,
Zienkiewicz-Zhu (ZZ) [28–31] type a-posteriori patch recovery
based error estimator is developed for strain field corresponding
to the plate model considered. Although, the use of Genetic
Algorithms (GA) (for example, [12]) and evolutionary algorithms
(for example [24]) is very popular in optimization studies, in the
present study we have used a conventional optimization algorithm
- Complex Search [32] to obtain an optimal design. Finally, the
effect of evaluation of first-ply failure load constraint, with and
without control in discretization error, is studied. Here, the Tsai-
Wu first-ply failure criterion [33] has been used as a constraint.
2. Problem formulation

In this section a higher order shear deformable plate theory due
to Reddy [27] is presented followed by the finite element
formulation for this plate model.
2.1. Higher order plate model

Symmetric laminates find many applications in the aircraft
industry. Although symmetric laminates are simple to analyze
and design, some specific applications of laminated composites
require unsymmetric laminates. For example, the coupling
between bending and extension exhibited by this type of laminates
is an essential feature of jet turbine fan blades with pre-twist. It
can be noted that the theories for unsymmetric laminates are
applicable to symmetric laminates as a special case. Unlike sym-
metric laminates, unsymmetric laminates exhibit membrane-flex-
ure coupling phenomenon, which necessitates the use of a
displacement field containing both, membrane as well as flexure
deformation terms which contribute to the overall response of a
laminate. The analysis of laminated plates is based on the choice
of a plate theory. Several plate theories have been developed with
assumed variation of the displacement field in the transverse
direction. For example, see plate theories in [3,4,12,34–38]. These
theories attempt to give a higher order representation of strains
in the laminate thickness direction. In the following, we present
the details of plate theory due to Reddy [27] implemented in the
present study. The displacement field

u x; y; zð Þ ¼ u x; y; zð Þv x; y; zð Þw x; y; zð Þ½ �T ð1Þ

is derived from the expanded Taylor’s series in terms of thickness
coordinate z. Here, u x; y; zð Þ;v x; y; zð Þ and w x; y; zð Þ are the
displacement components along x; y and z axes, respectively.
These components, following the work of Reddy [27], are given as

u x; y; zð Þ ¼ u0 x; yð Þ þ zhx x; yð Þ þ z2/x x; yð Þ þ z3wx x; yð Þ
v x; y; zð Þ ¼ v0 x; yð Þ þ zhy x; yð Þ þ z2/y x; yð Þ þ z3wy x; yð Þ
w x; y; zð Þ ¼ w0 x; yð Þ

ð2Þ

In the expansion in Eq. (2), it is assumed that transverse normal
strain �zz is zero. The linear strain–displacement relationships
using small deformation theory can be obtained from this
equation.

The condition that the transverse shear stresses vanish on the
plate’s top and bottom faces (see Fig. 1) is equivalent to the
requirement that the corresponding strains be zero on these
surfaces, i.e.

cyz x; y;� d
2

� �
¼ cxz x; y;� d

2

� �
¼ 0 ð3Þ

On introduction of these conditions in the expressions for trans-
verse shear strains, the following relations are obtained.

/x ¼ /y ¼ 0; wy ¼ �
4

3d2 hy þw0;y
� �

and wx ¼ �
4

3d2 hx þw0;xð Þ

ð4Þ

The displacement field of Eq. (2) is modified by setting /x and /y

to be zero according to conditions of Eq. (4). The resulting displace-
ment field is now written as

u x; y; zð Þ ¼ u0 x; yð Þ þ z hx x; yð Þ þ z3 wx x; yð Þ
v x; y; zð Þ ¼ v0 x; yð Þ þ z hy x; yð Þ þ z3 wy x; yð Þ
w x; y; zð Þ ¼ w0 x; yð Þ

ð5Þ

In Eq. (5) u0;v0 and w0 are the mid-plane displacement
components while hx and hy are the rotations about y and x axes,
respectively. Further, wx and wy are higher order terms in the
Taylor’s series expansion and are also defined at the mid-plane.
Thus, the generalized displacement vector fdg of the mid-surface
contains seven degrees of freedom (DOF) and is given by:

fdg ¼ fu0 v0 w0 hx hy wx wyg
T ð6Þ

The corresponding strain–displacement relations, using
infinitesimal strains, are:
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Fig. 2. Rectangular domain with a circular cutout, meshed with an advancing front
method based automatic mesh generator.
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�xx ¼ u0;x þ z hx;x þ z3 wx;x

�yy ¼ v0;y þ zhy;y þ z3 wy;y

cxy ¼ u0;y þ v0;x þ z hx;y þ z hy;x þ z3 wx;y þ z3 wy;x

cyz ¼ hy þ 3 z2 wy þ w0;y

cxz ¼ hx þ 3 z2 wx þ w0;x

ð7Þ

Here, comma ;ð Þ denotes the partial derivative.

2.2. Finite element formulation

The total potential, Pp, for the structure is given by

Pp uð Þ ¼ 1
2

Z
V

r uð Þ � e uð ÞdV �
Z

Rþ[R�
T3 u3 ds

�
Z

CN

T1 u1 þ T2 u2ð Þds ð8Þ

where V is the volume enclosed by the plate domain; r uð Þ and e uð Þ
are the engineering stress and strain vectors, respectively. Rþ and R�

denote the top and bottom faces of the laminated plate and T3 x; yð Þ
is the applied transverse load on these faces; C are the lateral faces
with C ¼ CN [ CD. Here, CN denotes the Neumann boundary and CD

denotes Dirichlet boundary; T1; T2 are the in-plane tractions speci-
fied on the lateral faces along 1 and 2 directions, respectively. Here,
u1;u2 and u3 denote the three components of the displacement field
u in 1, 2 and 3 directions, respectively. Using the model described
by (5), the total potential P uð Þ can be defined by substituting u in
Eq. (8).

The approximate solution to the problem, uh, is the minimizer
of the total potential Pp uh

� �
and is obtained from the solution of

the following weak problem:
Find uh 2 H0 Vð Þ such that

B uh;vh
� �

¼ F vh
� �

8 vh H0 Vð Þ ð9Þ

where

B uh;vh
� �

¼
Z

V
r uh
� �� �T

e vh
� �� �

dV ; ð10Þ

F vh
� �

¼ �
Z

Rþ[R�
T3 vh

3 ds�
Z

CN

T1 vh
1 þ T2 vh

2

� �
ds ð11Þ

and H0 Vð Þ ¼ vh j Pp vh
� �

<1 andMvh ¼ 0 on CD
� �

; vh is the test
function and has the same form as uh given by (2). We will further
define

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B v;vð Þ

p
¼ kvkE as the energy norm. Note that

B uh;uh
� �

¼ 2U uh
� �

where U uh
� �

is the strain energy for the solution
uh. Note that in this study Dirichlet means the part of lateral bound-
ary where geometric constraints are imposed, while Neumann
stands for the parts of the lateral boundary where in-plane traction
is applied. Further, M is a generic representation of displacement
constraints on the Dirichlet boundary edge. For example, the
boundary conditions can be clamped ui ¼ 0; i ¼ 1;2;3ð Þ; soft
simple-support un;u3 ¼ 0ð Þ; hard simple-support ut ;u3 ¼ 0ð Þ; etc.
Here, un and ut denote in-plane displacement components normal
and tangential to an edge, respectively.

Triangular elements are used in the finite element
approximation employed in this study, along with hierarchic shape
functions of order p (p 6 4). The mesh generation is done using
advancing front method based automatic mesh generator. A typical
mesh generated over the plate domain is shown in Fig. 2.

A detailed study on various plate models for laminate applica-
tions and their finite element implementation can be seen in
Pandya and Kant [36–38].
3. A-posteriori recovery of pointwise strains and error
estimation

In a typical engineering analysis a mathematical model for
physical problem is first selected, such that it incorporates the
essential features of the actual physical problem. The finite
element method determines an approximation to the exact
solution of the mathematical model. The computed solution should
be compared with exact solution of the mathematical model which
is being solved. Hence, the computed results can be used to make
engineering decisions only when one can guarantee that finite
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element solution is sufficiently close to the exact solution of the
mathematical model problem. In general, the results of interest
obtained from the finite element solution can be very different
from those corresponding to the exact solution of the mathemati-
cal formulation and can lead to serious design errors. Thus, it is
imperative to accompany any computational analysis with an
accurate indication of the error in the quantity of interest.

The error estimator should be reliable. Unreliable error
estimates are dangerous because they could lead to a misleading
confidence in the computed quantities. The reliability of the error
estimator has to be understood with respect to the solution quan-
tity of interest. Here, an error estimator is constructed for the
energy norm of the error and it is assumed that if the error in
the global energy norm is low then all solution quantities of inter-
est are also reasonably accurate.

Many classes of a-posteriori error estimators are available in the
literature (see [39–41]). For the three-dimensional problems, the
implicit type residual error estimators would prove to be computa-
tionally expensive. Hence, the more economical recovery (or pro-
jection) based error estimators have been employed in this study.
It was found in [42,43] that the error estimator based on stress
recovery (defined in [29]) was reliable locally for patches at the
boundary of the domain, as well as the interior of the domain.
Several definitions of such projections are possible (see [42,44]).

In this study a simple procedure for the recovery of strains, from
the finite element solution, using patchwise data is proposed (as an
extension of the method in [45]). More details of this estimator can
be seen in earlier works of authors [46,47]. These recovered strains
will be then used to design a simple error estimator.

3.1. Procedure for recovery of strains

Following the representation of the solution by Eq. (7), we
re-write the components of strain in the following form as

� ¼

exx

eyy

cyz

cxz

cxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

e 0ð Þ
xx

e 0ð Þ
yy

c 0ð Þ
yz

c 0ð Þ
xz

c 0ð Þ
xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ z

e 1ð Þ
xx

e 1ð Þ
yy

0
0

c 1ð Þ
xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z2

0
0

c 1ð Þ
yz

c 1ð Þ
xz

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z3

e 2ð Þ
xx

e 2ð Þ
yy

0
0

c 2ð Þ
xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð12Þ

The recovered strain �� is also assumed to have the same form
(in terms of z) as the exact one, Eq. (7). Thus, the recovered strain is
also represented as

�� ¼

e�xx

e�yy

c�yz

c�xz

c�xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

e�; 0ð Þ
xx

e�; 0ð Þ
yy

c�; 0ð Þ
yz

c�; 0ð Þ
xz

c�; 0ð Þ
xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
þ z

e�; 1ð Þ
xx

e�; 1ð Þ
yy

0
0

c�; 1ð Þ
xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z2

0
0

c�; 1ð Þ
yz

c�; 1ð Þ
xz

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
þ z3

e�; 2ð Þ
xx

e�; 2ð Þ
yy

0
0

c�; 2ð Þ
xy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
ð13Þ

Given the representation of �� as in Eq. (13), it is now desired to
obtain the recovered strain field as a polynomial, element by
element, such that the recovered strain components are poly-
nomials that are one order higher than the corresponding finite
element strain components. Thus, if the order of approximation
for elements p is employed then all the recovered in-plane strain
components will be polynomials of degree p and the out of plane
strain components will be polynomials of degree pþ 1ð Þ. The
representation of the recovered strain components in terms of

polynomials are given below. For example, �� 0ð Þ
xx is given as

�� 0ð Þ
xx ¼

Xpþ1ð Þ pþ2ð Þ=2

i¼1

e� 0ð Þ
xx;i qi ð14Þ
where e� 0ð Þ
xx;i denotes the unknown coefficients and qi are the

monomials. The monomials are defined in terms of a local coordi-
nate system described later. Similarly, the strain components

�� 1ð Þ
xx ; �� 2ð Þ

xx ; ��0yy ; �
� 1ð Þ
yy ; �� 2ð Þ

yy ; �� 0ð Þ
xy ; �� 1ð Þ

xy and �� 2ð Þ
xy can be approximated as

above.
Now, the transverse shear strain components of the strain ten-

sor are approximated by ðpþ 1Þth order polynomial. For example,

c� 0ð Þ
yz ¼

Xpþ2ð Þ pþ3ð Þ=2

i¼1

e� 0ð Þ
yz;i qi ð15Þ

Similarly, the strain components c� 1ð Þ
yz ; c� 0ð Þ

xz and c� 1ð Þ
xz can be

approximated as above.
A patch is constructed by taking an element s and one layer

neighborhood of elements around it, as shown in Fig. 3. Let the
centroid of the element s be xc; ycð Þ. A local coordinate system
can be defined, with xc and yc as the center, as

x̂

ŷ

	 

¼

x� xc

y� yc

	 

ð16Þ

The monomials qi are given as,

q1 ¼ 1; q2 ¼ x̂; q3 ¼ ŷ; q4 ¼ x̂2; q5 ¼ x̂ŷ; q6 ¼ ŷ2; . . . ð17Þ

Now, to recover a smoothened strain field we should find
smoothened strain components. To get these coefficients, as afore-
said, the strain recovery procedure uses the principle of minimiza-
tion of energy norm of the error, i.e. the energy due to errors in
strain and stress components, over the patch considered. A typical
patch, with a layer of one element neighborhood, over element s is
shown in Fig. 3. In this, the strain components of the finite element
solution are known. The material properties and other relevant
information about patch is also available. From this, the strain
energy of the error can be computed as,

J ¼ 1
2

Z
Apatch

Z d
2

z¼�d
2

�� � �h
� �

� Q �� � �h
� �

dz dA ð18Þ

where �� and �h are the recovered and finite element strain vectors
and Q is material stiffness matrix, respectively. Note that J is the
strain energy of the error in the strain, �� � �h. In Eq. (18), although,
the material stiffness matrix Q varies over the laminate thickness, it
is constant over a given lamina thickness. Hence, the integration
over laminate thickness can be written as sum of integration over
the individual lamina thicknesses. Further, the integration over
patch area can be written as sum of integration over the element
areas in the patch. Thus, the above equation can be written as

J ¼ 1
2

XNP�1

i¼0

Z
sP

i

XNLAY

l¼1

Z zl

zl�1

�� � �h
� �

� Q ðlÞ �� � �h
� �n o

dz

" #
dA ð19Þ
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where NP is the number of elements in the patch over an element s,
NLAY is the number of laminae in the laminate, Q ðlÞ is the material
stiffness matrix and zl and zl�1 are the top and bottom coordinates
of lth lamina, respectively.

The minimization of the function J with respect to each
unknown coefficient of recovered strain term gives as many
linearly independent equations as the number of coefficients in
Eq. (18). The coefficients are solved for each element patch and
the values are retained for the element s.

The above step is followed by ‘reconstruction’. In this, using
these coefficients, smoothened strain components can be
constructed over the patch. These strains, in turn, can be used to
construct the stress components. The in-plane stresses are
constructed using material properties, i.e. from the constitutive
equation. Although, the recovered shear strains are improvements
over the finite element strains, equilibrium equations are used to
get the transverse stress field as the model used itself will not give
good transverse stress components. This is because the strain
continuity through the laminate thickness has been assumed and
it will lead to discontinuity of stresses at the interfaces.

The strain energy from recovered and finite element strains are
calculated over the whole domain.

U� ¼ 1
2

XNEL

j¼1

Z
j
r� � �� dVpatch

Uh ¼ 1
2

XNEL

j¼1

Z
j
rh � �h dVpatch

ð20Þ

where U� and Uh are the strain energies over the whole domain
from recovered strains and finite element strains, respectively. r�

and rh are the recovered and finite element stresses, �� and �h are
the recovered and finite element strains, respectively and NEL is
the number of elements in the mesh constructed over the domain.

Remark: When there is a material discontinuity, the averaging
is done over the elements with same material. For example, given
the element sP

0, the patch consists of elements fsP
i gi ¼ 0;1; . . . ;6

(see Fig. 3(b)).
Remark: No attempt is made here to obtain a smoothened

stress or strain field (as prescribed in [30,31]). It is expected, fol-
lowing the work of [42,45], that the recovered strain field will be
more accurate than that obtained by the finite element solution.

4. Definition of a-posteriori error estimator based on strain
recovery

The recovered strain �� can be used to define an a-posteriori
estimate of the error. The element error indicator gs, for an
element s is given as:

g2
s ¼

Z
s

XNLAY

i¼1

Z zi

zi�1

�� � �h
� �

� Q i �� � �h
� �n o

dz

" #
dA ð21Þ

The element error indicators can be used to define the global
error estimator nX as:

nX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXNEL

s¼1

g2
s

vuut ð22Þ

The error estimator based on the recovered strain developed
above has to be tested for robustness and accuracy. Following
the work of [42,45], it is imperative to subject an estimator to rig-
orous bench-marking tests in order to ascertain the quality of the
estimator for the class of materials, domains, loading and boundary
conditions of interest. In [44,45], a rigorous mathematical proof
was given, which leads to a simple computer-based procedure
for testing the quality of a-posteriori error estimators for general
second order elliptic problems. A detailed study was carried out
by the authors in [46] to ascertain the quality of the estimator.
The procedure was based on the basic idea given in [44]. The pro-
cedure is presented in the following for the sake of completeness.
For more details, see the earlier work of authors in [46].

Let �x be a small subregion of interest, lying inside the domain
X. Then asymptotically, for �x sufficiently small, the finite element
solution is essentially the best approximation of the local ðpþ 1Þth
order Taylor series expansion of the exact solution u, over a region
slightly bigger than �x. It was assumed for the asymptotic error
analysis that all global contributions to error in the local region
�x (i.e. pollution error) were negligible. Further, it was assumed
that the dominant part of the local error was due to the ðpþ 1Þth
degree terms of the local Taylor series expansion of the exact
solution.

However, for laminated composite plates, limited detailed
interior analysis of local error exists (for example see the earlier
works of authors in [46–50]). In [46], the work of [51,52] was fol-
lowed to get the global component of the error (for a rectangular
plate) in a local region �x due to only boundary layer effect. The
effect of the thickness of the plate, d, on the convergence rate is
seen through a slowing down in the setting of asymptotic behavior,
i.e. a more refined mesh may be required to get asymptotic behav-
ior. This phenomenon is also known as locking effect. It is known
that the h-version of the finite element method can be used to con-
trol the boundary layer effect by using sufficient mesh refinements
near the boundaries. Assuming that the thickness d is fixed (away
from zero), for the error e ¼ u� uh, we can write

jjejjE Xð Þ 6 C dð Þhl ð23Þ

where l ¼minðp; rÞ and r depends on the regularity of the solution
u of the plate model; k � kEð �xÞ is the energy norm given by

kukEð �xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U �x ðuÞ

p
. Here, U �x is the strain energy of u over region

�x.
Further, assume that for a subregion ð �xÞ 2 X, sufficiently away

from the boundary

jjejjEð �xÞ 6 C dð Þhp ð24Þ

in the absence of boundary layer effects, and for a fixed d. The
readers are referred to the work of [53] for a detailed proof on
convergence of local error for isotropic plates. Thus, if the finite
element solution is obtained over the same mesh using pþ 1ð Þ
order elements, the error e pþ1ð Þ ¼ u� u pþ1ð Þ

FE in the finite element

solution u pþ1ð Þ
FE satisfies

jje pþ1ð ÞjjEð �xÞ 6 C dð Þh pþ1ð Þ ð25Þ

Hence, we can obtain,

jjejjEð �xÞ ¼ jju� u pþ1ð Þ
FE þ u pþ1ð Þ

FE � uhjjEð �xÞ 6 jju� u pþ1ð Þ
FE jjEð �xÞ

þjju pþ1ð Þ
FE � uhjjEð �xÞ � jju

pþ1ð Þ
FE � uhjjEð �xÞ

ð26Þ

thus, Eq. (26) means that the error is essentially the difference
between the pþ 1ð Þth order solution and the pth order solution,

when h! 0. Here it is to be noted that u pþ1ð Þ
FE denotes the finite ele-

ment solution uh obtained with an approximation of order pþ 1ð Þ.
Letting n �x be the error estimator for subregion �x, we define

j �x ¼
n �x

jjejjEð �xÞ
� n �x

jju pþ1ð Þ
FE � uhjjEð �xÞ

ð27Þ

where j �x is the effectivity index for the subregion �x. Ideally,
j �x ¼ 1 is desired.
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The details of this work for laminated plates with various stack-
ing sequences, boundary conditions, plate length to thickness
ratios, materials, mesh patterns, etc. can be seen in earlier work
of authors [46]. The quality of the proposed error estimator was
also studied in [46].
4.1. Adaptivity

The energy norm of the error obtained using the recovered
strain field is used to refine the mesh. The procedure developed
is very simple. It involves the computation of the energy norm of
the error in each element, followed by a ranking of the elements
in the order of highest contributions to the total error. The
elements contributing eighty percent or more of the maximum
error are refined. This procedure is repeated till convergence to
within the specified tolerances is obtained. It should be noted that
adaptive analysis requires repeated solution of the boundary value
problem, with the modified meshes. Thus, the cost of computation
increases (see [39,45] for details).
5. Optimization problem formulation

The plate with dimensions of X; Y , thickness d and a centrally
located cutout of elliptical shape with initial size 2a;2b and
oriented at h degrees with respect to x axis, is shown in Fig. 4.
Here, 2a is major axis, 2b is minor axis.

The objective of the optimization problem is to minimize the
weight of the plate. Since all the laminae of same material are
taken, the objective becomes the minimization of the plate mate-
rial area. Hence, the design parameters are, semi-major axis - a,
semi-minor axis – b and orientation of the elliptical cutout.

Objective function : Minimize weight of the material;W

Or
Minimize area of the material; A¼X Y�pab

Subject to : State of stress is such that the Tsai Wu failure index 60:8 and
Y
8
6 a;b6 0:4Y

ð28Þ

The second constraint given above is purely from geometric
constraints point of view.
Y

X

2b

2a

x

y

θ

d

Fig. 4. Geometry of the laminate and initial shape of the cutout.
5.1. Optimization algorithm

Complex Search Method algorithm is used for solving this
optimization problem [32]. The algorithm begins with a number
of feasible points created at random. If a point is found to be infea-
sible, a new point is created using previously generated points.
Usually, the infeasible point is pushed towards the centroid of the
previously found feasible points. Once a set of feasible points is
found, the worst point is reflected about the centroid of rest of the
points to find a new point. Depending on the feasibility and function
value of the new point, the point is further modified or accepted. If
the new point falls outside the variable boundaries, the point is
modified to fall on the violated boundary. If new point is infeasible,
the point is retracted towards the feasible points. The worst point in
the simplex is replaced by this new feasible point and algorithm
continues for next iteration. Here, the reflection parameter and con-
vergence parameter are chosen as 1.3 and 0.01, respectively.

The algorithm given above is presented in the following.

Step 1: Assume a bound in x x Lð Þ; x Uð Þ� �
, a reflection parameter a

and termination parameters � and d.
Strep 2: Generate an initial set of P feasible points
For p ¼ 1; . . . ; P � 1.
(a) Randomly generate x pð Þ
i ; i ¼ 1; . . . ;N

(b) If x pð Þ
i is infeasible then reset
x pð Þ ¼ x pð Þ þ 1
2

�x� x pð Þ� �
ð29Þ
where �x is the centroid of previously generated feasible points.
Repeat this process until x pð Þ becomes feasible.
(c) Else if x pð Þ is feasible then continue with (a) until P feasi-
ble points are generated.

(d) For all feasible points evaluate the function value f x pð Þ� �

Set the iteration counter k = 1.

Step 3: Reflection step

(a) Select the point xR such that

f xR
� �

¼Max f x pð Þ� �
¼ Fmax ð30Þ

(b) Calculate the centroid �x of all feasible points except xR

and the new point

xm ¼ �xþ a �x� xR
� �

ð31Þ
(c) If xm is feasible and f xmð ÞP Fmax, retract half the distance

to the centroid �x. Continue until f xmð Þ < Fmax;

Else if xm is feasible and f xmð Þ < Fmax, go to Step 5.
Else if xm is infeasible, go to Step 4.

Step 4: Check for feasibility of the solution

(a) For all i reset violated variable bounds:

If xm
i < x Lð Þ

i set xm
i ¼ x Lð Þ

i

If xm
i < x Uð Þ

i set xm
i ¼ x Uð Þ

i

ð32Þ

(b) If the resulting xm is infeasible, retract half the distance
to the centroid. Continue until xm is feasible. Go to Step
3(c).
Step 5: Replace xR by xm. Check for termination.� �

(a) Calculate �f ¼ 1

P

P
pf x pð Þ and �x ¼ 1

P

P
px pð Þ

(b) If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

p f x pð Þð Þ � �f
� �2

q
6 � and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
p jj x pð Þ � �x j j2

q
6 d
Terminate;
Else go for another iteration. Set k ¼ kþ 1 and go to Step 3(a).

5.2. Failure criterion

The failure criterion based on interactive failure theories is
considered. We have used here second-order tensor polynomial
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Fig. 5. Mesh types or patterns used for plate validation study.

P.M. Mohite, C.S. Upadhyay / Computers and Structures 153 (2015) 19–35 25
criterion proposed by Tsai-Wu [33]. It is a complete quadratic
tensor polynomial with the linear terms included. The most com-
pact form for expressing this theory is through tensor notation:

Fi ri þ Fij ri rj 6 0:8 i; j ¼ 1;2; . . . ;6 ð33Þ

where Fi and Fij are the strengths tensors established through
experimental procedures and are related to failure strengths in
principal lamina directions. ri denotes the stress components.
Here, right hand side of above equation is deliberately taken 0.8
instead of 1 as a safe constraint for the optimization problem men-
tioned earlier. For orthotropic lamina this reduces to (see [33,54,55]
and references therein)

F1 r11þF2 r22þF3 r33þF11 r2
11þF22 r2

22þF33 r2
33þF44 r2

23þF55 r2
13

þF66 r2
12þ2F12 r11 r22þ2F13 r11 r33þ2F23 r22 r3360:8 ð34Þ

The components of the strength tensor are given below as:

F1 ¼ 1
XT
� 1

XC
; F2 ¼ 1

YT
� 1

YC
; F3 ¼ 1

ZT
� 1

ZC
;

F11 ¼ 1
XT XC

; F22 ¼ 1
YT YC

; F33 ¼ 1
ZT ZC

;

F44 ¼ 1
R2 ; F55 ¼ 1

S2 ; F66 ¼ 1
T2 ;

F12 ¼ � 1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT XC YT YC

p ; F13 ¼ � 1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT XC ZT ZC

p ; F23 ¼ � 1
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YT YC ZT ZC

p

ð35Þ

where subscript T denotes tensile strengths, C denotes compressive
strengths. X;Y and Z are the strengths in L; T and T 0 directions,
respectively. R; S and T are shear strengths in TT 0; LT 0 and LT planes,
respectively. T 0 is perpendicular to plane LT (see Fig. 1).
6. Results and discussion

The shape optimization process requires computation of con-
straint information (here, first-ply failure criterion). In order to
guarantee the reliability of the constraint information, the accu-
racy of the plate model (and its implementation), the discretization
procedure and postprocessing module have to be established. In
this section, a detailed validation study for the plate model, along
with the influence of mesh refinement and p-enrichment, is done.
Further, a validation study for first-ply failure load is also carried
out. This is followed by the shape optimization problem with and
without adaptivity. The mesh types or patterns used in the study
for plate model validation are shown in Fig. 5.
6.1. Comparison of displacement and stress components

In this section, first we define the problem for validation study.
It is followed by validation studies for thick, moderately thick and
thin laminates. Lastly, the validation study for first-ply failure load
of laminates is presented.

Remark: The definition of thin, moderately thick and thick
plates depends upon length to thickness ratio S ¼ X

d

� �
, loadings,

boundary conditions, etc. In general, this definition is based on
thickness ratio. Hence, we have used this definition in this analysis.
Further, unless specified, the analysis is done for full laminate.

A laminated plate of dimensions X and Y along x and y direc-
tions, respectively, and thickness d, as shown in Fig. 1, has been
considered for the analyses. The coordinate system and laminate
sequence convention are also shown in this figure. The plate is



Table 1
Comparison of non-dimensionalized transverse deflection for square cross-ply thick
plate under sinusoidal loading with mesh refinement and p = 3 fixed.

Mesh pattern �w0 Pp �10�5
� �

Mesh-I �1.9230 �1.7371
Mesh-II �1.9242 �1.7395
Mesh-III �1.9258 �1.7397
Mesh-IV �1.9260 �1.7397
Kant et al. [38] �1.9058 –

Table 2
Comparison of non-dimensionalized transverse deflection for square cross-ply thick
plate under sinusoidal loading with p refinement for Mesh-III.

p �w0 Pp �10�5
� �

1 �1.8339 �1.6009
2 �1.9267 �1.7388
3 �1.9258 �1.7397
4 �1.9261 �1.7397
Kant et al. [38] �1.9058 –

Table 3
Material properties used for rectangular ½0=90�S thick laminate under transverse
sinusoidal loading [35].

Property E1 GPa E2 GPa G12 ¼ G13 GPa G23 GPa m12 ¼ m13 m23

Value 138 9.3 4.6 3.1 0.3 0.5

Table 4
Comparison of transverse deflection for rectangular cross-ply thick plate under
sinusoidal loading with mesh refinement for fixed p = 3.

Mesh pattern w0 �10�4
� �

Pp �10�4
� �

Mesh-I �5.8090 �3.1683
Mesh-II �5.8439 �3.1954
Mesh-III �5.8467 �3.1974
Mesh-IV �5.8468 �3.1975
3D solid [35] �5.7263 �3.0851

Table 5
Comparison of transverse deflection for rectangular cross-ply thick plate under
sinusoidal loading with p refinement for fixed Mesh-III.

p w0 �10�4
� �

Pp �10�4
� �

1 �5.2480 �2.8603
2 �5.8439 �3.1954
3 �5.8467 �3.1975
4 �5.8469 �3.1975
3D solid [35] �5.7263 �3.0851
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loaded transversely on the upper surface through a sinusoidal load
as

qz x; yð Þ ¼ �qc sin
mp x

X

� �
sin

npy
Y

� �
ð36Þ
Table 6
Comparison of stresses for rectangular cross-ply thick plate under sinusoidal loading with

Mesh r�xx r�yy s�xy

pattern X
2 ;

Y
2 ;� d

2

� �
X
2 ;

Y
2 ;� d

2

� �
X;Y;
�

Mesh-I 8.5821 1.8848 �0.96
Mesh-II 7.9947 1.7597 �0.90
Mesh-III 7.9137 1.7410 �0.89
Mesh-IV 7.9042 1.7384 �0.89
3D solid [35] 7.7388 1.9267 �0.86
or with uniformly distributed transverse load as

qz x; yð Þ ¼ �q0 ð37Þ

where qc is the amplitude of the sinusoidal loading and q0 is the
intensity or magnitude of the uniform transverse load. The
transverse mid-plane displacement at the center of the plate (that
is, at z ¼ 0), w0 (unless specified) is normalized as �w0

�w0 ¼ w0
E2 d3

qc X4 102 ð38Þ

In above equation, when the load is uniformly distributed, the
term qc is replaced by q0. Unless specified, in all problems the mesh
types used are shown in Fig. 5.

6.1.1. Comparison for thick laminates
In this section cross-ply square and rectangular laminates under

transverse loads are studied for their predictive capabilities of
pointwise transverse deflection and stress components. This study
is carried out for different types of mesh patterns (as shown in
Fig. 5) and degree of approximation (p = 1 and 2) used. The results
are compared with those available in literature.

Case 1: A cross-ply square laminate under sinusoidal transverse
loading

A 0=90=0½ � square laminated plate and S ¼ 5, under sinusoidal
transverse load, with qc ¼ 6:89� 10�3 N/mm2 and m ¼ n ¼ 1, is
analyzed. The plate is simply supported over all edges. The lamina
has properties E2 ¼ E3 ¼ 6:89 GPa and m12 ¼ m23 ¼ m13 ¼ 0:25.
Further, E1 ¼ 25 E2;G23 ¼ 0:2 E2 and G13 ¼ G12 ¼ 0:5 E2 is taken.
Here, all the laminae have equal thicknesses.

The comparison of non-dimensionalized transverse deflection
with mesh refinement when p ¼ 3 is fixed, is reported in Table 1.
Table 2 reports these results for p refinement with mesh fixed to
Mesh-III.

From these tables we can see that the values of non-dimen-
sionalized transverse deflection from our study are close to the
one with reference results obtained by Kant et al. [38]. For approx-
imation order p ¼ 3 the effect of mesh refinement shows that
results converge with mesh refinement above Mesh-III and with p
refinement it converges for p P3. It should be noted that the refer-
ence results are obtained for a fixed rectangular mesh with four ele-
ments and no convergence analysis has been reported. Hence, we
see a difference in the two results. Further, it can be seen that the
total potential converges to a value of �1:7397� 10�5 and for this
value of total potential we observe that the non-dimensionalized
transverse deflection also shows convergence.

Case 2: A cross-ply rectangular laminate under sinusoidal trans-
verse loading

A rectangular 0=90½ �S laminated plate, hard simple supported
along all edges, and subjected to transverse sinusoidal loading is
analyzed. All the layers have equal thicknesses and S ¼ 5 is taken.
The laminae properties are listed in Table 3. The amplitude of
sinusoidal loading qc is 1 N/mm2 with m ¼ n ¼ 1. The sinusoidal
loading in this case is of the from

qz x; yð Þ ¼ �qc cos
mp x

X

� �
cos

npy
Y

� �
ð39Þ
mesh refinement for fixed p ¼ 3.

rxx ryy sxy

� d
2

�
X
2 ;

Y
2 ;� d

2

� �
X
2 ;

Y
2 ;� d

2

� �
X;Y;� d

2

� �
62 8.0526 1.7647 �0.8916
57 7.9523 1.7496 �0.8990
89 7.9118 1.7403 �0.8982
80 7.9042 1.7382 �0.8970
02 7.7388 1.9267 �0.8602



Table 7
Comparison of stresses for rectangular cross-ply thick plate under sinusoidal loading with p refinement for fixed Mesh-III.

p r�xx r�yy s�xy rxx ryy sxy

X
2 ;

Y
2 ;� d

2

� �
X
2 ;

Y
2 ;� d

2

� �
X;Y;� d

2

� �
X
2 ;

Y
2 ;� d

2

� �
X
2 ;

Y
2 ;� d

2

� �
X;Y;� d

2

� �
1 7.1042 1.5524 �0.8073 6.9450 1.5100 �0.7813
2 7.9947 1.7597 �0.9057 7.9523 1.7496 �0.8990
3 7.8687 1.7298 �0.8936 7.8972 1.7363 �0.8970
4 7.8663 1.7513 �0.8980 7.8980 1.7365 �0.8972
3D solid [35] 7.7388 1.9267 �0.8602 7.7388 1.9267 �0.8602

Table 8
Comparison of non-dimensionalized transverse deflection for a square cross-ply,
moderately thick plate with mesh refinement and p ¼ 3 fixed.

Mesh pattern �w0 Pp �10�4
� �

Mesh-I �0.7174 �1.0098
Mesh-II �0.7171 �1.0127
Mesh-III �0.7176 �1.0129
Mesh-IV �0.7176 �1.0129
Kant et al. [38] �0.7164 –

Table 10
Comparison of non-dimensionalized transverse displacement for 45=� 45=45=� 45½ �
square, moderately thick laminate with mesh refinement for p ¼ 3 fixed.

Boundary condition Mesh pattern �w0 Pp �10�4
� �
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The transverse deflection for mesh refinement with fixed p ¼ 3
is tabulated in Table 4 and for p refinement with Mesh-III is
reported in Table 5. The convergence of the in-plane stress compo-
nents has been reported in Table 6 for mesh refinement with p ¼ 3
fixed and in Table 7 for p refinement with Mesh-III fixed. In Tables
6 and 7, the stress components r�xx;r�yy and s�xy denote recovered
stresses and rxx;ryy and sxy denote finite element stresses. The
recovered stresses are obtained using constitutive relations and
the recovered strain components, as discussed in Section 3.1.
These results are compared with the 3D finite element results
reported in [35]. It should be noted that the origin of the coordinate
system for laminate geometry in the present study is fixed at the
lower left corner and in [35] it is fixed at the center of the laminate.
From the results we observe that:

1. The results for transverse deflection converge to �5:8467�10�4

for mesh refinement with meshes above Mesh-III type and
p ¼ 3 fixed. The results from present study are close to 3D finite
element results reported in [35].

2. The results from present study for deflection component with p
refinement converge with Mesh-III fixed for p P3. The
converged values are same as mentioned in point 1 above.

3. The plate model gives a converged total potential value of
�3:1975� 10�4, which is higher than the reference values in
[35]. This difference between total potential values is because
the plate model considered here assumes a smooth strain field
through the thickness, which may lead to a jump in the values
of the transverse stresses at the interfaces. This is in direct vio-
lation of the stress continuity requirement (from 3D elasticity
solution point of view) at the interface.

4. The convergence of stress components to the values reported in
[35], obtained using three dimensional finite element analysis,
does not show much difference between stress components
obtained using recovery and finite element approach for mesh
refinement with p ¼ 3. However, for p refinement, with mesh
Table 9
Comparison of non-dimensionlaized transverse deflection for a square cross-ply,
moderately thick plate with p refinement and Mesh-III fixed.

p �w0 Pp � 10�4

1 �0.6202 �0.8459
2 �0.7175 �1.0118
3 �0.7176 �1.0129
4 �0.7176 �1.0129
Kant et al. [38] �0.7164 –
fixed, the recovered stress components show faster conver-
gence to the values in [35] than compared to the convergence
of finite element stress components.

6.1.2. Comparison for moderately thick laminates
In this section square cross-ply anti-symmetric laminates under

uniformly distributed transverse load are studied for their predic-
tive capabilities of pointwise transverse deflection. This study is
carried out for different types of mesh patterns (as shown in
Fig. 5) and degree of approximation (p = 1 through 4) used. Then
these results are compared with the results available in literature.

Case 1: A cross-ply square laminate under sinusoidal transverse
loading

The problem description is same as Case 1 of the Section 6.1.1,
but with S ¼ 10. The effect of mesh refinement, with approx-
imation order p ¼ 3, on the convergence of the results has been
studied and is reported in Table 8. Similarly, with Mesh-III fixed
the effect of p refinement on the convergence of the results is
reported in Table 9. Further, for these cases the convergence of
the total potential is also reported.

The observations for this study show that the non-dimen-
sionalized transverse displacement convergences to a value of
�0:7176 and total potential to a value of �1:0129� 10�4 for
Mesh-III and higher levels of mesh refinement. Similarly, for
Mesh-III the convergence is observed for p P3. It can be observed
that the convergence in the non-dimensionalized transverse
displacement is seen when the value for total potential is con-
verged. It can be easily seen that the converged value of the non-
dimensionalized transverse displacement is very close to the value
reported in [38]. Further, it can be observed that the convergence
with mesh and p refinements is achieved faster as compared to
thick plate case.

Case 2: An anti-symmetric square laminate under uniform
transverse loading

A four-layer antisymmetric angle-ply square laminate,
45=� 45=45=� 45½ �, subjected to uniformly distributed transverse

load is analyzed for all edges hard simple supported and all edges
clamped boundary conditions. The intensity of the uniformly dis-
tributed load is q0 ¼ 6:89� 10�3 N/mm2. Here, the thicknesses of
H-SSSS Mesh-I �1.1062 �2.6566
Mesh-II �1.1059 �2.6682
Mesh-III �1.1068 �2.6698
Mesh-IV �1.1069 �2.6700
Reddy and Miravete [56] �1.1598 –

CCCC Mesh-I �0.5562 �1.1342
Mesh-II �0.5779 �1.1756
Mesh-III �0.5799 �1.1819
Mesh-IV �0.5800 �1.1812
Reddy and Miravete [56] �0.7708 –



Table 11
Comparison of non-dimensionalized transverse displacement for 45=� 45=45=� 45½ �
square, moderately thick laminate with p refinement for fixed Mesh-III.

Boundary condition p �w0 Pp � 10�4

H-SSSS 1 �0.8862 �2.0615
2 �1.1055 �2.6642
3 �1.1068 �2.6698
4 �1.1069 �2.6700
Reddy and Miravete [56] �1.1598 –

CCCC 1 �0.4632 �0.9143
2 �0.5773 �1.1719
3 �0.5799 �1.1819
4 �0.5801 �1.1812
Reddy and Miravete [56] �0.7708 –
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all layers are same and S ¼ 4 is taken. The properties of the lami-
nate material are: E2 ¼ 6:89� 103 N/mm2, m12 ¼ m13 ¼ 0:25; E1 ¼
10 E2;G12 ¼ G13 ¼ 0:6 E2, and G23 ¼ 0:5 E2.

The convergence study for the values of non-dimensionalized
transverse deflection and total potential has been carried out for
both mesh and p refinements. These results are tabulated in
Table 10 and Table 11, respectively. Here, H-SSSS or CCCC denote
the boundary conditions that all edges are hard simple supported
or clamped, respectively.

The observations drawn from this study are:

1. Both non-dimensionalized transverse displacement and total
potential converge for mesh refinements above Mesh-III,
whereas, for a fixed mesh Mesh III, the convergence with p
refinement can be seen for p P3. Further, the convergence for
displacement component is seen when there is convergence
for total potential as well.

2. The displacements from present study are higher than those
obtained by Reddy and Miravete [56]. We have used higher
order shear deformation theory (HSDT) while in [56] first order
shear deformation plate theory (FSDT) is used. The solution to
the problem is obtained by using L�evy method with state-space
approach. The HSDT model leads to a more flexible structure as
compared to the FSDT model. However, one should note that
there is no significant difference in the values obtained by these
models for hard simple supported boundary condition case.
However, for all edges clamped boundary condition the results
from present study are not in good agreement with [56]. This is
due to the locking effect caused by edge constraints.

3. In both the studies, the results converge fast for simple sup-
ported plate as compared to the clamped one. The clamped
plate shows significant effect of edge constraints, in comparison
to the simple supported plate.

6.1.3. Comparison for thin laminates
In this section the non-dimensionalized transverse deflection is

validated for cross-ply square laminate under sinusoidal load and
cross-ply rectangular laminate under uniform transverse load for
both mesh and p refinements.
Table 12
Comparison of non-dimensionalized transverse displacement for thin cross-ply
laminate with mesh refinement for p ¼ 3 fixed.

Mesh pattern �w0 Pp

Mesh-I �0.4336 �0.0605
Mesh-II �0.4352 �0.0612
Mesh-III �0.4353 �0.0614
Mesh-IV �0.4353 �0.0614
Kant et al. [38] �0.4344 –
Case 1: A cross-ply square laminate under sinusoidal transverse
loading

The problem description is same as in Case 1 in Section 6.1.1
with the change that S ¼ 100. The results from present study are
given in Table 12 and Table 13. From above tables we can see that:

1. The non-dimensionalised displacement converges to �0.4353
and total potential to �0.0614 for mesh refinement Mesh-III
and p ¼ 3 fixed and similar results are seen for fixed mesh
Mesh-III and p refinement with p P 3.

2. The non-dimensional displacement obtained from present
study is very close to the reference values in [38]. It should be
noted that the laminate considered here is thin. Hence, the
effect in transverse direction is easily captured by HSDT model
used in the present study.

3. The convergence in both displacement and total potential
values is achieved with a moderate mesh and p refinements.

Case 2: A cross-ply rectangular laminate under uniform transverse
loading

A simply supported thin cross-ply laminate 0=90½ �S with
thickness of each ply as 0.127 mm and S � 450 under uniformly
distributed load is considered. The intensity of the uniform load
applied is q0 ¼ 6:9� 10�4 MPa. T300/5208 Graphite/Epoxy
(pre-preg) v f ¼ 0:7

� �
is used as the material for the laminate ana-

lyzed. The material properties for this material are given in
Table 14. Results are tabulated in Table 15 and Table 16. From
these tables, it can be observed that:

1. The displacement converges to a value of �11.5004 with mesh
refinement for mesh refinement level of Mesh-III or above.

2. The convergence with refinement for the Mesh-III or above
levels is achieved with p P3.

3. The reference results are obtained for constant mesh and with
FSDT model. Also, no convergence study with respect to either
mesh refinement or p refinement was done. The results with
present HSDT model match exactly with the results reported
in [56].

4. Mesh refinement level Mesh-III and p ¼ 3 seem to be reason-
able for convergence study.

6.2. First-ply failure load

In this section, the first-ply failure load using Tsai-Wu failure
theory [33] has been obtained. The transverse deflection at the
center of the plate corresponding to the first-ply failure load is also
obtained. These results are then compared with the results
reported in [57].

The non-dimensionalized transverse deflection at the center of
the plate, corresponding to the first-ply failure load, is defined as

w�0 ¼
w0

d
ð40Þ

and the non-dimensionalized first-ply failure load (FLD) is given by
Table 13
Comparison of non-dimensionalized transverse displacement for thin cross-ply
laminate with p refinement for fixed Mesh-III.

p �w0 Pp

1 �0.0388 �0.0530
2 �0.4255 �0.0600
3 �0.4353 �0.0614
4 �0.4353 �0.0614
Kant et al. [38] �0.4344 –



Table 14
Material properties for T300/5208 Graphite/Epoxy unidirectional composite [56].

Property E1

GPa
E2 ¼ E3

GPa
G12 ¼ G13

GPa
G23

GPa
m12 ¼ m13 m23

Value 132.5 10.8 5.7 3.4 0.24 0.49

Table 15
Comparison of non-dimensionalized transverse displacement for cross-ply thin
laminate with mesh refinement and fixed p ¼ 3.

Mesh pattern w�0 Pp

Mesh-I �11.7421 �23.9584
Mesh-II �11.5132 �24.2721
Mesh-III �11.5004 �24.4141
Mesh-IV �11.5004 �24.4231
Reddy et al. [56] �11.5000 –

Table 16
Comparison of non-dimensionalized transverse displacement for cross-ply thin
laminate with p refinement for fixed Mesh-III.

p w�0 Pp

1 �0.0340 �0.0712
2 �10.9555 �23.2155
3 �11.5004 �24.4141
4 �11.5004 �24.4250
Reddy et al. [56] �11.5000 –
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FLD ¼ q0

E2

X
d

� �4

ð41Þ

For this validation study, the mesh topology shown in Fig. 5 has
been used. First, an antisymmetric angle ply laminated plate is
studied for its first-ply failure load. In the second problem, we have
analyzed a symmetric cross ply laminate for its first-ply failure
load. The first-ply failure load has been obtained by using finite
element stresses as well as stresses constructed using recovered
strains and constitutive relations. In both cases the transverse
stresses used are obtained by using equilibrium equations.

Case 1: Antisymmetric angle-ply laminate under uniformly dis-
tributed load

The problem description is same as Case 2 in Section 6.1.3. The
antisymmetric angle ply laminated plate considered here is
clamped along all edges and loaded with uniformly distributed
Table 17
Strength parameters for T300/5208 Graphite/Epoxy unidirectional composite [57].

Property XT XC

MPa
YT ¼ ZT

MPa
YC ¼ ZC

MPa
R
MPa

S ¼ T
MPa

Value 1515 1697 43.8 43.8 67.6 86.9

Table 18
Comparison study for first-ply failure load for �45=45=� 45=45½ � laminate with h refinem

Mesh Stress FLD w�0
pattern type

Mesh-II RR 1.771�106 �35.09

FE 1.223�106 �24.25

Mesh-III RR 46264.58 �25.77
FE 55555.74 �30.94

Mesh-IV RR 37661.66 �23.85
FE 41294.01 �26.15

Reddy et al. [56] FE 39354.80 �26.79
transverse load. This laminate with material T300/5208 Graphite/
Epoxy (pre-preg) is analyzed for first-ply failure load. The material
strength parameters are given in Table 17.

Results from our analysis are reported in Table 18 for h refine-
ment and in Table 19 for p refinement. In these tables RR denotes
that the stresses constructed from recovered strains are used in
failure criterion in Eq. (34) and FE denotes finite element stresses
along with Eq. (41). Here and in the following, ‘xco’ and ‘yco’
denote the x and y coordinates of the point where the failure index
value is reported.

From the above tables we can see that:

1. For fixed value of p ¼ 2 with mesh refinement, the failure load
for Mesh-II is very high. This is due to locking effect exhibited
by plate. Since, plate is very thin and clamped along all edges,
this effect is more severe. A similar observation can be made
for p refinement.

2. With higher levels of refinement for mesh (Mesh-IV) or higher p
values the failure loads are very close to one reported in [57].

3. The failure loads with stresses obtained from recovered strains
are lower compared to failure load obtained by using finite ele-
ment stresses.

4. The failure locations obtained for our study are different from
those reported in [57]. The problem considered is symmetric
in all respect. Hence, locations can also be expected to be sym-
metric. We are getting the locations on the face opposite to that
obtained from reference results. It should be noted that the
reference results were obtained for a fixed mesh with FSDT
model using Lagrangian iso-parametric rectangular elements
and no convergence study was done.

5. Failure location is found mostly on top face of the laminate.
Further, the maximum contribution to failure index is due to
rxx and sxy stress components. The failure mode is, thus, matrix
failure.

Case 2: A cross-ply laminate under uniformly distributed load
The problem description is same as in Case 1 above, but the

lamination scheme for this problem is ½0=90�S. Results from present
analysis are reported in Table 20 for mesh refinement with p ¼ 2
held constant and in Table 21 with p refinement for a constant
mesh, Mesh-II.

The comparison of the results with the reference results yield
the same conclusions as discussed in Case 1 above.

Fig. 6 depicts the failure locations obtained from present study
and those reported in [57]. The point 1� and 2� denote the failure
locations obtained by Reddy and Reddy [57] for �45=45=½
�45=45� and ½0=90�S laminates, respectively. Further, the points
1	 and 2	 show the failure locations from our study for
�45=45=� 45=45½ � and 0=90½ �S laminates, respectively. A detailed

study on the first-ply failure loads along with discretization error
control can be seen in earlier works of authors [49].
ent for p ¼ 2 fixed.

xco yco Ply Location
number

111.93 2.84 1 Top

166.62 93.82 4 Bottom

115.78 1.42 1 Top
111.93 0.71 1 Top

115.35 0.95 1 Top
112.79 0.47 1 Top

� 125 � 125 1 Top



Table 19
Comparison study for first-ply failure load for �45=45=� 45=45½ � laminate with p refinement for fixed Mesh-II.

p Stress FLD w�0 xco yco Ply Location
type number

2 RR 1.771�106 �35.09 111.93 2.34 1 Top

FE 1.223�106 �24.25 166.62 93.82 4 Bottom

3 RR 38044.02 �25.66 129.31 125.83 1 Top
FE 35558.73 �24.10 119.62 125.57 1 Top

4 RR 32385.21 �21.92 99.68 125.83 1 Top
FE 29058.74 �19.64 176.87 3.32 1 Top

Reddy et al. [56] FE 39354.80 �23.79 � 125 � 125 1 Top

Table 20
Comparison study for first-ply failure load for 0=90½ �S laminate with h refinement for p ¼ 2 fixed.

Mesh Stress FLD w�0 xco yco Ply Location
type type number

Mesh-II RR 1.215�106 �24.38 117.06 2.84 4 Bottom

FE 1.173�106 �23.53 119.62 1.42 1 Top

Mesh-III RR 26955.81 �21.92 115.78 1.42 1 Top
FE 29899.92 �24.32 117.06 0.71 1 Top

Mesh-IV RR 19499.95 �18.41 115.35 126.05 1 Top
FE 21029.35 �19.85 112.79 126.52 1 Top

Reddy et al. [56] FE 19050.90 �19.34 � 2 � 75 1 Top

Table 21
Comparison study for first-ply failure load for 0=90½ �S laminate with p refinement for fixed Mesh-II.

p Stress FLD w�0 xco yco Ply Location
type number

2 RR 1.215�106 �24.38 117.06 2.84 4 Bottom

FE 1.738�106 �19.58 119.62 1.42 1 Top

3 RR 19423.48 �19.58 109.37 1.42 1 Top
FE 17588.19 �17.80 119.62 125.57 1 Top

4 RR 16823.48 �16.97 119.62 1.42 1 Top
FE 15676.43 �15.82 119.62 125.57 1 Top

Reddy et al. [56] FE 19050.90 �19.34 � 2 � 75 1 Top
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Fig. 6. Laminate showing the failure locations predicted from present study and reported in [57].
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Remark: In above example cases the transverse normal stress,
that is r33, is not considered while evaluating the failure index in
Eq. (34). This is because this component cannot be computed
either from recovered strain data or finite element data, directly.
Further, no attempt has been made to evaluate this component
using equilibrium equations.
6.3. Shape optimization

Here, with few typical examples, we will demonstrate the effect
of control of discretization error on the final ‘‘optimal’’ shape of the
cutout and value of failure index attained. In this study, cross-ply
and angle-ply symmetric laminates with cutouts have been
studied.

Remark: In each of the problems, we start with an initial profile
of the elliptical cutout to be circular with a ¼ b ¼ Y=8, and h ¼ 0
.
Since the p ¼ 2 approximation, with sufficiently refined mesh,
gives reasonable failure load values, this is taken as the order of
approximation for all future computations.
6.3.1. A rectangular 0=90½ �S laminate under transverse uniform loading
A rectangular symmetric laminated plate, with a cutout,

clamped along one of the smaller edge (that is, x ¼ 0) and loaded
Table 22
Optimal shape for cutout in 0=90½ �S laminate without adaptive refinement and p ¼ 2.

Sequence a b Weight

Initial 0.3175 0.3175 12.5865
Intermediate 0.5799 0.4109 12.1544
Intermediate 0.6015 0.4119 12.1245
Optimal 0.6057 0.4100 12.1229

x

y y

x

y

Mesh I a=b=0.3175, max. index=0.4095, error=3.658%

Mesh III a=0.6057, b=0.41, max. index=0.7959, error=4.8293%

Fig. 7. Cutout shapes during optimization in 0=9½

Table 23
Optimal shape for cutout in 45=� 45½ �S laminate without adaptive refinement and p ¼ 2.

Sequence a b Weight

Initial 0.3175 0.3175 12.5865
Intermediate 0.8598 0.8808 10.5236
Intermediate 1.0122 0.8960 10.0535
Optimal 1.0160 1.0160 09.6602
transversely with uniformly distributed load, is analyzed for shape
optimization. The intensity of the transverse uniform load is
q0 ¼ 2:0 N/mm2. The lamination scheme considered is ½0=90�S with
S ¼ 10. Here, Y ¼ X

2 is taken.
All laminae are made of T300/5208 Graphite/Epoxy (pre-preg)

and have a thickness of 0.127 mm. The material mechanical prop-
erties are given in Table 14 and strength parameters are given in
Table 17. Here, p ¼ 2 is used in the study.

The optimum cutout shape results are tabulated in Table 22 and
the corresponding cutout shapes during optimization process are
shown in Fig. 7. From these results we observe that:

1. The discretization errors are below 5% for all the feasible
shapes. Hence, adaptive refinement is not needed.

2. The initial configuration with the given loading had a maximum
failure index of 0.4095. Thus, there was scope for reduction in
weight by increasing the size of cutout, which in turn may
increase the failure index value. This fact is seen through the
intermediate configuration during the optimization procedure.
The size of the cutout is increased, thereby increasing the maxi-
mum value of failure index.

3. The maximum failure index for optimal solution is very close to
the allowable value set (FLD 6 0:8).

4. The reduction in weight for this study is 3.68%.
Max. index error (%) xco yco

0.4095 3.6582 2.2109 1.2165
0.7709 4.8672 1.9517 1.3472
0.7899 4.3852 1.9197 1.2083
0.7959 4.8293 1.9157 1.2077

x

x

y

Mesh II a=0.5799, b=0.4109, max. index=0.7709, error=4.867%

Mesh IV a=0.6015, b=0.4119, max. index=0.7899, error=4.385%

0�S laminate under uniform transverse load.

Max. index error (%) xco yco

0.4953 7.1979 0.0740 0.0224
0.3461 11.8820 2.1983 0.4315
0.3939 11.8937 2.1435 0.4188
0.7712 15.6503 2.4090 2.3167
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Fig. 8. Adaptive refinements in optimum shape for 45=� 45½ �S laminate under uniform transverse load.

Table 24
Effect of adaptivity on final optimal shape in 45=� 45½ �S laminate under transverse
uniform load.

Refinement level error (%) Max. index

Initial 15.6503 0.7712
First 15.0825 –
Second 13.5012 –
Third 12.4125 –
Fourth 11.0823 –
Fifth 10.4591 1.0089

Table 25
Effect of adaptivity on optimal shape in 45=� 45½ �S laminate subjected to uniform
transverse loading.

Adaptivity a b Weight Max. index error (%)

No 1.0160 1.0160 09.6602 0.7712 15.6503
Yes 0.5248 0.3175 12.3796 0.7978 6.7000

Table 26
Effect of adaptivity on optimal shape in 45=� 45½ �S laminate subjected to combined
loading.

Adaptivity a b Weight Max. index error (%)

No 1.0155 0.8753 10.1103 0.7997 8.3792
Yes 1.0157 0.8258 10.2681 0.7999 6.4297
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5. The failure occurs at the edges of cutout boundary. When the
contribution to the failure index from each of the stress compo-
nent is studied in detail, it was seen that the stress component
ryy contributes more as compared to other components. Thus,
the mode of failure can be said to be a matrix failure. This result
is in accordance with the results obtained by Ericson et al. [58].

6. The optimal shape of the cutout is an ellipse with an orientation
angle of 0
 with respect to x axis.
6.3.2. A rectangular 45=� 45½ �S laminate under transverse uniform
loading

The problem description is same as in Section 6.3.1. However, in
this case the lamination scheme is changed to ½45=� 45�S. The
intensity of uniform transverse load is q0 ¼ 0:22 N/mm2.

In this study the discretization error was estimated but not con-
trolled by adaptive refinements. These results are tabulated in
Table 23. From these results we observe that:

1. The discretization errors are above 10% in most of the feasible
shapes.

2. The reduction in weight obtained is about 22%.
3. The final optimum shape has reached the upper bound on the

design variables, that is, the minor and major axes of the ellip-
tical cutout. Although, the value of failure index is very close to
the allowable value set for this optimum shape, there is scope of
additional material removal from this design.
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4. Failure occurs at the edges of cutout boundary. This is due to
high stress concentration because of constraint and free-edge
effects. Further, it was observed that the location of first-ply
failure changes from one iteration to another in the cutout
vicinity.

5. When the contribution to failure index from each of the stress
component at the point of failure was analyzed, it was seen that
the stress components ryy and sxy contribute most. Thus, it can
be said that the mode of failure in this case is matrix failure.
This result is in accordance with experimental study reported
by Herakovich [54].

In the above study the discretization error was not controlled.
The discretization error for the optimal shape is over 15%. Now,
without changing the optimal shape obtained, an attempt is made
to control the discretization error below 7% or five refinement
levels, whicever is attained earlier. The sequence of adaptive mesh
refinements is shown in Fig. 8. Mesh-I is the initial mesh used. The
discretization errors for these refined meshes are reported in
Table 24.

The error estimator predicts that the elements of the clamped
edge and the cutout boundaries have high discretization error.
Hence, a relatively refined mesh is seen at these locations. This
result is in agreement with the earlier study of the authors [46].
The higher discretization error near the constraint and free edges
of the cutout are expected due to constraint and free-edge effects.

Thus, due to adaptive refinement the errors are reduced from
15.6503% to 10.4591%. However, the failure index has increased
from 0.7712 to 1.0089. This shows that the optimal solution
obtained without control over discretization error is unsafe.
Hence, control of discretization error is essential in shape
optimization study.

Now we will see the effect of discretization error control,
through adaptive mesh refinements, on the outcome of the
optimization process. The mesh is refined adaptively till either
the tolerance in discretization error is reduced below 7% or for five
levels of refinement, whichever is attained earlier. The comparison
of results with and without adaptivity is shown in Table 25.

From these results it is seen that:

1. The final optimal shape obtained with and without adaptivity
are significantly different. The optimal shape of the cutout with-
out discretization error control is circular in nature while the
one obtained with discretization error controlled throughout
the optimization procedure is elliptic in shape with orientation
of 0
 with x-axis.

2. The discretization error for the final optimal shape with adap-
tive procedure is well below the tolerance mentioned.

3. Failure occurs at the cutout boundary, but the location changes
from one iteration to another.

4. The value of the maximum failure index attained is very close to
the allowable value.

5. The weight reduction in the optimal design obtained without
control of discretization error (about 22%) is more compared
to one obtained with control of discretization error (about
2%). Thus, from this example it is seen that if the discretization
error is not controlled, more material removal will be predicted
erronouysly, hence compromising safety of design.

6.3.3. A rectangular 45=� 45½ �S laminate under combined loading
A rectangular symmetrically laminated composite plate,

45=� 45½ �S clamped along a smaller edge, x ¼ 0 is taken. The plate
is loaded under uniformly distributed load, in-plane tensile loading
and shear load. The laminate properties are as in Section 6.3.1. For
this case, q0 ¼ 0:15 N/mm2, Nxx ¼ 20 N/mm and Nxy ¼ 0:35 N/mm
are taken. Here, Nxx and Nxy denote uniform axial stress along x
direction and shear stress in x� y plane per unit length, respec-
tively, applied on the edges.

In this study first the optimal cutout shape is obtained without
controlling the discretization error and then the optimal shape is
obtained with control of discretization error. Again, the mesh is
refined adaptively till either the tolerance in discretization error
is reduced below 7% or for five levels of refinement, whichever is
attained earlier. The results are reported in Table 26. Here, we
see that the final optimal shapes obtained with and without adap-
tivity are closer to each other in all respects. This is because the
discretization error in both the cases is close. Further, it is seen that
failure occurs near the cutout boundary, but the location changes
during the iterations. Thus, it can be concluded that if the dis-
cretization error is within specified tolerance, then there is no
effect of adaptivity on final design. Note that using higher p
(p P 3) will not result in significant change in the conclusions, as
the discretization error is controlled.

Remark: The optimization algorithm used here works with a set
of feasible points. In the present study the initial set of feasible
shapes are chosen such that the failure index is closer to 0.8.
Further, it is seen that during each iteration the feasible shape
attained is such that failure index reaches close to the maximum
value of 0.8. Therefore, the evolution of failure index with iterations
will be almost a horizontal line. Further, it is interesting to see the
evolution of optimal shape with iterations. Here, this has been
depicted for Examples 6.3.1 and 6.3.2 for some of the iterations.

Remark: The proposed approach is very efficient as it simultane-
ously estimates and controls the discretization error in each itera-
tion. The cost of computation involved with this approach, with
lower value of approximation, can be significantly lower than that
without the control of discretization error but a highly refined mesh
and/or higher value of approximation. It was shown in [42,45] that
recovered strain field is accurate than that obtained by the finite
element solution. This leads to the accurate computations of stres-
ses used in the optimization constraints evaluation. Further, it was
shown in [42,45–47] that the ZZ type approach of estimating and
controlling the discretization error is computationally economical.
Therefore, the overall approach used for shape optimization is
computationally economical and accurate as well.

Remark: Here, all computations have been carried out approx-
imation order p ¼ 2. This has been done intentionally because in all
practical purpose computations a lower order of approximation is
used. When a lower approximation order is used and discretization
error is not controlled then final solution may not be accurate.
Here, we wanted to demonstrate this fact through the optimization
study. If the approximation order is increased then the recovered
strains will be more accurate. Therefore, the discretization error
will be lesser as compared to the error when obtained with
p ¼ 2. However, the final optimal shape obtained with higher
approximation order may not be different from that one obtained
with p ¼ 2.
7. Conclusions

In this study the shape optimization of laminated composites
plates with cutout has been studied with a special emphasis on
control of the finite element discretization error. A third order
shear deformation plate theory has been used for the laminate
analysis and is implemented in a finite element code. A strain field
having same representation as the exact solution of the displace-
ment field of the plate model considered is recovered using energy
projections over the element patches similar to ZZ type patch
recovery. Then these recovered strains are used to define a-posteri-
ori error estimator, which drives a simple mesh refinement



34 P.M. Mohite, C.S. Upadhyay / Computers and Structures 153 (2015) 19–35
algorithm. The plate model used is tested for its accuracy in pre-
dicting transverse displacement component, stress components
and first-ply failure load obtained using Tsai-Wu failure theory
under various boundary; transverse loading conditions, plate
thickness ratios and lamination schemes. An optimization algo-
rithm using complex search method has been employed. Finally,
the effect of discretization error control over the final optimal
design is demonstrated through simple, yet effective examples.
The key conclusions from this study can be given as follows:

1. For thick laminates, the plate model used needs moderately
refined mesh and the cubic approximation order used is
sufficient.

2. For moderately thick laminates, proper mesh refinement
and approximation orders should be chosen for a better
convergence.

3. For thin laminates, boundary layer effect is severe. Mesh
refinements are needed in order to eliminate the effect of
locking. Higher approximation orders p P 3ð Þ is also needed
in order to reduce the locking effect. Thus, for a thin plate
greater care should be taken (with respect to the approx-
imation) in order to ensure reliability of the solution
quantities.

4. The transverse displacement component obtained for thick,
moderately thick and thin cross-ply and angle ply laminates
for various boundary conditions under uniform as well as
sinusoidal transverse loads are accurate. Further, the stres-
ses obtained using recovered strains are reasonably
accurate.

5. For angle ply laminates the failure starts at the top or bottom
edge of the laminate. The failure is dominated by ryy and sxy

stress components. This results in matrix type failure in the
laminate.

6. For cross-ply laminates, the failure starts at the top or bot-
tom edge of the laminate. The failure mainly occurs due to
stress component ryy. Again, this gives rise to matrix type
failure in the laminate.

7. In case of laminates with cutout, the failure starts at the cut-
out boundary. This is because of high stresses due to free-
edge effect at the cutout boundaries.

8. With the use of stresses obtained using recovered strains,
failure is predicted earlier than that obtained using the finite
element stresses. These failure loads are 5–18% lesser than
the reported results for angle-ply laminates. Further, these
values for failure load are about 12% lesser than the values
reported in literature for cross-ply laminates.

9. Adaptive refinement procedure based on a-posteriori error
estimation affects the final optimal solution. The final design
obtained with a cruder approximation is dangerous, because
more material removal is predicted if the discretisation error
is high (20% more material removal predicted). This is
because the plate behavior is stiffer with a crude approx-
imation, as compared to that obtained with proper refine-
ments and/or approximation order.

10. This study brings out the important point that it is impera-
tive to have some indication of the discretisation error, in
order to accept or reject the final design obtained from the
shape optimization.
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