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1. Introduction 
 
Thin structures made of composite laminates are increasingly used in the manufacture of structural components. 
The enhanced strength to weight ratios make composites especially attractive for aerospace applications. 
However, being heterogeneous in nature microscopically, the macroscopic behavior of these structures can be 
complex. One important aspect of the response of laminated structures that a designer should consider is the 
onset of failure in a laminated structure. Onset of failure in composite laminated plates requires the local stress 
state to be known in the structure, particularly near structural details; at interlamina interface and in the 
individual lamina. Accurate prediction of the local stress state becomes important for a reliable estimate of the 
failure load, which may be crucial for a safe design of the component. 
 
With an increasing demand to maximize payload carrying capabilities of aerial vehicles, shape and topology 
optimization of structural components has become an important thrust area. All the optimization problems 
posed in this context are constrained approximation problem with constraints on failure load, maximum 
transverse deflection, buckling load, natural frequency, etc. In order to obtain an acceptable optimally designed 
component, from a computational analysis, it becomes imperative to estimate the constraint quantities 
accurately, at each step of the optimal design process. 
 
The goal of this study is to determine the quality of the local quantities of interest, obtained using various 
families of plate models commonly used in engineering practice. The comparisons will be done with respect to 
the exact three-dimensional elasticity solutions, for both symmetric and anti-symmetric stacking of the laminae. 
The values of the in-plane stresses obtained directly from the finite element computations will be compared to 
the elasticity solution. For the transverse stress components, the values obtained from the finite element solution 
directly, and those obtained using the equilibrium approach of post-processing, will be compared to the exact 
ones. Further, the study aims at clearly demonstrating the need for proper mesh design in the computation of 
critical failure loads. 
 
2. Plate Models 
 
Traditionally, for the plate and shell like thin structures, several plate theories have been proposed. These can be 
broadly classified as: 
 

1. higher order shear deformable theories (HSDT); 
2. hierarchic plate theories and 
3. layerwise theories 

 
2.1. Higher Order Shear Deformable Theories (HSDT) 
Here, one such theory due to Reddy1 is taken as representative theory from this group. It is a third order shear 
deformable theory with a parabolic distribution of transverse shear strains through thickness of the plate, in 
order to satisfy the condition of zero transverse shear stress on the top and bottom face of the plate. The HSDT 
model is denoted by HDSTpxy, where pxy denotes the in-plane approximation order. 
 



2.2. Hierarchic Plate Theories 
In these, the displacement components have a zig-zag or hierarchic representation through the thickness. The 
hierarchic plate models are a sequence of mathematical models, the exact solutions of which constitute a 
converging sequence of functions in the norm or norms appropriate for the formulation and objectives of 
analysis. The construction of hierarchic models for homogeneous isotropic plates and shells was given by Szabó 
and Sharmann2 and later for laminated plates by Babuška, Szabó, and Actis4 and Actis Szabó and Schwab5. The 
solutions of the lower order models are embedded in the highest order model and these models can be adapted 
according to the requirement. 
In these models the displacement field is given as product of functions that depend upon the variables 
associated with the plate, shell middle surface, and functions of the transverse variable. The transverse functions 
are derived on the basis of the degree to which the equilibrium equations of three-dimensional elasticity are 
satisfied. The Fourier transform of the equations of motion is performed which results in two-point boundary 
value problem for the transverse functions. These are characterized by the geometric parameters and wave 
vector. These functions are expanded in powers of wave vector around zero. The transverse functions are 
obtained by solving equations obtained by substituting the expanded functions into the transformed form of 
equations of motion. The hirrarchic model is denoted by HRpxyMm. Thus HR3M8 denotes hierarchic model 
with pxy=3 and eight field model. 
 
2.3. Layerwise Theories 
In these theories, the individual lamina has continuous through thickness representation of displacements. In the 
present study, the layer-by layer model proposed by Ahmed and Basu3 is adopted. In this model, all the 
displacement components are represented as product of in-plane and out-of-plane approximating functions of 
same order. The hierarchic approximating functions were used. These model are denoted by LMpxypz

upz
vpz

w. 
Where, pz

u= pz
v denotes the transverse approximation order for u and v, and pz

w for w. Thus LM3112 denotes the 
layerwise model with pxy=3 and pz

u= pz
v=1 and pz

w=2. 
 

3. Mathematical Formulation of Plate Models 
 
The generic representation of the displacement field for the plate models is given as: 
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and 
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Note that ( ) ( ) ( )LyxUyxUyxU ,,,,, 631 , ……are the in-plane components of displacement terms ),,( zyxu . 
Similarly, ( ) ( ) ( )LyxUyxUyxU ,,,,, 742  are the in-plane components of displacement terms ),,( zyxv . The in-
plane components of transverse displacement ),,( zyxw are given by ( ) ( )LyxUyxU ,,, 85 . The transverse 
functions are given in terms of the normalized transverse coordinate ztz )/2(ˆ =  (where t  is the thickness of the 
laminate). 
 
For the higher order shear deformable model the functions ( )ẑφ  are given as: 
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Remark: The in-plane displacement components have cubic representation and transverse component is 
constant in laminate thickness. The quadratic term of in-plane displacement components drop out when the zero 
shear condition on the top and bottom face of the plate is enforced. 

 
For the hierarchic family of the plate models the transverse functions ( )ẑφ  are given as 
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Where Qij are the coefficients of the global constitutive relation, in the global xyz -coordinate system. For other 
transverse functions see Ref. 5. 
The layerwise model used in this paper is adapted from Ref. 3. The present layerwise plate model is an 
improvement over the model given in Ref. 3, as the original layerwise model had same order transverse 
representation for all three displacement components, whereas the present layerwise model can have different 
approximation in transverse direction for individual displacement components. The different approximation for 
displacement components is used as suggested by Schwab6, for a single lamina, to take into account the bending 
and membrane actions. The displacement component lu , for an element in the thl  layer, is given as 
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where xyp  and u
zp  are the in-plane and transverse approximation order (for component lu ) and ( )yxN j ,  and 

( )zM k  are in-plane and transverse approximation functions, respectively. Similarly the other components lv  and 
lw  can be expressed. The transverse approximation orders for u  and v  displacement components will be the 

same, while that for the component w  can be different. Hierarchic basis functions will be used for in-plane 
and transverse representations of the solution components. In this study, 2=xyp  or 3 and u

zp , 1=v
zp , 2, 3 and 

,0=w
zp  1, 2, 3 will be used. 

 
4. Finite Element Formulation 

 
For a given lth lamina, the constitutive relationship in principal material directions is given as: 
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principal material directions. The constitutive relationship in global xyz coordinates can be obtained by usual 
transformations. 
The potential energy, Π, for the laminate is given by 
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Where V is the volume enclosed by the plate domain, R+ and R- are the top and bottom faces of plate and q(x,y) 
is the transverse applied load. The solution to this problem uex is the minimizer of the potential energy Π. It is 
obtained by the solution of following weak problem: 
Find )V(u °∈Hex  such that 
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where ( ) [ ] ( ){ }DonandUH Γ=∞<==° 0MUuUV u|φ , u  is the strain energy with ),(
2
1 uuBu = . Here, 

DN ΓΓ=Γ U  is the lateral boundary of the plate with Dirichlet part DΓ  and Neumann part NΓ . Note that in this 
study Dirichlet means the part of lateral boundary where geometric constraints are imposed, while Neumann 
stands for the stress-free parts of the lateral boundary. Further, M depends on the type of Dirichlet conditions on 
the edge, i.e. soft-simple support; hard simple-support; clamped etc. 
Hence, we have 
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where lV  is the volume of the lth lamina in the laminate; v3 is the transverse component of test function v. 
 
5. Error Estimator in the Quantity of Interest 
 
State of stress at a point plays a key role in the first-ply failure analysis of laminates. When the finite element 
analysis is employed the issue of modeling error (error due to model employed in the analysis of laminate, as 
compared to three dimensional elasticity) and discretization error becomes important. Adaptive methods for the 
control of discretization error are available in literature. These are based on the control of energy norm of the 
error, )(2|||| ee u=Ω  (where )(eu  is the strain energy of the error). This does not guarantee that the quantity of 
interest is also accurate. In Ref. 10-Ref. 12 it was shown that the error in the quantity of interest can be given in 
terms of error in the solution of auxillary problem. Various smoothening based a-posteriori error estimation 
techniques for laminated composites have been proposed by the authors for the local quantity of interest.14 
Further, estimation and control of the error in the quantity of interest and “one-shot” adaptive approach for the 
control of discretization error was proposed in Ref. 15 and used for the accurate analysis of first-ply failure 
loads in Ref. 16. In the present paper the issue of control of modeling error is not addressed. In the following 
sections the main steps of error estimation for local quantity of interest and one shot adaptivity are given from 
Ref. 15. Adaptive methods are available in literature for the control of discretization error. The estimation and 
control of the error in the quantity of interest and “one shot” adaptivity for the control of discretization error 
was proposed for hierarchic plate models in [1]. Corresponding to the quantity of interest an auxillary problem 
is solved. Using the estimates for the error in the solution and auxillary problem a-posteriori error estimator for 
local quantity of interest is defined. Further, for the one shot adaptivity for the quantity of interest the total 
discretization error is divided into local and pollution error. The desired mesh in local and far field region is 
obtained to achieve the specified tolerance. The mesh in local region is obtained by repeated refinements till the 
tolerance is achieved. Thus, the meshes in local and far field region are different.  
 
 
6. Region-by-region Modeling 
 
6.1 Imposition of constraints 
 



In this section the concept of constrained approximation will be discussed. The ideas are generalization 
of the concept introduced in [7]. In order to fix ideas let us consider a one-dimensional example. Let us 
take on interval (0, L) with one element, as shown in Fig.7 (a). Let us also assume that piecewise linear 
basis functions (i.e. p = 1) are defined over this mesh. 
Let 
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Be the representation of a function over this domain. Here, M1 (z) are the linear basis functions defined 
as shown in Fig. 7(a). Let us now subdivide this element into two equal sub-elements, let the function v 
(z), given above, be represented in terms of the piecewise linear basis functions (as shown in Fig. 7(b)). 
As 
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Where, )(1 zM  are the piecewise linear basis functions defined over the new mesh. Since both 

equations 5 and 6 represent the same function, the coefficients 1a  can be expressed in terms of the 
coefficients ja . It is obvious that 
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Similarly, the representation of v (z) over any finer mesh can be obtained in terms of the representation 
over the coarser mesh, with the new fine mesh coefficients ja constrained by the values of the 

coefficients ia for the coarser mesh. This can be easily extended to any p-order approximation defined 
over the coarser and fine meshes. As shown below, the transverse representation of the finite element 
solution is defined over a group. However, the basic building block in the analysis is the individual 

three-dimensional element D3τ . Hence, the approach given above will be employed to represent the 
element degrees of freedom in terms of the group degrees of freedom. 
The region-by-region model is denoted by RRMpxypz

upz
vpz

w .  
 
6.2 Implementation for Region-by-region Model 
 
The eq. (4) can be rewritten as  
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Where, }{ τu denotes the displacement vector, ][ τK denotes the stiffness matrix and }{ τF denotes the load 

vector corresponding to element )(3 ττ orD . Using eq. 15, to represent }{ τu , eq. (22) reduces to  
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Minimization of Π  gives the solution for }.{ Gu Note that this gives the element stiffness matrix ][ τK  and load 

vector }{ τF  in terms of the constraint matrix, as 
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7. Effect of Models on Accuracy of Pointwise Data 

7.1 Comparison of Transverse Deflection 
In this section the transverse deflection component obtained using different plate models and in-plane 
discretization is compared with the exact three-dimensional elasticity results reported in Ref. 19, for cross-ply 
laminate sequence with material properties given in Table 1. The plate has dimension a  along x -axis and b  
along y -axis, and is subjected to sinusoidal loading of the form 
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All edges of the plate are hard simply supported. The transverse deflection at ⎟
⎠
⎞

⎜
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2
ba  is reported in Tables 3 

and 4. The models used are HSDT3, HR3M11 and LM3332. Square plate with cross ply laminae, such that outer 
laminae have orientation o0 , and total thickness of o0  laminae is equal to total thickness of o90  laminae. Also 
laminae with same orientation have equal thickness. In this study, 7 and 9-layered laminate is studied. The 

transverse deflection is normalized as
tSq
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in parenthesis show the % error with respect to exact solution. 
From tables 3 and 4 we observe that: 

1. The LM3332  model predicts the transverse deflection accurately for all the aspect ratios. The error in 
the values ranges from 0-0.15 %. 

2. The HSDT3 and HR3M11 model are far from the exact one for the aspect ratios upto 10=S . The error 
for this aspect ratios ranges from 5-16 %. 

3. For the HSDT3 and HR3M11 model with aspect ratios 10>S  the displacement is close to exact. The 
error is 0.1-3 %.  

4. The HR3M11 model is closer to the exact one; as compared to the HSDT3 model. 
 

Table 3:Non-dimensional transverse deflection ( )*w  for 7 layered cross-ply laminate. 
 

S Pagano19 Layer-wise HSDT Hierarchic 
2 12.342 12.341 (0.00) 10.918 (11.54) 10.358 (16.07) 
4 4.153 4.153 (0.00) 3.594 (13.46) 3.575 (13.92) 
10 1.529 1.529 (0.00) 1.417 (7.33) 1.444 (5.56) 
20 1.133 1.133 (0.00) 1.096 (3.26) 1.113 (1.76) 
50 1.021 1.021 (0.00) 1.005 (1.56) 1.017 (0.39) 
100 1.005 1.005 (0.00) 0.993 (1.19) 1.004 (0.09) 

 
Table 4:Non-dimensional transverse deflection ( )*w  for 9 layered cross-ply laminate. 

 
S Pagano19 Layer-wise HSDT Hierarchic 
2 12.288 12.306 (-0.15) 10.703 (12.89) 11.632 (5.34) 
4 4.079 4.079 (0.00) 3.530 (13.46) 3.664 (10.17) 
10 1.512 1.512 (0.00) 1.406 (7.01) 1.438 (4.89) 
20 1.129 1.129 (0.00) 1.093 (3.18) 1.110 (1.68) 
50 1.021 1.020 (0.09) 1.001 (1.96) 1.017 (0.39) 
100 1.005 1.005 (0.00) 1.004 (0.09) 0.993 (1.19) 

 



 

7.2 Comparison of Stresses 
 

Case 1: In this case [0/90/0], square laminate with all edges simple supported is considered. All the laminae are 
of equal thickness. The sinusoidal loading is of the same form as above. The in-plane stresses given in [] are 

normalised as ( ) ( )⎟⎟
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ττττ . The in-plane stress components are shown in Fig. 3 and transverse stress 

component is shown in Fig. 4. The models used are HSDT3, HR3M11 and LM3332.  
 
 

 
 

 
 
Case 2: In this case the [165/-165] laminate under cylindrical bending is considered. The transverse load applied 

is of the form   ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

a
xxqyxq πsin, 0 . The laminate with S=4 with the edges x=0, a/2 are simple supported 

and infinite along y-direction. The transverse stress ( )zxz ,0τ  is shown is fig. *. In the region-by-region model 
used here, one layer of elements at (0,b/2) (where the stress is plotted) uses the LM3332 and remaining domain 
of the laminate uses EQ3112. The other models used are HSDT3, HR3M11 and LM3332. 
 
 
 

Fig. 4 [0/90/0] laminate; all edges simply supported, transverse stresses. 

Equilibrium stressesDirect stresses

Fig. 3 [0/90/0] laminate; all edges simply supported, in-plane stresses. 



 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
Effect of Models on Accuracy of Predicted Failure Load 
The laminates considered are [0/90]S and [-45/45/-45/45]. The plate is either clamped on all edges or simple 
supported. The top face of the plate is subjected to uniform transverse load ( ) 0, qyxq = . The plate dimensions are 

)9(9.228 inmma =  and )5(127 inmmb = . The material properties are given in Table 7. The first-ply failure load is 

nondimensionalised as 4

22

0 S
E
q

FLD = . The results obtained from the present analysis are compared with those 

reported in Ref. 22. 
 
Table 11: First-ply failure loads; all edges clamped, [-45/45/-45/45] laminate under uniform transverse loading, 
(equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI Max. σ  
Reddy22 39354.8 ≈115.0 ≈125.0 1 bottom -  
HSDTa 31463.7 107.51 0.56 4 top 1.00 22σ  
HSDTb 31463.7 112.71 0.14 4 top 1.82  
HSDTc 23377.6 112.71 0.14 4 top 1.00  
5-fielda 31486.1 107.51 0.56 4 top 1.00 22σ  
5-fieldb 31486.1 112.71 0.14 4 top 1.82  
5-fieldc 23383.7 112.71 0.14 4 top 1.00  
8-fielda 31403.1 107.51 0.56 4 top 1.00 22σ  
8-fieldb 31403.1 112.71 0.14 4 top 1.82  
8-fieldc 23350.7 112.71 0.14 4 top 1.00  
11-fielda 31672.2 121.38 126.43 4 top 1.00 22σ  
11-filedb 31672.2 116.18 126.85 4 top 1.75  
11-fieldc 23955.1 116.18 126.85 4 top 1.00  
Layer 32549.2 107.51 0.56 1 bottom 1.00 22σ  

 
 
 
Table 15: First-ply failure loads; all edges simple supported, [-45/45/-45/45] laminate under uniform transverse 
loading, (equilibrium stresses) 2=xyp . 
 
Model FLD Xco Yco Layer Location TWFI Max. σ  
Reddy22 32513.5 ≈115.0 ≈65.0 4 top -  



HSDTa 25802.4 138.28 66.13 4 top 1.00 22σ  
HSDTb 25802.4 136.99 73.26 4 top 1.08  
HSDTc 24729.1 136.99 73.26 4 top 1.00  
5-fielda 25807.7 90.62 60.86 4 top 1.00 22σ  
5-fieldb 25807.7 91.91 53.73 4 top 1.09  
5-fieldc 24729.5 91.91 53.73 4 top 1.00  
8-fielda 25687.1 90.62 60.86 4 top 1.00 22σ  
8-fieldb 25687.1 91.91 53.73 4 top 1.08  
8-fieldc 24727.7 91.91 53.73 4 top 1.00  
11-fielda 30791.5 31.22 0.56 4 bottom 1.00 22σ  
11-filedb 30791.5 0.25 0.96 4 top 1.39  
11-fieldc 26173.7 0.25 0.96 4 top 1.00  
Layer 31078.2 1.20 107.16 4 top 1.00 22σ  

 
 
With equilibrium stresses we observe that: 

1. For the initial mesh, the failure loads predicted by all the models are lower than those obtained in Ref. 
22 (shown with superscript a ) and those obtained by using direct stresses. 

2. The locations predicted by all the models are either close to one obtained in Ref. 22 or are corresponding 
symmetric points.  

3. Failure loads predicted by the HSDT and hierarchic models are close while those predicted by layerwise 
are slightly higher than these. 

4. When the discretization error control is used the failure index, for the failure load obtained using 
adapted mesh, increases upto 85%. This is due to the increased flexibility of the numerical solution for 
the adapted mesh. 

5. With the adapted mesh the error in the failure load computations can be close to 25%. 
6. The failure locations for the HSDT and hierarchic models are in the same region before and after the use 

of discretization error control. 
 
 
 
 
 
Thin laminated structures are widely used in aerospace component designs. Reliable computation of pointwise 
data plays an important role in design, optimization and certification phase. Many plate models are available in 
literature but not much can be said about the accuracy of pointwise data like stress state and displacements 
which may the quantity of interest for an optimal design. 
 
 
The above concept is used in the prediction of first-ply failure load for laminates, which is common engineering 
design practice. Here, the quantity of interest is the stress component, which contributes maximum towards the 
first-ply failure index (see [2], [3]). It is seen that the first-ply failure load goes down by 40% when 
discretization error control using focussed adaptivity is used. 
 
A layerwise model is developed for the analysis of laminates. Further, a regionwise model is developed which 
combines the advantage of accurate computation of layerwise model in the region of interest and economy of 
computations of equivalent single layer models in the far region, yet maintaining the accuracy. 
 

                     
 

Figure 1. (a) Adapted mesh                                        (b) Transverse shear stress 
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