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In this study an attempt is made to generate the microstructure of short fibre composites through rep- 

resentative volume element (RVE) approach and then analyzed using mathematical theory of homoge- 

nization with periodic boundary conditions to estimate the homogenized or effective material properties. 

An algorithm, based on random sequential adsorption technique (RSA), has been developed to generate 

the RVE for such materials. The goal of the present study is to demonstrate the methodology to generate 

RVEs which are effective in predicting the stiffness of the short fibre composites with repetitiveness. For 

this purpose, RVEs for four different scenarios of fibre orientations have been developed using this tech- 

nique. These four different scenarios are: Fibres are aligned in a direction; fibres are oriented randomly 

in one plane; fibres are randomly oriented in one plane and partially random oriented in other plane and 

finally, fibres are completely random oriented. For each case three to four different fibre volume frac- 

tions are studied with five different RVEs for each volume fraction. These four cases presented different 

material behaviour at macroscale due to random location and orientation of fibres. The effective prop- 

erties obtained from numerical technique are compared with popular non RVE methods like Halpin–Tsai 

and Mori–Tanaka methods for the case where fibres are aligned in a direction and were found to be in 

good agreement. The variation in the predicted properties for a given volume fraction of any of the four 

cases studied is less than 1%, which indicates the efficacy of the algorithm developed for RVE genera- 

tions in repetitiveness of predicted effective properties. The four cases studied showed gradual change in 

macroscopic behaviour from transversely isotropic, with respect to a plane, to a nearly isotropic nature. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Materials selection and their properties plays a primary role

in engineering design. The performance of the structure or com-

ponent relies mainly on the material properties. Fibre reinforced

composites (FRC) made with polymer matrix materials are popu-

lar materials due to their high specific stiffness, strength, tough-

ness and fatigue behaviour. Fibre reinforced composites, with long

fibres, processed by cost effective manufacturing techniques are

efficient to carry primary loads, but there are many applications

for which the requirements are less demanding and the expen-

sive manufacturing techniques cannot handle long fibres due to

complexity of shape. Therefore, in such situations short fibre re-

inforced composites (SFRC) are widely used ( Harris, 1999 ). SFRC

products are commonly manufactured by conventional manufac-

turing techniques like injection moulding, compression moulding

and extrusion processes, etc. However, injection moulding process
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s a popular method used in industries for manufacturing poly-

eric composites of complex shapes without compromising the

erformance of components at a reasonable cost. During the man-

facturing process, molten polymer along with short fibres is in-

ected into the mould followed by curing process and the final

art is extracted from the mould ( Vincent et al., 2005 ; Park and

ark, 2011 ). SFRCs obtained from injection mould technique are

idely used in auto-mobile and civil engineering applications be-

ause of their less weight and increased production rates. Recent

pplications of SFRCs in aerospace domains include replacement of

etallic structures to carry enough loads due to secondary loading

embers ( Rezaei et al., 2009 ). To expand their applications in var-

ous sectors, prediction of material behaviour is essential. Short fi-

re composites are being extensively used in automotive structural

pplications due to their low costs and mass production capabil-

ties. However, to extend its application in aerospace domain, the

aterial behaviour needs to be analyzed carefully. 

The material properties of short fibre reinforced composites

epend upon many criteria apart from their individual constituent

roperties. The factors such as volume fraction, fibre orientation,

https://doi.org/10.1016/j.ijsolstr.2017.10.011
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bre location, fibre aspect ratio, cross sectional geometry of fibre

nd size of RVE decide the properties of resulting material. These

riteria have to be considered while predicting the properties

f short fibre composites. This leads to a challenging task. The

ifferent methods used to predict the properties of SFRCs are

nalytical or non RVE methods, micromechanics based finite ele-

ent method using homogenization techniques and Fast Fourier

ransform technique. 

To investigate the material behaviour of SFRCs, different analyt-

cal methods are available in literature. The most popular methods

re ( Mori and Tanaka, 1973 ) and ( Halpin, 1969; Halpin and Kar-

os, 1976 ) techniques. Mori and Tanaka (1973) technique is based

n Eshelby ’s (1957) inclusion in isotropic medium to estimate the

verage internal stress in a matrix containing inclusion with eigen-

train. Mori–Tanaka method does not derive the explicit relations

or the effective stiffness tensor of composite. Later, Benveniste

1987) reconsidered and proposed a closed form expression to

ompute the effective moduli based on the assumption that the

verage strain in inclusion is related to average strain in matrix

aterial by a fourth order tensor. This fourth order tensor re-

ates uniform strain in the inclusion embedded in matrix material,

ubjected to uniform strain at infinity. Chow (1978) ; Tucker and

iang (1999) proposed an expression for strain concentration ten-

or based on dilute Eshelby’s model and average strain in matrix,

o predict the stiffness tensor of short fibre composites. 

Among numerical approaches, Ionita and Weitsman (2006) de-

eloped a material model for SFRCs which simulates the random

eometry of material based on laminated random strand technique

o predict the material properties. This method is based on classi-

al laminate theory where the fibres are randomly oriented in in-

lane and does not account for out of plane orientation of fibres.

azarenko et al. (2016) developed a mathematical model based

n energy-equivalent homogeneity combined with the method of

onditional moments to analyse short fibre composites. The paral-

el and random distribution of fibres was considered and the in-

erphase was described by Murdoch material surface model. The

roperties of the energy-equivalent fibre are determined on the

asis of Hill’s energy equivalence principle assuming its cylindri-

al shape. 

Approaches using finite element method, as a numerical tool,

o compute the material behaviour of SFRCs are very popular.

ari et al. (2007) developed the RVE models based on the nu-

erical technique to estimate the material behaviour of random

hort fibre composites. They studied the influence of size ef-

ect on RVE considering both the constituents as isotropic in na-

ure. Velmurugan et al. (2014) estimated the effect of material

ehaviour influenced by unidirectionally aligned curved short fi-

re composites for glass/epoxy composites and aluminum/boron

omposites. In their study, curved fibres of sinusoidal shape were

onsidered and characterized by amplitude, wavelength and di-

meter of fibre. Jain et al. (2013) developed the microstructure

odel known as volume element using random sequential algo-

ithm (RSA) (2007) to predict the stresses in individual inclusion

nd matrix material. The fibres were modeled as sphero-cylinders

nd ellipsoids of various aspect ratios. Further, fibres were al-

owed to be unidirectionally aligned and also randomly oriented

n in-plane. Fully random orientation of fibres was not consid-

red in their study. Fu and Lauke (1996) developed an analyti-

al method considering the effects of fibre length and fibre ori-

ntation distributions for predicting the tensile strength of short

bre reinforced polymers. The strength of these polymers is de-

ived as a function of fibre length and fibre orientation distribu-

ion taking into account the dependences of the ultimate fibre

trength and the critical fibre length on the inclination angle and

he effect of inclination angle on the bridging stress of oblique

bres. 
Ghossein and Lévesque (2012) developed a numerical tool

o predict the effective properties of composites by generat-

ng RVE with randomly distributed spherical particles as re-

nforcement using an algorithm based on molecular dynamics.

uschlbauer et al. (2006) developed an RVE by using Monte Carlo

lgorithm to estimate the thermoelastic and thermophysical be-

aviour of metal matrix composites. In their study, the fibres

ere oriented randomly in in-plane direction. Eckschlager et al.

2002) also implemented the unit cell approach for metal ma-

rix composite to study the elastic behaviour of random oriented

iscontinuous fibre reinforcements. Spherical and cylindrical fibre

einforcements were generated using RSA algorithm for 15% vol-

me fraction. A finite element implementation of these models

as done using ABAQUS. Doghri and Tinel (2005) proposed an RVE

evelopment using orientation distribution function and averaging

s pronounced in two steps. Firstly, homogenization of each pseudo

rain is obtained. Secondly, homogenization of all pseudo grains is

one to estimate the macro response of RVE. Numerical simula-

ions were performed on elasto-plasto matrix components known

s silicon fibre reinforced aluminum alloy. Pan et al. (2008a) devel-

ped a numerical technique to generate the microgeometry using

SA technique to estimate the effective properties of short fibre

einforced composites. Glass fibres were modeled with an elliptical

ross sectional shape and large volume fraction is obtained by al-

owing the fibres to bend sharply over the other fibres at the cross-

ng region, which leads to a high stress concentration in the kink

egion of fibres. They also addressed the fibre interaction effect

n local stress field by varying the distance between two fibres.

dvani and Tucker (1987) applied the use of even order orientation

ensors to study the effect of orientation on unidirectional aligned

omposites. Ogierman and Kokot (2016) studied the fibre orienta-

ion and its influence on material properties and dynamic response

f the structure based on the coupling of injection moulding tech-

ique to distribute the short fibres, microscale modeling to rep-

esent an RVE and finite element based homogenization technique

o estimate the material properties. Orientation averaging approach

roposed by Advani and Tucker (1987) is considered to couple the

bre orientation data obtained from injection moulding technique

nd to estimate the effective properties. Berger et al. (2007) evalu-

ted the effective properties of randomly distributed cylindrical fi-

re composites. They used numerical homogenization tool for this

urpose. Their focus was to study the influence of change in vol-

me fraction and length/diameter aspect ratio of fibres. In their

tudy they considered arbitrarily oriented and parallel oriented fi-

re arrangements. 

Most of the works based on some homogenization technique

epend on the size of an RVE. In the present study, a microme-

hanics model based on mathematical theory of homogenisation is

mplemented to determine the effective properties. This approach

s independent of the size of RVE. RVE development plays a key

ole in finite element procedure to determine the effective proper-

ies of the material. 

The behaviour of a composite material can be predicted by

tudying the effect of its individual constituents at microscale. The

rrangement of fibres in matrix plays a vital role in the develop-

ent of a model for this study. The assumptions made for a typ-

cal micromechanics analysis can be seen in the work of Hori and

emat-Nasser (1999) . A square packed fibre and matrix arrange-

ent is popularly used model to represent the microscale model

f continuous fibre composites as shown in Fig. 1 (a) (shown as an

xample). Due to symmetry and periodic arrangement of fibres, a

ingle rectangular array can be used to analyse the material at mi-

roscale which is known as representative volume element (RVE).

imilarly, a random packing and periodic arrangement of fibre and

atrix at microscale indicates a RVE for short fibre composites. A

ample RVE (in 2D) for short fibre composite is shown in Fig. 1 (b).
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Fig. 1. Representative volume elements for continuous and short fibre composites. 

(a) RVE for continuous fibre composite, (b) RVE for short fibre composite. 
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The characterization of a composite material structure is stud-

ied using RVE at the microlevel, which decouples the composite

analysis into macro and micro level analyses. Microstructural de-

tails are considered in local level analysis to determine the ef-

fective properties and to calculate the relationship between effec-

tive or average RVE strain and the local strain within the RVE. In

global level analysis, the actual composite structure is replaced by

an equivalent homogenized material having the calculated effec-

tive properties to determine the average stress and strain within

equivalent homogenized structure ( Hollister and Kikuchi, 1992 ).

Sukiman et al. (2017) studied a microstructure of randomly dis-

tributed short fibre composites using computational homogeniza-

tion to evaluate effective thermal and mechanical properties. The

focus of the work was to study the effect of area fraction on the

size of the deterministic representative volume element (DRVE).

This study was based on two dimensional RVE. 

Determination of RVE size is an important aspect for RVE based

methods. In general, the RVE must be chosen such that the re-

quirements of statistical homogeneity must be satisfied by the RVE

so as to provide a meaningful statistical representation of typical

material properties. Iorga et al. (2008) proposed a method based

on laminated random strand method for RVE size. This method is

well suited for the composites with randomly oriented in-plane

fibres. Pelissou et al. (2009) proposed a statistical strategy for

RVE size determination for a metal matrix composite with ran-

domly distributed aligned brittle inclusions. The work carried out

by Gitman et al. (2007) can be seen, as an example, for more de-

tails on existence and size determination of RVE. One can also see

the study of Kanit et al. (2006) for the estimation of RVE size. 

The main objective of this article is to automatically develop an

RVE of short fibre composites and estimate its effective properties

through micromechanical models. Here, random sequential adsorp-

tion technique proposed by Pan et al. (2008b ) is implemented in

a numerical method to generate the RVE for chopped fibre com-

posites. The mathematical theory of homogenization ( Hollister and

Kikuchi, 1992 ) is used to predict the effective properties of RVEs

developed. Furthermore, the homogenization method is imple-

mented in a finite element code with periodic boundary condi-

tions. This is implemented through the periodic nature of RVEs

generated. Thus, the overall goal is to develop an approach to gen-

erate the microstructure of short fibre composite and predict its ef-

fective macroscopic behaviour. Further, the approach should be ef-

ficient in predicting the properties repetitively for a given scenario.

The detailed procedure implemented to make the RVEs periodic in

nature is also presented. In the present study, different scenarios

of RVEs have been generated to study the effect of fibre orienta-

tions on the effective properties. Here, the following four types of

RVEs are generated and studied for the effective behaviour. 
Case 1: Fibres are aligned in a direction. 

Case 2: Fibres are randomly oriented in one plane. 

Case 3: Fibres are randomly oriented in one plane and a small

deviation is allowed in one of the remaining plane. 

Case 4: Fibres are completely randomly oriented in all planes. 

Furthermore, the effect of fibre volume fraction on the effective

roperties of the RVEs of all four cases is also studied. For each

f the case, three fibre volume fractions are studied and for each

olume fraction five RVEs are generated and analyzed for effective

roperties. 

The novelty of the current study is to give a simple method-

logy, using RSA technique to generate the RVE with periodicity

f the material for short fibre composites. Here, the emphasis is

iven on the generation of 3D RVEs rather than 2D RVEs for better

nteraction effect of surrounding fibres. A detailed methodology to

nsure the material periodicity across all boundaries of the cuboid

VE has been presented. Further, a suitable homogenization pro-

edure is used such that for a given type of fibre distribution the

ffective properties from different RVEs are predicted consistently.

his has been demonstrated through numerous simulations over

ifferent RVEs as mentioned above. 

In the following section, the methodology adopted for the gen-

ration of RVEs is presented in detail. Thereafter, the efficacy of the

enerated RVEs presenting different types of composites is demon-

trated through their effective properties. The effective properties

f these RVEs are predicted by mathematical theory of homoge-

ization ( Hollister and Kikuchi, 1992 ). The theory is implemented

hrough a finite element code. The finite element formulation of

he theory is also presented briefly. Finall y, the effective properties

f the resulting composites are analyzed and presented. 

emark 1. The development of an approach for RVE generation

or short fibre composite and its effective behaviour prediction can

asily be applied to multi-scale CNT (Carbon Nano-Tube) compos-

tes analysis. The effective Carbon nano-fibre can be obtained ei-

her from molecular dynamics or from micro-mechanics technique

ike Concentric Cylinder Assemblage (CCA) model of Hashin and

osen (1964) . The details of this work can be seen in Seidel and

agoudas (2006) . Here, the effective CNT fibres can be used as

hort fibre in the RVE. The present work is a link aimed for such a

ulti-scale analysis. 

. Generation of RVE 

In determining the effective properties of composite materials

sing finite element technique, the generation of RVE plays a vital

ole. In the present study the size of the cuboid shape RVE is cho-

en following the work of Iorga et al. (2008) . The size of the RVE

s based on laminated random strand method. It takes into account

he length and diameter (aspect ratio) of fibres. Further, the thick-

ess dimension of the RVE is chosen based on pseudo-layers of

he stands. More details can be seen in Iorga et al. (2008) and ref-

rences therein. One can see the work of Gitman et al. (2007) for

he various definitions of an RVE used in literature as well its size

etermination. 

In this section, steps involved in the generation of an RVE with

eometric periodicity is explained in the following. 

.1. Random sequential adsorption technique 

Random sequential adsorption technique is widely employed to

enerate the representative volume element to study the elastic

roperties of random chopped fibre composites. In the following,

e briefly explain the working of this technique. 
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Fig. 2. Fibre model in a 3D space ( Iorga et al., 2008 ). 
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In a 3D space, chopped fibre is modeled as a straight cylinder

ith its center point C , radius r , length l , in-plane orientation angle

and out-of-plane orientation angle θ , as shown in Fig. 2 . 

The random sequential adsorption algorithm for RVE generation

eposits fibres sequentially into the cube by randomly generating

heir center points C and two Euler angles. Here, the location and

rientations are generated according to uniform probability distri-

ution function. Practically, two fibres are not allowed to intersect

ach other. Further, the penetration of a new fibre with previously

ccepted fibre is also not allowed in RSA algorithm. The periodicity

f fibre is maintained in RSA algorithm to ensure material conti-

uity across the boundaries when multiple RVEs are arranged for

he generation of macrostructure, since RVE is locally periodic. A

ertain minimum distance is maintained between two random fi-

res to avoid the generation of excessively steep stress gradients

nd meshing difficulties. The minimum distance in this algorithm

s being set as 0.001 times the side length of RVE. The volume frac-

ion is updated each time when a newly generated random fibre is

laced inside the cube satisfying the above criteria. 

.2. Geometric periodicity 

To study the behaviour of composite materials comprising of

bre and matrix, microstructural model had been generated. Mi-

rostructural model, here known as representative volume ele-

ent, is a statistical representation of real structure with hetero-

eneous nature. One of the major assumption of RVE generation is

hat the model is geometrically periodic in nature. The key idea of

his section is to detail the implementation of geometric periodic-

ty in the development of RVE. 

The geometric periodicity can be seen as material periodicity,

hat is, the material should not experience the wall effect. In other

ords, it means that the reinforcement should penetrate through

he walls or boundaries of an RVE (see Gitman et al., 2007 ). In

rder to have the continuity of the material the reinforcements

enetrating the boundaries are allowed to reappear through op-

osite sides. Thus, an RVE represents any part of the material and

an be considered as the part of a larger sample. On similar lines,

o ensure the geometric or material periodicity for a 3D (cuboid)
VE, geometric periodicity has to be maintained all along the faces,

dges and corners of RVE considered. Therefore, by replicating an

VE in three perpendicular directions one should be able to form

he actual structure. 

In the following sections, the implementation of periodicity

cross faces, edges and corners is explained in detail. A model cu-

ic cell and its nomenclature used in the generation of geometric

eriodicity in an RVE is presented in Fig. 3 . This nomenclature can

e used for more than one cell with respect to the cell number. 

.2.1. Periodicity across faces 

In this case periodicity across faces is implemented to maintain

he continuity of fibres across the faces of an RVE when a fibre

rosses a face. The following procedure is incorporated to build the

eriodicity of an RVE across face. 

The fibres that are crossing the face of a parent cell is shared

y a single adjacent virtual cell as shown in Fig. 4 (a). The parent

ell is numbered as cell 1 and virtual cell is numbered as cell 2. A

art of fibre shared by cell 1 is named as region 1 and denoted as

 1. The remaining part of fibre shared by cell 2 is named as region

, which is denoted as R 2. In this case, fibre crossing the face 2 of

ell 1 enters the face 4 of cell 2 as shown in Fig. 4 (a). The fibre is

rimmed by the face across which it crosses and separated along

ith their respective cells as shown in Fig. 4 (b). The region 1 of

bre along with cell 1 separately and region 2 of fibre along with

ell 2 separately cannot be considered as an RVE, because the con-

inuity of the fibre is not maintained across the faces of individual

ells. To ensure the continuity of fibre across faces, R 2 of cell 2 is

opied to occupy the same position in cell 1 as shown in Fig. 4 (c).

he same can be obtained by copying R 1 of cell 1 to occupy same

osition in cell 2. Now, the cell in Fig. 4 (c) can be stated as an RVE.

t should be noted that the common intersection between cylindri-

al fibre and faces of an RVE need not be circular in shape, due to

rientation of fibre. 

.2.2. Periodicity across edges 

This case deals with the implementation of periodicity when

bres cross the boundary of RVE through the edges. Here, a fibre

s considered to pass across the edge FH in cell 1, as shown in

ig. 5 (a). 

A fibre crossing the edge of a parent cell is shared by three

irtual adjacent cells as shown in Fig. 5 (a). This part of the fibre,

long with the parent cell, is not periodic in nature. The following

teps are adopted to make the parent cell to be periodic. 

Both parent and virtual cells along with fibre are trimmed with

 and Y planes and separated as shown in Fig. 5 (b). The fibre is

rimmed into four different regions and named along with their

espective cells as R 1 through R 4. Each region of fibre along with

ts shared cell does not make the respective cell geometrically peri-

dic along the edges. To make periodic arrangement, part of fibres

rom cell 2, cell 3 and cell 4 are copied and made to occupy the

ame position and orientation in cell 1 as they occupied in their

espective cells as shown in Fig. 5 (c). The cubic cell in Fig. 5 (c) can

ow be called as an RVE. The same RVE can be generated from any

f the adjacent cell by making the regions of fibre in the remaining

ell to occupy the same position in this cell. 

.2.3. Periodicity across corners 

When fibres are sequentially arranged in a cube, there is a pos-

ibility that a fibre may cross the boundary of the cube through its

orner. A fibre crossing the boundary of the parent cell through

ts corner is shared by seven adjacent virtual cells as shown in

ig. 6 (a). Each cell holds a small region of fibre. The parent cell

s numbered as cell 1 and the remaining cells are virtual cells and

heir numbering is shown in Fig. 6 (a). The fibre crossing the corner

f cell 1 is trimmed by X, Y and Z planes and then separated in the
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Fig. 3. A model cell and its nomenclature in an RVE. 

Fig. 4. Periodicity in an RVE with fibres across faces. (a) Fibre across a face of a unit cell, (b) trimmed fibre across a face, (c) RVE made with periodicity across faces. 
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respective cells as shown in Fig. 6 (b). R 1 along with cell 1 alone

does not represent an RVE. To ensure it as an RVE, geometric peri-

odicity needs to be maintained. Hence, region of fibres from seven

adjacent virtual cells are copied and made to occupy the same po-

sition in the parent cell as it occupied in their respective virtual

cells as shown in Fig. 6 (c). Now the cell in Fig. 6 (c) can be termed

as an RVE with periodic arrangement across the corners. With the

similar procedure, any of the virtual adjacent cell can be made an

RVE with periodicity across the corners. 

Remark 2. In an actual RVE, the periodicity will include the peri-

odicity across all faces, edges and corners. 

2.3. Mathematical formulation for line intersection 

In the generation of RVE, the fibres are added sequentially until

the required volume fraction is attained. In addition, the new fi-

bre added should not intersect with the previously added fibres.

Thus, an algorithm to check for the intersection of fibres is re-

quired. An algorithm has been developed using Sunday’s technique
 Schneider and Eberly, 2002 ) to check the intersection of two fibres

sing calculus. The fibres considered are straight and cylindrical in

hape. So, to check for intersection it is easy to check the distance

etween two axes of cylinders rather than comparing the distance

etween two surfaces of the cylinders. 

Consider two lines L 1 and L 2 given as, respectively 

�
 

 (s ) = 

�
 P 0 + s 

(
�
 P 1 − �

 P 0 
)

= 

�
 P 0 + s � u (2.1)

�
 

 (t) = 

�
 Q 0 + t 

(
�
 Q 1 − �

 Q 0 

)
= 

�
 Q 0 + t � v (2.2)

here, � u and 

�
 v are line direction vectors. Let a vector between the

oints on these two lines be given as 

�
 

 ( s, t ) = 

�
 P ( s ) − �

 Q ( t ) (2.3)

For any n -dimensional space, the two lines L 1 and L 2 are clos-

st at points P C = P ( s C ) and Q C = Q ( t C ) for which W ( s C , t C ) is the

lobal minimum for W ( s, t ). If the two lines L 1 and L 2 are not

arallel and do not intersect each other, then the segment P C Q C 

oining these points is uniquely simultaneously perpendicular to
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Fig. 5. Periodic fibres across an edge. (a) Fibre across an edge of a unit cell, (b) trimmed fibre across an edge, (c) RVE made with periodicity across an edge. 
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oth lines. � W C = 

�
 W ( s C , t C ) is uniquely perpendicular to line direc-

ion vectors � u and 

�
 v and this is equivalent to it by satisfying the

ollowing two conditions: 

�
  · � W C = 0 and 

�
 v · � W C = 0 (2.4) 

here, � W C = 

�
 P ( s C ) − �

 Q ( t C ) = 

�
 W 0 + s C � u − t C � v . Now, substitute � W C in

q. (2.4) and solving, we get 

( � u · � u ) s c − ( � u · � v ) t c = −�
 u · � W 0 (2.5)

( � v · � u ) s c − ( � v · � v ) t c = −�
 v · � W 0 (2.6)

here, � W 0 = 

�
 P 0 - � Q 0 . Let a = 

�
 u · � u ; b = 

�
 u · � v ; c = 

�
 v · � v ; d = 

�
 u · � W 0 and

 = 

�
 v · � W . Substituting these values in Eq. (2.5) and Eq. (2.6) and
0 
olving for s C and t C results in 

 C = 

be − cd 

ac − b 2 
∀ ac − b 2 � = 0 

 C = 

ae − bd 

ac − b 2 
∀ ac − b 2 � = 0 

(2.7) 

If ac − b 2 = 0 , it indicates that two lines are parallel and the

istance between the lines is constant. This condition can be

olved for parallel distance separation by constraining the value of

ne parameter and using either of the Eq. (2.7) to solve for the

ther as given below. 

Now, let us select s C = 0 and t C = 

d 
b 

= 

e 
c . Substituting s C and t C 

nstead of s and t in Eq. (2.1) and Eq. (2.2) indicating two points

 and Q between two lines L and L where they are closest to
C C 1 2 
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Fig. 6. Periodic fibres across a corner. (a) Fibre across a corner of a unit cell, (b) 

trimmed fibre across a corner, (c) RVE made with periodicity across a corner. 

Fig. 7. A unit square in ( s, t )-plane. 
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ach other. The distance between them is given by 

 ( L 1 , L 2 ) = 

∣∣�
 P ( s C ) − �

 Q ( t C ) 
∣∣= 

∣∣∣∣(� P 0 − �
 Q 0 

)
+ 

( be − cd ) � u −( ae − bd ) � v 
ac − b 2 

∣∣∣∣
(2.8)

The distance measured by using Eq. (2.8) may not be the clos-

st distance between two line segments due to its infiniteness. The

egments on these lines are given as, respectively 

egment S 1 = 

�
 P (S) = 

�
 P 0 + s 

(
�
 P 1 − �

 P 0 
)

= 

�
 P 0 + s � u ∀ 0 ≤ s ≤ 1 

(2.9)

egment S 2 = 

�
 Q (S) = 

�
 Q 0 +t 

(
�
 Q 1 − �

 Q 0 

)
= 

�
 Q 0 + t � v ∀ 0 ≤ t ≤ 1 

(2.10)

The first step in calculating distance between two segments is

o get the closest points for infinite lines that they lie on. Hence, s C 
nd t C for L 1 and L 2 are computed initially and if these are in the

ange of respective segments then they are the closest point. How-

ver, if they lie outside the range of either, then new points have to

e determined that minimize � W (s, t) = 

�
 P (s ) − �

 Q (t) over the range

f interest. So, quadratic minimization method has been imple-

ented to determine the minimum length of W as it is same as

inimizing length of | W | 2 . Here, | W | 2 = 

�
 W · � W = 

(
�
 W 0 + s � u − t � v 

)
·

�
 W 0 + s � u − t � v 

)
, which is a quadratic function of s and t and defines

 paraboloid over the ( s, t )-plane with a minimum at C = ( s C , t C )
see Fig. 7 ), which is strictly increasing along the rays in the ( s, t )-

lane that start from C and go in any direction. But when segments

re involved we need the minimum over a subregion G of the ( s,

 )-plane, and the global absolute minimum at C may lie outside the

egion G (see Fig. 7 ). However, in these cases the minimum always

ccurs on the boundary of G and in particular on the part of G ’s

oundary that is visible to C , indicating a line from C to the bound-

ry point which is exterior to G . It forms a unit square in this case.

he four edges of the square are given by s = 0 , s = 1 , t = 0 , t = 1

s shown in Fig. 7 and if C = (s C , t C ) is outside G then it can see at

ost two edges of G . 

The conditions upon which the values s and t of the closest

oint between two line segments can be obtained, are as follows: 

• If s C < 0, C can see edge s = 0; If s C > 0, C can see edge s = 1; 
• If t C < 0, C can see edge t = 0; If t C > 0, C can see edge t = 1 

Clearly, if C is not in G , then at least 1 or at most 2 of these in-

qualities are true, and they determine which edges of G are can-

idates for a minimum of | W | 2 . 

The procedure for the minimization for each candidate edge

nd basic calculus implemented to compute the minimum on that
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Table 1 

Fibre orientations in RVEs studied. 

Cases In Plane Orientation, φ° Out of Plane Orientation, θ°

1 0 0 

2 0-360 0 

3 0-360 ± 10 

4 0-360 0-360 
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Table 2 

Mechanical properties of AS4 carbon fibre 

material ( Soden et al., 1998 ). 

E 1 E 2 G 12 G 23 ν12 

(GPa) (GPa) (GPa) (GPa) 

225 15 15 7 0.2 

Table 3 

Mechanical properties of 3501-6 epoxy 

matrix material ( Soden et al., 1998 ). 

E G ν

(GPa) (GPa) 

4.2 1.567 0.35 
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dge, either in its interior or at an end point can be seen in the

ork of Schneider and Eberly (2002) . 

.4. Computer implementation 

RVE generation algorithm based on RSA technique has been

mplemented in MATLAB by modeling fibres as a line segment

n a cube or cuboid. By using the information generated, a com-

and file has been generated in MATLAB, which is imported in the

ommercial software HYPERMESH 

® to generate a solid RVE model

aintaining periodicity in it. Since fibres get trimmed to maintain

eriodicity, the cross sectional shape of fibres may look elliptical.

he tetrahedron elements are most suitable for such a geometry.

herefore, the tetrahedron elements are formed from a 2D trian-

ular elements on the boundary. Initially, a solid RVE is meshed

n one side of the surface of cube using 2D triangular elements

nd the same elements get duplicated and transformed to oppo-

ite face to maintain the periodicity. Similarly, elements for fibre

n the surface get duplicated and transformed to the opposite face.

o form a 3D tetrahedron mesh, elements formed through triangu-

ar mesh should be closed. To ensure closed volume, equivalence

heck is done. 3D tetrahedron matrix and fibre elements are cre-

ted, which now represent an RVE with finite elements. Once the

esh has been generated using the required volume fraction, the

oftware provides the coordinates and connectivity matrix for all

he nodes generated. This data serves as an input for the finite el-

ment code for homogenization theory. A conjugate gradient solver

s developed to solve the resulting system of equations. 

The results obtained from the finite element implementation

f homogenization theory for the prediction of effective properties

rom the RVEs generated are compared with those obtained from

alpin–Tsai ( Halpin and Kardos, 1976 ) and Mori–Tanaka methods

 Mori and Tanaka, 1973; Mura, 1987 ). The details of these methods

re presented in Appendix A. The finite element and the periodic

oundary conditions implementation is presented in Appendix B. 

. Results and discussion 

In this section, effects of fibre orientation and fibre volume frac-

ion on the effective properties of RVE developed using RSA algo-

ithm and the material behaviour based on fibre orientation are

iscussed. 

To study the effect of orientation of fibre in chopped fibre re-

nforced composites, four different types of RVEs have been de-

eloped. Firstly, RVEs have been developed with all chopped fi-

res aligned in a particular direction. Secondly, all the fibres were

andomly oriented in on of the plane (here XY -plane is chosen)

nd restricted in remaining planes of an RVE generated. Next, RVE

s created with randomly oriented fibres in one plane ( XY -plane)

nd partially oriented in another plane (here XZ -plane is chosen).

he orientation restricted to another plane is ± 10 °. Finally, an RVE

ith completely random oriented fibres in all planes is generated.

able 1 represents the summarised form of different cases consid-

red in this study for the effect of fibre orientation on effective

roperties. The material considered in this study is AS4 carbon fi-

re and 3501-6 Epoxy matrix ( Soden et al., 1998 ). The material
roperties of the fibre and matrix materials are given in Table 2

nd Table 3 , respectively. 

To generate random distribution in an RVE, uniform distribu-

ion function (available in MATLAB) had been used in RSA algo-

ithm. RVEs are generated for different volume fractions for all the

ases mentioned in Table 1 . For a given volume fraction 5 RVEs

re generated to see the efficacy of methodology adopted to gen-

rate RVE in repeating the predicted effective stiffness. The fibres

onsidered in this study are of cylindrical in shape. Initially, fi-

res are generated with its center at origin aligned along X di-

ection and then translated to randomly generated coordinates in-

ide the RVE by using uniform distribution function with geomet-

ic periodicity until a desired volume fraction is achieved. The

imensions of RVE are chosen based on previous study carried

ut by Iorga et al. (2008) as 2 l f × 2 l f × 4 d f , where l f is the length

nd d f is the diameter of short fibres considered. In the current

tudy the estimation of RVE size not emphasized, rather the ap-

roach used in Iorga et al. (2008) has been used to choose the

VE sizes. Further, the RVE size chosen above is for the case of

ompletely random oriented fibre case. More details can be seen

n Iorga et al. (2008) and references therein. 

Once the RVE size is chosen the fibres are added sequentially

s discussed earlier. This procedure of adding fibres to an RVE is

ontinued till no more fibres can be added to it without touching

he already added fibres in the RVE. Since, the size of the RVE and

umber of fibres are known the fibre volume fraction of the result-

ng material can be calculated. It should be noted that in maintain-

ng the periodicity if any fibre is coming out of the RVE then that

art is placed inside the RVE. Thus, the number of fibres in an RVE

s always a whole number. 

emark 3. In the generation of RVE with the periodic condition

nly the integer number of fibres are added in it. Furthermore, the

ize of the RVE is kept fixed. Thus, depending upon the aspect ra-

io of the fibres and their orientations a certain volume fraction

ould be achieved like 15.43%, 21.03%, etc. but these same volume

ractions could not be achieved for all the cases studied. However,

o have a fair comparison, it has been tried to achieve almost the

ame volume fractions for all cases studied. 

.1. Case 1: in-plane aligned fibres 

In this section effective properties of aligned fibre composites

nd its material behaviour is studied in detail. The convergence

riterion for aligned fibre composite properties is also reviewed in

etail. 

In this case, fibres were not allowed to orient in any direction

uring the generation of RVEs. Four different fibre volume fractions

f 15.43%, 18.23%, 21.03%, 22.44% are considered to study the effec-

ive material properties and their behaviour. The maximum volume

raction which can be achieved using RSA algorithm for this case
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Fig. 8. RVEs for Case 1 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 9. RVEs for Case 1 with fibre volume fraction of 18.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 10. RVEs for Case 1 with fibre volume fraction of 21.03%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 
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is 22.44% with 16 cylinders of aspect ratio 3.5. Five models of RVE

for each volume fraction have been generated as shown in Figs. 8 ,

9 , 10 and 11 , respectively. Fig. 12 shows a typical meshed RVE used

in the analysis. One can note that the exact meshes are reproduced

on opposite faces of the RVE to ensure periodic boundary condi-

tions. 
The effective stiffness tensors obtained by analyzing the RVEs

or fibre volume fraction of 15.43 and 22.44% are given in Tables 4

nd 5 , respectively as examples. The subscripts used with these

ensors denote the corresponding RVE. It is to be noted that all

hese tensors are symmetric. 
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Table 4 

Effective stiffness tensors for all fibres aligned case with fibre volume fraction of 15.43% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

11886 3500 3504 0 0 85 

7170 3328 0 4 5 

7176 0 0 0 

1907 0 0 

2130 0 

2112 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

11650 3482 3480 0 5 0 

7164 3343 0 0 0 

7162 2 0 7 

1931 0 2 

2095 0 

2097 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

12396 3532 3485 0 37 0 

7166 3337 2 0 5 

7164 0 5 0 

1909 0 0 

2108 0 

2139 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

11386 3450 3560 10 98 5 

7168 3347 0 3 0 

7153 18 3 4 

1918 3 13 

2121 22 

2091 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

11374 3537 3477 10 84 2 

7146 3340 0 1 8 

7195 0 7 0 

1906 0 9 

2135 0 

2082 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Table 5 

Effective stiffness tensors for all fibres aligned case with fibre volume fraction of 22.44% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

14002 3535 3568 0 45 14 

7563 3303 11 0 0 

7559 0 6 0 

2129 0 0 

2432 1 

2412 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

14694 3607 3558 12 69 0 

7562 3308 0 0 0 

7539 1 4 2 

2112 0 3 

2407 0 

2487 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

13900 3638 3548 0 104 0 

7545 3305 14 0 0 

7574 3 9 3 

2091 0 11 

2434 14 

2435 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

14514 3599 3559 5 0 0 

7539 3322 12 0 12 

7537 0 4 0 

2129 0 0 

2425 14 

2471 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

14303 3619 3564 0 0 0 

7521 3322 0 8 0 

7558 9 0 10 

2107 9 5 

2461 16 

2425 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Table 6 

Properties of aligned short fibre composites: Case 1. 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

1 9.548 5.280 5.284 2.111 2.130 1.907 0.333 0.334 0.374 0.992 0.774 

2 9.344 5.258 5.256 2.097 2.095 1.931 0.331 0.331 0.376 1.011 0.782 

15.43 3 10.051 5.271 5.293 2.140 2.109 1.909 0.340 0.328 0.379 0.997 0.752 

4 9.042 5.271 5.199 2.091 2.120 1.918 0.319 0.349 0.376 1.006 0.798 

5 9.029 5.214 5.288 2.082 2.135 1.906 0.344 0.324 0.368 0.996 0.797 

HT 10.061 5.403 5.403 2.019 2.019 1.845 0.321 0.321 0.29 - - 

MT 8.596 5.683 5.683 2.190 2.190 2.04 0.338 0.338 0.383 - - 

1 10.558 5.482 5.486 2.219 2.230 1.988 0.331 0.331 0.371 0.994 0.749 

2 9.969 5.401 5.416 2.244 2.198 1.996 0.338 0.327 0.372 1.013 0.782 

18.43 3 10.982 5.467 5.502 2.208 2.253 1.998 0.334 0.326 0.375 1.002 0.735 

4 11.246 5.471 5.511 2.222 2.229 1.980 0.339 0.324 0.375 0.993 0.721 

5 10.454 5.426 5.517 2.216 2.242 1.975 0.347 0.317 0.368 0.989 0.756 

HT 11.338 5.642 5.642 2.118 2.118 1.890 0.311 0.311 0.302 - - 

MT 9.643 6.019 6.019 2.339 2.339 2.170 0.338 0.338 0.387 - - 

1 11.142 5.654 5.783 2.354 2.348 2.073 0.352 0.304 0.356 0.985 0.748 

2 11.569 5.696 5.700 2.345 2.368 2.055 0.330 0.331 0.364 0.984 0.733 

21.03 3 11.538 5.622 5.694 2.410 2.361 2.081 0.347 0.315 0.366 1.006 0.746 

4 11.750 5.698 5.668 2.371 2.399 2.063 0.323 0.339 0.368 0.992 0.735 

5 11.983 5.612 5.673 2.402 2.318 2.075 0.346 0.314 0.372 1.011 0.724 

HT 12.741 5.903 5.903 2.212 2.212 1.948 0.311 0.311 0.278 - - 

MT 10.616 6.328 6.328 2.477 2.477 2.277 0.338 0.338 0.389 - - 

1 11.679 5.802 5.785 2.418 2.432 2.129 0.323 0.331 0.361 1.0 0 0 0.746 

2 12.327 5.788 5.789 2.487 2.407 2.112 0.335 0.325 0.365 0.996 0.725 

22.44 3 11.518 5.746 5.811 2.435 2.433 2.091 0.342 0.319 0.356 0.983 0.752 

4 12.156 5.754 5.769 2.471 2.425 2.129 0.334 0.325 0.366 1.010 0.735 

5 11.927 5.727 5.783 2.425 2.462 2.107 0.339 0.323 0.363 0.999 0.741 

HT 13.448 6.024 6.024 2.257 2.257 2.091 0.313 0.313 0.281 - - 

MT 11.171 6.504 6.504 2.556 2.556 2.339 0.338 0.338 0.390 - - 
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Fig. 11. RVEs for Case 1 with fibre volume fraction of 22.44%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 12. A typical meshed RVE for Case 1. (a) meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 
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Remark 4. Note that the X, Y and Z directions are repre-

sented as 1, 2 and 3, respectively. Further, the stress and

strain vectors, for the resulting constitutive material, are arranged

as { σ 11 σ 22 σ 33 σ 23 σ 13 σ 12 } 
T and { ε 11 ε 22 ε 33 ε 23 ε 13 ε 12 } 

T , respec-

tively. The components of effective stiffness tensor C ij have one to

one correspondence with respect to these vectors. 

To quantify the closeness of in-plane isotropic behaviour of an

RVE with fibres aligned in XY -plane, a parameter based on stiff-

ness tensor entries relation for transversely isotropic behaviour is

defined as 

a Y Z = 

2 C 44 

C yz 
22 

− C 23 

(3.1)

where, C 
yz 
22 

= 

C 22 + C 33 
2 and C ij are the components of effective stiff-

ness tensor. It is to be noted that the fibres are aligned along X di-

rection. Therefore, it is expected for this case that the macroscopic

behaviour will be isotropic in a plane perpendicular to X -axis, that

is, the YZ -plane. However, one can define such a parameter for any

other plane as well. Further, to check if the overall material be-

haviour is isotropic, a non dimensional parameter, a is employed

here. This is defined based on the stiffness entries relation for a

typical isotropic material behaviour as 

a = 

2 Y 44 

Y 11 − Y 12 

(3.2)
here, Y 11 = 

C 11 + C 22 + C 33 
3 ; Y 12 = 

C 12 + C 23 + C 31 
3 and Y 44 = 

C 44 + C 55 + C 66 
3 .

hus, the parameter a YZ is an indicator of in-plane isotropy for YZ -

lane, whereas the parameter a is an indicator of overall isotropy.

hen the value of a Y Z = 1 then the material is isotropic in YZ -

lane and when a approaches 1 the material is said to be isotropic.

he relations between stiffness entries for various material be-

aviour can be seen from their stiffness tensor (for example see

ohite ). Similar definitions of parameters are proposed in Kanit

t al., (2006) . 

Substituting the entries from effective stiffness tensor obtained

rom homogenization model, a YZ values are obtained and tabulated

n Table 6 . The mean and standard deviation in these values for all

bre volume fractions studied are reported in Table 7 . Thus, from

hese tables it is seen that that this material indicates more than

9% isotropic behaviour in YZ -plane, that is, macroscopic behaviour

s transversely isotropic. The parameter a has the values above 0.72

s can be seen from Table 7 . This indicates that macroscopic be-

aviour is not isotropic. Further, from this table it can also be seen

hat as the fibre volume fraction increases the mean value of the

arameter a decreases. This can be explained on the basis of fi-

re packing geometry. Let us measure the contribution of the fi-

res towards stiffness of the resulting material in terms of their

rojected areas on the planes of an RVE. As can be seen from the

VEs shown in Figs. 8 through 11 , the increase in projected area
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Table 7 

Average and SD for properties of Case 1. 

Property V f 15.43 (%) V f 18.43 (%) V f 21.03 (%) V f 22.44 (%) 

Mean SD Mean SD Mean SD Mean SD 

E 1 (GPa) 9.402 0.422 10.641 0.493 11.596 0.309 11.921 0.332 

E 2 (GPa) 5.258 0.026 5.449 0.034 5.656 0.040 5.763 0.031 

E 3 (GPa) 5.264 0.038 5.486 0.041 5.703 0.046 5.787 0.015 

G 12 (GPa) 2.104 0.022 2.221 0.013 2.376 0.028 2.447 0.030 

G 13 (GPa) 2.117 0.016 2.230 0.020 2.358 0.029 2.431 0.019 

G 23 (GPa) 1.914 0.010 1.987 0.009 2.069 0.010 2.113 0.016 

ν12 0.334 0.009 0.337 0.006 0.339 0.0012 0.334 0.007 

ν13 0.333 0.009 0.324 0.005 0.320 0.014 0.324 0.004 

ν23 0.374 0.004 0.372 0.003 0.365 0.006 0.362 0.003 

a YZ 1.0 0 0 0.008 0.998 0.009 0.996 0.012 0.997 0.009 

a 0.781 0.019 0.748 0.023 0.737 0.009 0.739 0.011 
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Table 8 

Percentage difference in properties by homogenization theory with respect to Mori–

Tanaka and Halpin–Tsai model. 

Property V f 15.43 (%) V f 18.43 (%) V f 21.03 (%) V f 22.44 (%) 

MT HT MT HT MT HT MT HT 

E 1 8.96 6.81 10.59 6.51 8.82 9.38 6.50 12.17 

E 2 7.76 2.60 9.56 3.43 11.22 4.06 12.07 4.36 

E 3 7.65 2.50 8.88 2.76 10.39 3.22 11.66 3.94 

G 12 4.03 4.32 4.73 5.11 4.17 7.18 4.35 7.76 

G 13 3.39 4.96 4.34 5.51 4.92 6.44 5.00 7.13 

G 23 7.04 3.92 8.42 4.66 9.59 5.66 10.12 6.25 

ν12 1.55 4.63 0.15 7.75 0.44 9.15 1.01 8.12 

ν13 1.64 4.54 4.04 3.86 5.34 3.36 4.08 5.06 

ν23 2.35 22.61 3.9 24.47 6.39 25.22 7.49 25.74 
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n YZ plane as compared to other planes is lesser. Furthermore,

s the fibre volume fraction increases the projected areas on the

hree planes are not increased proportionately. Thus, the stiffness

ontribution due to fibre volume fraction increase is more in other

lanes as compared to that for YZ plane. This can be clearly seen

rom Tables 4 and 5 as well. Thus, the parameter a shows a small

ecrement in its value as the fibre volume fraction is increased. 

The effective engineering properties/constants are deduced

rom the coefficients obtained by inverting these tensors (compli-

nce tensors). The effective properties obtained from homogeniza-

ion technique for all the five RVE models for all volume fraction

re reported in Table 6 . The obtained results are compared with

hose of Mori–Tanaka (denoted by MT ) and Halpin–Tsai (denoted

y HT ) methods. 

From these results it can be seen that for all the fibre volume

ractions studied the results of the homogenization method lie be-

ween Mori–Tanaka and Halpin–Tsai methods. Further, it can be

een that as the volume fraction increases, the Young’s moduli and

hear moduli increase and the Poisson’s ratios decrease slightly.

his is because at low volume fractions RVE is almost filled with

ow stiffness epoxy material and as fibre volume fraction increases

atrix content reduces and fibre starts withstanding load, which

s comparatively a stiffer material leading to decrease in Poisson’s

ffect. Since fibres are aligned in X direction, effective elastic con-

tants like Young’s moduli and shear moduli are high in that direc-

ion compared to other directions. 

The mean values of the effective properties for the RVEs for

heir respective fibre volume fractions along with standard devi-

tion (SD) for these values are reported in Table 7 . The percentage

tandard deviation among the properties is comparatively higher

or E 1 values and close to zero for the remaining properties. It can

e seen from Table 7 that as the volume fraction increases, SD

or E 1 decreases slightly and there seems no change for remain-

ng properties. The variation in effective properties among differ-

nt RVE models of a volume fraction is due to random packing and

eriodic arrangements of fibres in that RVE. 

Table 8 indicates the percentage difference between mean val-

es of effective properties obtained from homogenization model

mplemented with respect to Mori–Tanaka and Halpin–Tsai mod-

ls. It is seen that this percentage difference is less for Halpin–Tsai

ethod than Mori–Tanaka method in the respective properties, ex-

ept the out of plane Poisson’s ratio in transverse direction, ν23 . It

s further seen that, in general, as the volume fraction increases

his difference increases for both methods. For Young’s moduli this

ifference varies between 2.5% to 12%, for shear moduli it is be-

ween 3% to 10% and for Poisson’s ratio the maximum difference

s seen upto 26%. This maximum difference is seen with respect

o Halpin–Tsai method for ν23 . Furthermore, this maximum dif-

erence is because the fibre packing fraction is not considered in

alpin–Tsai model. Also, the engineering constants of short fibre
omposite are weakly dependent on fibre aspect ratio and hence

pproximated using continuous fibre formulae. 

emark 5. The values of the engineering constants reported for

he effective behaviour in Table 9 assumes that the degree of

nisotropy for the effective stiffness tensors is negligibly small.

or example, the highest upper right 3 × 3 non-zero entry for [ C ] 1 
hen compared with the smallest upper left 3 × 3 entry is less

han 3%. A similar observation is made in the studies carried out

y Kanit et al. (2006) and Iorga et al. (2008) . Therefore, the ef-

ective stiffness tensor is assumed to have the coefficients corre-

ponding to normal-normal coupling part (upper left 3 × 3 entries)

nd diagonal entries for shear part only (diagonal entries of lower

ight 3 × 3 entries) and all other entries are made zero. Then this

s inverted to evaluate the engineering constants. When the engi-

eering constants obtained from this approach are compared with

hose obtained by retaining all the terms in original effective stiff-

ess tensor of an RVE (as given in Tables 4 and 5 ) then no signif-

cant change in the values is observed. The values shown in boxes

n Table 9 are the values with a negligible change when compared

o those in Table 6 . The maximum change is less than 1%. Thus,

his also shows that the degree of anisotropy is not significant.

herefore, for the remaining cases studied in the following, this

nisotropy is not ignored while calculating the properties of RVEs. 

A brief convergence study is also carried out for finite element

omputations by investigating the numerical results as the num-

ers of elements are increased in the domain (RVE). A set of nu-

erical solutions for in-plane aligned fibres case has been made

or five different meshes based on the number of elements used

n these meshes. Here, the convergence of engineering constants

 1 , E 2 , G 12 , G 23 , ν12 and ν23 is studied. The number of elements

re varied from 5 × 10 4 to 3 × 10 5 . The results obtained for vari-

us mesh sizes interpret that around 2 × 10 5 number of elements

he results (that is, property values) are converged. Hence, for the

emaining models of RVE, mesh size with number of elements

 × 10 5 and above are used to discretize the model. The linear

etrahedron elements are used to obtain the solution. The conver-

ence of the engineering constants with the number of elements

s shown in Fig. 13 . 

.2. Case 2: In-plane randomly oriented fibres 

In this section, the material behaviour of RVEs generated with

andom in-plane orientation of fibres in XY -plane is studied in

etail. In the RVEs generated, initially the fibres with their cen-

res located at different positions, are aligned along X -axis. The

ocation of centres of these fibres are generated randomly with

 uniform probability distribution function. Then these fibres are

riented randomly about Z -axis, again with a uniform probabil-

ty distribution function. The fibres are allowed neither to inter-

ect nor to overlap each other. RVEs with three different volume
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Table 9 

Properties of aligned short fibre composites: Case 1. Properties obtained ignoring anisotropy completely. Boxes show 

changed values as compared to given in Table 6 . 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 

(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 9.551 5.280 5.284 2.112 2.130 1.907 0.333 0.334 0.374 

2 9.344 5.258 5.256 2.097 2.095 1.931 0.331 0.331 0.376 

3 10.051 5.271 5.293 2.139 2.109 1.909 0.340 0.328 0.379 

4 9.042 5.271 5.199 2.091 2.121 1.918 0.318 0.348 0.375 

5 9.032 5.214 5.287 2.082 2.136 1.906 0.343 0.324 0.368 

18.43 1 10.558 5.482 5.486 2.219 2.230 1.988 0.331 0.331 0.371 

2 9.969 5.401 5.416 2.244 2.198 1.996 0.338 0.327 0.372 

3 10.982 5.467 5.502 2.208 2.253 1.998 0.334 0.326 0.375 

4 11.247 5.471 5.511 2.222 2.229 1.980 0.339 0.324 0.375 

5 10.467 5.426 5.517 2.218 2.242 1.975 0.347 0.317 0.368 

21.03 1 11.148 5.654 5.783 2.354 2.348 2.073 0.352 0.304 0.356 

2 11.569 5.696 5.700 2.345 2.368 2.055 0.330 0.331 0.364 

3 11.538 5.622 5.694 2.410 2.361 2.081 0.347 0.315 0.366 

4 11.750 5.698 5.668 2.371 2.399 2.063 0.323 0.339 0.368 

5 11.983 5.612 5.673 2.402 2.318 2.075 0.346 0.314 0.372 

22.44 1 11.680 5.802 5.785 2.418 2.432 2.129 0.323 0.331 0.361 

2 12.327 5.788 5.789 2.487 2.407 2.112 0.335 0.325 0.365 

3 11.522 5.746 5.811 2.435 2.434 2.091 0.342 0.319 0.356 

4 12.156 5.754 5.769 2.471 2.425 2.129 0.334 0.325 0.366 

5 11.927 5.727 5.783 2.425 2.462 2.107 0.339 0.323 0.363 

Fig. 13. Convergence of engineering constants with number of elements in an RVE for Case 1. (a) E 1 , (b) E 2 , (c) G 12 , (d) G 23 , (e) ν12 , (f) ν23 . 
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Fig. 14. RVEs for Case 2 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 15. RVEs for Case 2 with fibre volume fraction of 18.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 16. RVEs for Case 2 with fibre volume fraction of 22.44%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 
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ractions have been generated with a maximum volume fraction

f 22.44%. Five different models of RVEs for volume fractions of

5.43%, 18.23% and 22.44% have been generated to study the ef-

ect of fibre volume fraction on the behaviour of RVEs. The RVEs

or these volume fractions are shown in Figs. 14 , 15 and 16 , re-

pectively. Fig. 17 shows an RVE with meshing used in the finite

lement analysis. 
Table 10 represents the effective material properties obtained

hrough homogenization technique for different volume fractions.

t is observed that for a given volume fraction the Young’s mod-

lus in X and Y directions are close to each other compared to

 direction, whereas the values of shear moduli and Poisson’s ra-

ios are close to each other in out of plane directions ( XZ and YZ

lane). This is due the fact that fibres are having random orienta-
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Fig. 17. A typical meshed RVE for Case 2. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

Table 10 

Properties of in-plane oriented short fibre composites: Case 2. 

V f Model E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 6.774 6.337 5.425 2.783 2.021 2.005 0.356 0.306 0.314 0.873 0.952 

2 6.707 6.412 5.285 2.367 2.010 1.991 0.294 0.337 0.343 0.886 0.897 

3 7.058 5.847 5.358 2.552 2.038 1.981 0.358 0.306 0.331 0.919 0.934 

4 6.825 6.282 5.330 2.413 2.023 1.987 0.313 0.329 0.335 0.884 0.905 

5 6.343 6.663 5.377 2.582 1.986 2.018 0.309 0.324 0.320 0.858 0.929 

18.23 1 7.522 6.531 5.575 2.697 2.123 2.074 0.321 0.315 0.332 0.893 0.904 

2 7.077 6.879 5.593 2.657 2.122 2.090 0.309 0.320 0.322 0.782 0.864 

3 6.556 7.314 5.573 2.889 2.081 2.115 0.300 0.322 0.313 0.829 0.940 

4 6.957 6.621 5.544 2.809 2.137 2.094 0.326 0.316 0.320 0.885 0.952 

5 6.745 7.436 5.539 2.765 2.083 2.120 0.279 0.336 0.325 0.829 0.909 

22.44 1 8.501 7.025 5.936 3.174 2.275 2.209 0.350 0.296 0.318 0.874 0.911 

2 8.001 7.385 5.926 3.168 2.239 2.215 0.329 0.305 0.312 0.844 0.914 

3 7.155 8.234 5.940 3.018 2.204 2.308 0.285 0.314 0.307 0.813 0.902 

4 7.308 8.181 5.914 3.005 2.237 2.293 0.289 0.319 0.309 0.813 0.899 

5 7.286 7.361 5.883 3.328 2.258 2.249 0.341 0.302 0.297 0.849 0.981 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

Average and standard deviation in effective properties of Case 2. 

Property V f 15.43 (%) V f 19.63 (%) V f 22.44 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 6.741 0.259 6.971 0.367 7.650 0.579 

E 2 (GPa) 6.308 0.296 6.956 0.406 7.637 0.540 

E 3 (GPa) 5.355 0.052 5.565 0.023 5.920 0.023 

G 12 (GPa) 2.540 0.164 2.764 0.092 3.139 0.133 

G 13 (GPa) 2.015 0.019 2.109 0.026 2.243 0.027 

G 23 (GPa) 1.996 0.015 2.099 0.019 2.255 0.045 

ν12 0.326 0.029 0.307 0.019 0.319 0.030 

ν13 0.321 0.014 0.322 0.008 0.307 0.009 

ν23 0.329 0.011 0.322 0.007 0.309 0.008 

a YZ 0.884 0.022 0.844 0.045 0.838 0.026 

a 0.923 0.022 0.914 0.034 0.921 0.034 
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b  
tion in XY -plane and as explained for Case 1, the projected areas of

fibres on XZ and YZ planes are approaching to be equal. Thus, con-

tribution of fibre stiffness is almost equal in these planes, unlike

in Case 1. However, for YZ -plane the projected area is almost same

as in Case 1 for a given volume fraction. It is to be noted that the

fibre itself is transversely isotropic in nature here. Due to this ar-

rangement of fibres in RVEs and their transverse isotropic nature,

the isotropy in YZ plane is affected. This can be seen through the

decrement of parameter a YZ in comparison to Case 1. This is re-

duced to a minimum of 83% for the studied volume fractions. On

the contrary, this arrangement has led to an improvement in over-

all isotropic behaviour as can be seen through the values of pa-

rameter a . This value is above 91% for the volume fractions studied

(See Table 11 ). Furthermore, as the volume fraction increases these

properties also increase. 

Table 11 represents the mean and standard deviation in effec-

tive property values of RVEs developed. The values of Young’s mod-

uli and shear moduli increase as the volume fraction increases.

However, Poisson’s ratios decrease slightly with the increase in vol-

ume fraction. In general, the standard deviation in the values of

effective properties is less than 1 and increases as volume frac-

tion is increased. The standard deviation values for Young’s mod-

uli in X and Y directions have comparatively larger scatter than

remaining properties due to random orientation and distribution

t

f fibres in that direction ( XY -plane). Further, as the volume frac-

ion increases the scatter in the property values also increases. The

ariation in properties among different RVE models for a particu-

ar volume fraction is attributed to packing arrangement of fibres

n RVEs. The very low value of standard deviation (less than 1%)

mong the property values indicates that the present approach is

fficient in generating the RVEs such that predicted macroscopic

ehaviour is repetitive in nature for the given volume fraction for

his case also. 
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Fig. 18. RVEs for Case 3 with fibre volume fraction of 15.43%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 19. RVEs for Case 3 and fibre volume fraction of 19.63%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 20. RVEs for Case 3 with fibre volume fraction of 21.04%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 
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.3. Case 3: in-plane randomly oriented and out of plane partial 

andomly oriented fibres 

In this section the RVEs generated with fibres randomly ori-

nted in a plane and partially oriented in out of plane directions

re analyzed for their effective properties. This case is a generaliza-
ion of Case 2, indicating that RVE cannot have all the fibres ran-

omly oriented in one plane only all the time and hence a small

ut of plane deviation is allowed. The procedure followed to gen-

rate an RVE is same as in Case 2 and further allowing orientations

f the fibres by ± 10 ° in XZ -plane. Here also the effect of volume

raction is studied by considering three different volume fractions.
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Fig. 21. A typical meshed RVE for Case 3. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 

Table 12 

Properties of in-plane and partial out of plane orientation for short fibre composites: Case 3. 

V f Model E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.43 1 6.745 5.878 5.391 2.617 2.042 1.980 0.362 0.303 0.319 0.913 0.956 

2 6.824 6.037 5.335 2.542 2.020 1.986 0.333 0.318 0.332 0.914 0.934 

3 6.569 7.072 5.325 2.406 1.995 2.018 0.272 0.345 0.342 0.839 0.875 

4 6.365 6.946 5.377 2.363 1.995 2.025 0.287 0.338 0.323 0.839 0.884 

5 6.828 6.483 5.368 2.361 2.013 1.990 0.305 0.327 0.337 0.868 0.882 

19.63 1 6.237 7.504 5.681 2.852 2.120 2.188 0.299 0.316 0.299 0.829 0.951 

2 6.873 7.430 5.675 2.812 2.149 2.163 0.296 0.324 0.314 0.835 0.918 

3 7.496 7.224 5.728 2.741 2.151 2.161 0.309 0.315 0.323 0.854 0.885 

4 7.812 6.392 5.646 2.805 2.214 2.109 0.343 0.310 0.327 0.913 0.924 

5 7.023 7.782 5.718 2.777 2.113 2.167 0.286 0.327 0.314 0.808 0.882 

21.04 1 7.388 8.042 5.960 2.931 2.247 2.274 0.293 0.316 0.305 0.813 0.891 

2 8.834 7.328 5.856 2.833 2.299 2.240 0.287 0.330 0.342 0.884 0.851 

3 7.607 7.638 5.931 3.198 2.233 2.259 0.315 0.305 0.311 0.841 0.929 

4 7.053 8.721 5.940 2.866 2.224 2.296 0.259 0.329 0.307 0.778 0.866 

5 8.311 7.992 5.905 2.846 2.259 2.245 0.281 0.330 0.329 0.823 0.842 

Table 13 

Average and standard deviation in effective properties of Case 3. 

Property Vf 15.43 (%) Vf 19.63 (%) Vf 21.04 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 6.666 0.198 7.088 0.606 7.839 0.722 

E 2 (GPa) 6.483 0.531 7.267 0.528 7.944 0.521 

E 3 (GPa) 5.359 0.028 5.690 0.033 5.918 0.040 

G 12 (GPa) 2.458 0.115 2.797 0.042 2.935 0.152 

G 13 (GPa) 2.013 0.020 2.149 0.040 2.252 0.029 

G 23 (GPa) 2.0 0 0 0.020 2.158 0.029 2.263 0.023 

ν12 0.312 0.036 0.307 0.022 0.287 0.020 

ν13 0.326 0.017 0.318 0.007 0.322 0.011 

ν23 0.331 0.010 0.315 0.011 0.319 0.016 

a YZ 0.875 0.037 0.847 0.039 0.827 0.038 

a 0.906 0.036 0.912 0.028 0.875 0.035 
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The three volume fractions of 15.43%, 19.63% and 21.04% are stud-

ied for this case. For each volume fraction five different models

of RVE have been generated. Fig. 18 , Fig. 19 and Fig. 20 show the

RVE models generated for 15.43%, 19.63% and 21.04% fibre volume

fractions, respectively. Figure 21 shows an RVE meshed for finite

element analysis. 

The effective properties obtained for the RVE models have been

reported in Table 12 . Table 13 represents the mean and standard

deviation in these effective properties. It is seen that effective
roperties from different RVEs for the respective volume fractions

re close to each other. It can be observed that the Young’s mod-

lus in z direction, E 3 shows a slight increment in the values for

espective volume fraction. This is due to partial orientation of fi-

res in that direction. This also affects the Young’s moduli in X and

 directions and a small increment is also seen in these values in

omparison to those reported for Case 2. Further, it is observed

hat the shear moduli G 13 and G 23 are again close to each other for

espective RVEs of all volume fractions as in Case 2. However, the

espective values are little lowered in comparison to those of Case

. This is because of partial orientation of fibres in the Z -direction.

he contribution coming from the fibre direction is now lesser. A

imilar behaviour is observed for G 12 for the same reason. 

From Table 13 it is seen that the effective properties of compos-

te material developed increase as the volume fraction increases.

his is due the fact that the contribution of the properties from

bre, particularly the ones in fibre direction increases as the fi-

re volume fraction increases. However, for the Poisson’s ratios the

alues decrease as the fibre volume fraction increases. Again this is

ue to constraint imposed by fibre properties in fibre direction on

he lateral expansion of the resulting composite. 

Tables 12 and 13 give insight about the macroscopic behaviour

f the resulting composites through the parameters a YZ and a . The

sotropy in YZ -plane, in general, is reduced in comparison to Case

. Further, as the fibre volume fraction increases this value de-
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Fig. 22. RVEs for Case 4 with fibre volume fraction of 15.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 23. RVEs for Case 4 with fibre volume fraction of 19.23%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 
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reases. The parameter a YZ is seen to have value above 0.82 for the

olume fractions studied. Furthermore, the macroscopic isotropic

ehaviour represented by a is seen to reduce and also reduces with

he increase in fibre volume fraction. Here, this parameter has a

alue above 0.87 for the volume fractions studied. The change in

acroscopic behaviour in comparison to Case 2 is due to partial

lignment of fibres in the Z -direction. Note that the volume frac-

ions achieved in the RVEs of cases studied, that is Case 1, Case 2,

tc. are very close but not the same. 

.4. Case 4: completely random oriented fibres 

In this section, fibres are allowed to orient randomly in all

lanes inside an RVE. To generate the RVE, fibres are located one

fter the other at random locations and oriented randomly in in-

lane ( XY -plane) and out of plane ( YZ -plane). The geometric pe-

iodicity is maintained in RVEs and fibres are allowed neither to

verlap nor to intersect each other. The fibre volume fractions con-
idered for RVE generation with random oriented fibres are 15.23%,

9.23% and 21.64%. The RVEs generated are as shown in Figs. 22 ,

3 , 24 , respectively for these volume fractions. Five different mod-

ls of RVE for each volume fraction considered have been created

nd their effective properties are obtained. A typical meshed RVE

rom this case has been shown in Fig. 25 . 

The effective stiffness tensors for the fibre volume fraction of

5.23%, as an example, are given in Table 14 . The subscripts used

ith the stiffness tensor [ C ] denote the corresponding RVE of that

olume fraction. From this table it is seen that the degree of

nisotropy is not significant for this case also. 

Table 15 presents the effective properties of individual RVE

odels considered for this case. It is observed from Table 15 that

oung’s moduli in all three directions of different RVEs for a partic-

lar volume fraction are almost equal. Furthermore, a similar ob-

ervation can be made for shear moduli and Poisson’s ratios. Mean

nd standard deviation in the values of the properties from these

odels have been calculated and reported in Table 16 . It is inferred
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Fig. 24. RVEs for Case 4 with fibre volume fraction of 21.64%. (a) RVE 1, (b) RVE 2, (c) RVE 3, (d) RVE 4, (e) RVE 5. 

Fig. 25. A typical meshed RVE for Case 4. (a) Meshes on positive x, y and negative z faces, (b) meshes on negative x, y and positive z face. 
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from Table 16 that as the volume fraction increases the effective

elastic moduli increase and Poisson’s ratio decrease. The standard

deviation for all properties is less than 1% for all volume fractions

studied. This indicates that the deviation of effective properties of

an individual model from the mean values is very less. This again

indicates the efficacy of repetitiveness of the approach used to gen-

erate RVEs in predicting effective properties. 

The parameters a YZ and a reported in Table 15 and

Table 16 show that their values are approaching to unity. Thus, it

indicates that the overall macroscopic behaviour of the material

is approaching to isotropic. This behaviour is as expected because

the arrangement of fibres inside such a composite is completely

random leading to equal distribution of their properties in all

directions. However, it is seen that as the fibre volume fraction

increases the values of these parameters decrease slightly. 

t  
It is seen that the parameter a YZ , which is defined to denote

he isotropy in YZ plane is approaching to unity for this case. It

as seen earlier that for the Case 1 it also approached unity. Then

or Case 2 and Case 3 it deviated from unity. It is to be noted that

s the overall material behaviour is approaching to isotropic nature

hen in any plane it will behave isotropic in nature. Thus, this ob-

ervation is consistent. One could have chosen any plane to check

he isotropy in that plane. However, in the Case 1 the fibres were

ligned normal to YZ plane, therefore, this plane was used to check

he isotropy. 

emark 6. In general, it is seen that as the fibre volume fraction

ncreases the SD in the effective property values increases. This is

ue to packing factor of fibre arrangement. In the present approach

he fibres are added one after the other with the constraint that

hey do not touch other. This is implemented by controlling the
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Table 14 

Effective stiffness tensors for all fibres randomly arranged case with fibre volume fraction of 15.23% (Values in MPa). 

[ C ] 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

7825 3452 3547 47 101 173 

7528 3457 0 35 78 

7906 20 79 57 

2083 61 47 

2130 24 

2090 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

7605 3473 3455 1 44 83 

7761 3440 11 18 87 

7992 48 64 15 

2075 10 8 

2070 21 

2117 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

7748 3439 3562 0 0 129 

7592 3418 0 0 15 

7880 0 0 7 

2044 0 3 

2179 0 

2062 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, [ C ] 4 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

7604 3411 3455 0 24 0 

7617 3481 0 36 0 

8057 29 63 7 

2128 9 41 

2060 0 

2060 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

[ C ] 5 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

7588 3386 3531 30 25 0 

7754 3423 60 0 0 

7943 0 0 20 

2065 22 0 

2114 13 

2046 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Table 15 

Properties of completely random orientated short fibre composites: Case 4. 

V f RVE E 1 E 2 E 3 G 12 G 13 G 23 ν12 ν13 ν23 a YZ a 

(%) No. (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) 

15.23 1 5.622 5.436 5.700 2.086 2.127 2.080 0.316 0.310 0.301 0.978 0.985 

2 5.483 5.633 5.858 2.115 2.070 2.075 0.316 0.296 0.290 0.936 0.964 

3 5.543 5.525 5.686 2.060 2.180 2.045 0.310 0.318 0.294 0.947 0.983 

4 5.520 5.512 5.873 2.060 2.060 2.128 0.314 0.293 0.298 0.977 0.967 

5 5.465 5.701 5.752 2.047 2.114 2.065 0.297 0.317 0.293 0.934 0.962 

19.23 1 5.700 5.838 6.405 2.119 2.203 2.191 0.304 0.285 0.272 0.919 0.942 

2 5.884 5.921 6.121 2.151 2.237 2.264 0.294 0.297 0.299 0.981 0.966 

3 5.968 5.932 6.303 2.194 2.182 2.239 0.306 0.284 0.291 0.952 0.944 

4 5.858 5.886 6.070 2.133 2.395 2.193 0.294 0.317 0.289 0.948 0.984 

5 6.069 6.322 6.003 2.285 2.290 2.199 0.293 0.317 0.293 0.917 0.957 

21.64 1 6.277 6.207 6.564 2.283 2.435 2.338 0.293 0.299 0.277 0.939 0.958 

2 6.093 6.631 6.245 2.396 2.353 2.359 0.280 0.309 0.289 0.938 0.971 

3 6.050 6.400 6.532 2.311 2.401 2.354 0.286 0.300 0.276 0.931 0.964 

4 5.848 6.407 6.785 2.338 2.288 2.433 0.293 0.275 0.272 0.946 0.959 

5 6.081 6.639 6.536 2.368 2.325 2.346 0.285 0.295 0.277 0.908 0.945 

Table 16 

Average and standard deviation in effective properties of Case 4. 

Properties V f 15.23 (%) V f 19.23 (%) V f 21.64 (%) 

Mean SD Mean SD Mean SD 

E 1 (GPa) 5.527 0.062 5.896 0.137 6.069 0.153 

E 2 (GPa) 5.561 0.105 5.980 0.195 6.457 0.182 

E 3 (GPa) 5.774 0.087 6.180 0.168 6.532 0.192 

G 12 (GPa) 2.074 0.027 2.176 0.067 2.339 0.044 

G 13 (GPa) 2.110 0.048 2.261 0.085 2.361 0.058 

G 23 (GPa) 2.078 0.031 2.217 0.033 2.366 0.038 

ν12 0.311 0.008 0.298 0.006 0.288 0.006 

ν13 0.307 0.011 0.300 0.016 0.296 0.013 

ν23 0.295 0.004 0.289 0.010 0.278 0.006 

a YZ 0.954 0.022 0.944 0.026 0.933 0.015 

a 0.972 0.011 0.958 0.017 0.959 0.009 
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istance between the closest points on the adjacent fibres. Further,

he dimensions of the RVE chosen are fixed for all fibre volume

ractions. Thus, these constraints restrict the arrangement of fibres

hat are added at later stages. In turn, it causes the deviation in

he effective properties. However, this deviation for all the cases

tudied here is less than 1% indicating the efficacy of the approach

eveloped for the RVE generation. 

. Conclusions 

In the present study a statistical representation of the short fi-

re composite material at microscale through a representative vol-

me element has been developed using random sequential adsorp-
ion technique. A numerical tool developed using MATLAB gener-

tes the RVE for a maximum volume fraction of 22.44% by main-

aining the distance between adjacent two fibres as 0.001 times

he side length of the RVE. Geometric periodicity is implemented

hile developing the RVE to ensure the continuity of the fibres

cross the neighbouring RVEs. Mathematical theory of homoge-

ization has been implemented for the prediction of effective stiff-

ess. Here, four different cases of fibre arrangements in RVE had

een modeled and analyzed for their effective properties. For each

ase of fibre arrangement, RVEs with three/four different fibre vol-

me fractions are evaluated for effective stiffness. To study the ef-

ectiveness of RVE generation algorithm in terms of repetitiveness

f predicted stiffness, five RVEs are studied for each fibre volume

raction. The results of the case where all fibres are aligned in one

irection are compared with those of Mori–Tanaka and Halpin–Tsai

ethods. A brief convergence study with respect to number of el-

ments in finite element discretization is also carried out. 

The key conclusions that can be made from this study are listed

s: 

1. The results obtained from the methods developed using RVE

are compared with analytical or non-RVE methods like Halpin–

Tsai and Mori–Tanaka method for Case 1 with in-plane aligned

fibres. The effective properties obtained from RVE method have

good correlation with Halpin–Tsai and Mori–Tanaka method.

The effective property values from Halpin–Tsai method for a

particular volume fraction are close to that of mathematical ho-

mogenization method for almost all engineering constants, ex-

cept out of plane Poisson’s ratio ν . 
23 
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2. When the volume fraction increases, the effective properties in-

creases in both RVE and non-RVE methods, also the percentage

difference with two non RVE methods also increases. Longitu-

dinal Young’s modulus from present study has 6.5% to 11% and

6.5% to 12% difference with respect to Mori–Tanaka and Halpin–

Tsai methods, respectively. The transverse Young’s modulus has

approximately 7.5% to 12% and 2% to 4.5% difference with Mori–

Tanaka and Halpin–Tsai methods, respectively. For transverse

shear modulus, the percentage difference is 3% to 10.5% and 3%

to 8% with respect to Mori–Tanaka and Halpin–Tsai methods,

respectively. 

3. Poisson’s ratio has 0.15% to 4% and 4% to 9% deviation, except

for ν23 which has 2% to 7% and 22% to 25.8% deviation with

respect to Mori–Tanaka and Halpin–Tsai methods, respectively.

This large deviation is due to location and orientation of fibres

in RVE, volume fraction and aspect ratio of fibres. 

4. The effective properties obtained from mathematical theory of

homogenization for different RVEs for a particular case ensures

the reliability of RSA algorithm developed and consistently pre-

dicts the effective material properties. Standard deviation val-

ues on effective properties of RVEs developed is either close to

zero or less than 1%, which also indicates the efficacy of the al-

gorithm developed for RVE generation in fulfilling the require-

ment of repetitiveness of the resulting effective material. 

5. RVEs with in-plane aligned fibres behave like a transversely

isotropic material at macrolevel in a plane perpendicular to

the direction of fibre alignment due to fibre packing arrange-

ment in RVE, whereas RVEs with random in-plane orientation

at microscale behave like a transversely isotropic material at

macroscale in another particular plane. Further, RVEs with ran-

dom in-plane orientation and partial out of plane orientation

of fibres also behave closely to transversely isotropic nature. Fi-

nally, RVEs with completely random orientation of all fibres at

microscale, behaves like an isotropic material at macrolevel. 

As the restriction of random distribution of fibres in an RVE

is relaxed more and more the macroscopic behaviour changes

from transverse isotropy, with respect to a particular plane, to

fully isotropic. For in-plane aligned fibres in RVE, the material

developed is almost 98-99% close to transverse isotropy and 73-

78% overall isotropy in nature. The materials with in-plane ran-

domly oriented fibres, the material is more than 83% close to

transversely isotropic behaviour and about 91% overall isotropic

behaviour. The RVEs with randomly in-plane fibre orientation

and partial out of plane fibre orientation exhibited more than

82% closeness to transversely isotropic behaviour and over 87%

overall isotropic behaviour. Finally, the RVEs with completely

random oriented fibres exhibited more than 90% closeness to

transversely isotropic behaviour and more than 95% overall

isotropic behaviour of the material. 

6. As fibre volume fraction increases the parameters defined to

represent degree of transverse isotropy, a YZ , and degree of over-

all isotropy, a , decrease, in general, for all four cases studied.

The maximum change of 14.87% and 11.90%, respectively was

seen for Case 3 with fibres arranged randomly in in-plane and

partial out of plane random arrangement. This is due to packing

geometry factor. 

7. Stiffness tensors showed negligible anisotropy and were sym-

metric for each of the RVE studied for all the cases. 

Appendix A. Methods for predicting effective stiffness 

In this section three different methods are explained which

are used to estimate the effective stiffness tensor. These meth-

ods are: Mathematical theory of homogenization ( Hollister and

Kikuchi, 1992 ), Halpin–Tsai technique ( Halpin and Kardos, 1976;

Tucker and Liang, 1999 ) and Mori–Tanaka ( Mori and Tanaka, 1973;
ura, 1987 ) method. The former one is an RVE based method and

he later two are non RVE methods. 

1. Mathematical theory of homogenization 

Homogenization theory is developed from studies of partial dif-

erential equations with rapidly varying coefficients. To represent

 complex rapidly varying medium with slowly varying medium,

n which fine scale structure is averaged in an approximate way,

he following two explicit assumptions are made in homogeniza-

ion theory. 

1. Fields vary on multiple scales due to existence of microstruc-

ture. 

2. Microstructure is spatially periodic. 

The relevant field variables are approximated by an asymptotic

xpansion as 

 

η
i ( x i , y i ) = u 0 i ( x i , y i ) + ηu 1 i ( x i , y i ) + η2 u 2 i ( x i , y i ) + ... (A.1)

here u 
η
i 

is the exact value of field variable, u 0 i is the macroscopic

alue of field variable, u 1 i ; u 2 i , etc. are perturbations in field vari-

bles due to microstructure, x i and y i are the global level and micro

evel coordinates, respectively and η is the ratio of microstructure

ize to the total size of analysis region 

(
η = 

x i 
y i 

)
. 

Classical arguments of oscillating functions result that the

acroscopic stress and strain tensor must be the average of mi-

roscopic stress and strain quantities. Thus, 

i j = 

1 

| V RV E | 
∫ 

V RV E 

σi j ( x ) dV and ε i j = 

1 

| V RV E | 
∫ 

V RV E 

εi j ( x ) dV 

(A.2)

here, σ i j , ε i j are the average stresses and average strains and σ ij 

nd ε ij are the local stresses and local strains in RVE and V RVE is

he volume of RVE. 

Substituting the asymptotic expansion of Eq. (A.1) in terms of

trains and neglecting the higher order terms of the standard weak

orm of equilibrium equations governing the mechanical behaviour

f the composite material at different levels of structure, we get

trains as 

i j ( u ) = 

1 

2 

[(
∂u 0 i 

∂x j 
+ 

∂u 0 j 

∂x i 

)
+ 

(
∂u 1 i 

∂y j 
+ 

∂u 1 j 

∂y i 

)]
(A.3)

The components of strain tensor can be written as 

i j ( u ) = ε i j + ε∗
i j (A.4)

here, 

i j ( u ) = 

1 

2 

[
∂u 0 i 

∂x j 
+ 

∂u 0 j 

∂x i 

]
and ε∗

i j ( u ) = 

1 

2 

[
∂u 1 i 

∂y j 
+ 

∂u 1 j 

∂y i 

]
(A.5)

herein, ε ij is the local or microstructural strain tensor, ε i j is the

verage or macroscopic strain tensor and ε∗
i j 

is the fluctuating mi-

rostructural strain tensor which is assumed to vary periodically.

imilarly, the virtual displacement v and hence the virtual strain

i j ( v ) is also expanded asymptotically as a function of x and y , ne-

lecting the higher order terms. The resulting components of strain

ensor can be written as 

i j ( v ) = ε0 
i j + ε1 

i j (A.6)

here, 

0 
i j ( v ) = 

1 

2 

[
∂v 0 i 
∂x j 

+ 

∂v 0 j 
∂x i 

]
and ε1 

i j ( v ) = 

1 

2 

[
∂v 1 i 
∂y j 

+ 

∂v 1 j 
∂y i 

]
(A.7)
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The expanded forms of strain tensors are substituted in stan-

ard weak form of equilibrium equations given by 
 

�η

C i jkl εi j ( v ) εkl ( u ) d�η = 

∫ 
�

t i v i d� (A.8) 

here, �η represents the total of macroscopic and microscopic

omain of the composite materials, � is the macroscopic do-

ain boundary and traction t i is applied only to boundary of

omposite material. Substituting the expanded strain tensors in

q. (A.8) yields 

 

�η

C i jkl 

(
ε0 

i j ( v ) + ε1 
i j ( v ) 

) (
εkl ( u ) + ε∗

kl ( u ) 
)

d�η = 

∫ 
�

t i v i d�

(A.9) 

Since v is an arbitrary function, it varies either on microscopic

evel or macroscopic level. If v varies on microscopic level, keeping

onstant in macroscopic level (yielding ε0 
i j ( v ) = 0 ), along with pe-

iodically varying of ε∗
kl 
( u ) leads the microscopic equilibrium. The

q. (A.9) is rewritten assuming η goes to zero in the limit, as 

 

�

1 

V RV E 

∫ 
V RV E 

C i jkl 

(
ε1 

i j ( v ) 
) (

εkl ( u ) + ε∗
kl ( u ) 

)
d V RV E d � = 0 (A.10)

If v varies only on macroscopic level, keeping constant in micro-

copic level (giving ε1 
i j ( v ) = 0 ), along with periodically varying of

∗
kl ( u ) leads the macroscopic equilibrium. Then Eq. (A.9) is rewrit-

en, assuming η goes to zero in the limit, as 

 

�

1 

V RV E 

∫ 
V RV E 

C i jkl 

(
ε0 

i j ( v ) 
) (

εkl ( u ) + ε∗
kl ( u ) 

)
d V RV E d � = 

∫ 
�

t i v i d�

(A.11) 

Eq. (A.10) will be satisfied, if the integral over RVE is zero. This

eans Eq. (A.10) may be written as 

 

V RV E 

C i jkl ε
1 
i j ( v ) ε

∗
kl ( u ) dV RV E = −

∫ 
V RV E 

C i jkl ε
1 
i j ( v ) εkl ( u ) dV RV E 

(A.12) 

In general, εkl ( u ) is not known apriori. For linear problem in

D, εkl ( u ) can be written as a linear combination of unit strains as

iven below. 

11 
pm 

= −
[ 

1 0 0 

0 0 0 

0 0 0 

] 

, ε12 
pm 

= −
[ 

0 1 0 

0 0 0 

0 0 0 

] 

, 

13 
pm 

= −
[ 

0 0 1 

0 0 0 

0 0 0 

] 

, 

21 
pm 

= −
[ 

0 0 0 

1 0 0 

0 0 0 

] 

, ε22 
pm 

= −
[ 

0 0 0 

0 1 0 

0 0 0 

] 

, 

23 
pm 

= −
[ 

0 0 0 

0 0 1 

0 0 0 

] 

, 

31 
pm 

= −
[ 

0 0 0 

0 0 0 

1 0 0 

] 

, ε32 
pm 

= −
[ 

0 0 0 

0 0 0 

0 1 0 

] 

, 

33 
pm 

= −
[ 

0 0 0 

0 0 0 

0 0 1 

] 
e  
By applying the symmetry of strain states and substituting the

nit strains on the right hand side of Eq. (A.12) , it gives a stress

ensor as 

∗kl 
i j = C i jpm 

εkl 
pm 

(A.13) 

A set of six auxiliary problems have to be solved to obtain all

he components for ε∗kl 
pm 

( u ) in Eq. (A.12) . These are 
 

V RV E 

C i jkl ε
1 
i j ( v ) ε

∗kl 
pm 

( u ) dV RV E = 

∫ 
V RV E 

ε1 
i j ( v ) σ

∗kl 
i j dV RV E (A.14) 

To ensure periodicity of strain field ε∗kl 
pm 

in Eq. (A.12) the value

f ε∗
i j 

for any arbitrary εkl can be written as 

∗
i j = −ε∗kl 

i j εkl (A.15) 

From classical arguments, the relationship between local RVE

train and the average strain can be written as 

i j = M i jkl εkl (A.16) 

here, M ijkl is local structural tensor which can be obtained by us-

ng Eq. (A.15) and solving for M ijkl leads to 

 i jkl = 

1 

2 

(
δik δ jl + δil δ jk 

)
− ε∗kl 

i j (A.17) 

here, δij is the Kronecker delta. 

The effective stiffness tensor which relates average stress and

verage strain can be calculated from M ijkl by applying Hooke’s law

t microscopic level and integrating it over the volume of RVE and

hen divide by the volume of RVE. Thus, 

i j = 

1 

| V RV E | 
∫ 

V RV E 

C i jpm 

M pmkl dV RV E εkl (A.18) 

rom which the effective stiffness tensor can be written as 

 i jkl = 

1 

| V RV E | 
∫ 

V RV E 

C i jpm 

M pmkl dV RV E (A.19) 

2. Halpin–Tsai method 

The key point of this section is to give a brief description

bout the formulation of Halpin–Tsai technique used to estimate

he properties of aligned short fibre composites. 

The works of Hill (1964) and Hermans (1967) were employed to

erive Halpin–Tsai ( Ashton et al., 1969 ) equations for continuous

bre composites. However, ( Kerner, 1956 ) suggested that Halpin–

sai form of equations can also be used for particulate composite.

 detailed derivation of Halpin–Tsai formulation is explained by

alpin and Kardos (1976) . A short description of formulation has

een explained in this section. 

2.1. Young’s modulus along fibre direction 

Halpin–Tsai expressed longitudinal Young’s modulus for aligned

hort fibre composite as follows 

E 11 

E m 

= 

(
1 + ζ ηV f 

)(
1 − η V f 

) (A.20) 

here, 

= 

(
E 1 f 
E m 

− 1 

)
(

E 1 f 
E m 

+ 1 

) and ζ = 2 ∗ AR (A.21) 

here, E 11 is longitudinal Young’s modulus of composite along fi-

re direction, E 1 f is Young’s modulus of fibre in longitudinal direc-

ion, E m 

is Young’s modulus of matrix material, η is a parameter

hat depends on the matrix Poisson’s ratio and on the particular

lastic property being considered, V f is the fibre volume fraction
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of composite material and AR is the aspect ratio of fibre. The pa-

rameter ζ is a measure of reinforcement geometry and depends

on loading condition. In general, for short fibre composites, the

value of ζ lies between 0 and ∞ . The aspect ratio, AR is defined

as AR = 

l f 
d f 

, where l f is the length of the RVE and d f is the diame-

ter of the fibre. 

A2.2. Young’s modulus transverse to fibre direction 

Halpin–Tsai method suggests that Young’s modulus in trans-

verse direction weakly depends on fibre aspect ratio and hence,

the above equations can be used to obtain the transverse proper-

ties by letting AR = 1 . 

A2.3. Shear modulus estimation 

Similar to transverse Young’s modulus, aspect ratio does not af-

fect the shear modulus. The shear modulus G 12 is given by the re-

lation 

G 12 

G m 

= 

(
1 + ζ η V f 

)(
1 − η V f 

) (A.22)

where, G 12 is shear modulus of composite in 1-2 plane, G m 

is shear

modulus of matrix material. The parameter η is given as 

η = 

(
G f 
G m 

− 1 

)
(

G f 
G m 

+ ζ
) (A.23)

Here, G f is the corresponding fibre shear modulus. Further, ζ =
1 is used. Similar relations can be used to determine G 13 and G 23 . 

A2.4. Poisson’s ratio estimation 

Poisson’s ratio of short fibre composite is bounded between a

particulate composite and continuous fibre composite, which is in-

dependent of aspect ratio of fibre. Hence, rule of mixture can be

applied to determine the properties. The major Poisson’s ratio is

given as 

ν12 = V f ν f + V m 

νm 

(A.24)

Here, ν f and νm 

are the corresponding Poisson’s ratios of fibre

and matrix materials, respectively. Similar relations can be used to

determine ν13 and ν23 . 

A3. Mori–Tanaka method 

In this section, the formulation of Mori–Tanaka technique ( Mori

and Tanaka, 1973; Mura, 1987 ) used to estimate the properties of

oriented cylindrical short fibre composites is reviewed briefly. 

Mori–Tanaka technique is one of the approximation method

used to estimate the effective properties based on Eshelby’s elas-

ticity solution ( Eshelby, 1957 ) for inhomogeneous inclusion in an

infinite medium. The key assumption in this model is that the av-

erage strain in fibre is related to average strain in matrix by using

a fourth order strain concentration tensor. Initially, Eshelby solved

for a homogeneous inclusion of a prolate ellipsoid of revolution

with semi-major axis a 1 and semi-minor axes a 2 and a 3 in an in-

finite matrix. It was concluded that within an inclusion the total

strain ε is uniform and related to transformation strain εT by 

ε = E εT (A.25)

where, E is known as Eshelby tensor. The individual components

of Eshelby tensor are given in the following. 

S iiii = 

3 

8 π( 1 − ν) 
a 2 i I ii + 

( 1 − 2 ν) 

8 π( 1 − ν) 
I i 

S ii j j = 

1 

8 π( 1 − ν) 
a 2 j I i j − ( 1 − 2 ν) 

8 π( 1 − ν) 
I i 
 iikk = 

1 

8 π( 1 − ν) 
a 2 3 I ik −

( 1 − 2 ν) 

8 π( 1 − ν) 
I i 

S i ji j = 

(
a 2 

i 
+ a 2 

j 

)
16 π( 1 − ν) 

I i j + 

( 1 − 2 ν) 

16 π( 1 − ν) 

(
I i + I j 

)
S iii j = S i j j k = S i jk j = 0 (A.26)

here i, j, k varies from 1, 2, 3 in cyclic permutation. I i and I ij are

he special elementary functions for inclusion of prolate spheroid

n shape with a 1 > a 2 = a 3 which can be approximated for short

ylindrical fibre considered in this study. The detailed derivation

an be seen in Mura (1987) . The terms used in above equation are

iven as 

I 2 = I 3 = 

2 πa 1 a 
2 
3 (

a 2 
1 

− a 2 
3 

)3 / 2 

{
a 1 
a 3 

(
a 2 1 

a 2 
3 

− 1 

)1 / 2 

− cosh 

−1 
(

a 1 
a 3 

)}
I 1 = 4 π − 2 × I 2 

I 12 = I 13 = 

( I 2 − I 1 ) (
a 2 

1 
− a 2 

2 

)
I 11 = 

4 × π

3 × a 2 
1 

− 2 

3 

I 12 

 22 = I 33 = I 23 = 

π

a 2 
2 

− ( I 2 − I 1 ) 

4 

(
a 2 

1 
− a 2 

2 

) (A.27)

Substituting Eq. (A.27) in Eq. (A.26) , Eshelby tensor for homo-

eneous inclusion is obtained. 

For an inhomogeneous inclusion in an infinite matrix, strain

oncentration tensor for Eshelby’s equivalent inclusion can be ob-

ained by using dilute Eshelby model as 

 

Eshelby = 

[
I + E S m 

(
C 

f − C 

m 

)]−1 
(A.28)

here, C 

f and C 

m are the stiffness tensors for fibre and matrix

aterials, respectively and S m is the compliance tensor for ma-

rix material. This formulation was used in Hill’s approach by

ussel (1973) to estimate the properties of aligned fibre compos-

tes. When many inclusions are immersed in matrix, strain con-

entration tensor, reformulated by Mori–Tanaka, is given as 

 

MT = A 

Eshelby 
[(

1 − ν f 

)
I + ν f A 

Eshelby 
]−1 

(A.29)

By using Eq. (A.29) and fibre and matrix properties, effective

tiffness tensor can be expressed as 

 = C 

m + ν f 

(
C 

f − C 

m 

)
A 

MT (A.30)

By inverting effective stiffness tensor, effective compliance ten-

or is obtained, which gives the relations for effective engineering

onstants. 

ppendix B. Finite element implementation of mathematical 

omogenization theory 

In the present study, an in-house finite element code is de-

eloped to determine the homogenized properties of composite

aterials using mathematical theory of homogenization. The RVEs

re discretized with linear tetrahedron elements. The commercial

eshing software HYPERMESH 

® is used to discretize the RVEs.

 displacement based finite element formulation with three dis-

lacement variables at each node has been implemented (see

ook et al., 2002 for more details). 

In the following, the implementation of periodic boundary con-

ition and post-processing of the results (displacement vector) to

et the effective stiffness tensor is presented in brief. 
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Fig. 26. An RVE with periodic mesh. 
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1. Implementation of periodic boundary condition 

Effective material properties of an RVE can be computed by en-

uring the repeatability of boundary conditions to make ε∗kl 
i j 

peri-

dic in Eq. (A.14) . The periodic boundary condition is implemented

s follows. 

1. Creating identical mesh on opposite faces of RVE, leading the

nodes on opposite faces to have same coordinates tangential to

face as shown in Fig. 26 . Furthermore, these nodes are given

same global numbers. 

2. Element stiffness matrix and load vector assembling has been

done as per the above criteria indicating identical displace-

ments on opposite faces of an RVE. 

3. Finally, to constrain the rigid body motion, the displacement at

one of the node has to be fixed. 

2. Post processing 

Once the weak form of equilibrium equation has been solved

or six different loading cases individually, the fluctuating strain

ensor ε∗kl 
i j 

are evaluated at each integration point. These are used

o construct the microstructural strain tensor M ijkl . Then the effec-

ive stiffness tensor C i jkl can be found by integrating over the dis-

retized RVE and then divided by total volume of RVE as 

 = 

1 

V RV E 

NE LE M ∑ 

i =1 

N IN T ∑ 

j=1 

[ C ] [ M ] | J | w j (B.1) 

here C is the constituent stiffness tensor, M is microstructural

train tensor, | J | is the determinant of the Jacobian, NELEM is num-

er of elements in RVE, w j are the weights and NINT is the number

f integration points used in numerical integration. 
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