Detailed Course Content	Number of Lectures
Definitions & Concepts: System & CV, Macroscopic and microscopic view	
points; Property, Thermodynamic State & Equilibrium, Energy, Work	4
interaction & various modes of work, Heat; Zeroth Law of Thermodynamics,	
Temperature Scale	
Properties of Pure Substances: Pure substance, Phase, Simple	
compressible substance, Ideal gas Equation of State, van der Walls Equation	
of State; Law of corresponding states, Compressibility chart, Pressure-volume;	4
Temperature-volume and Phase diagrams; Mollier diagram and Steam tables.	
First Law of Thermodynamics & its consequences: First law for a	
control mass; Internal energy; I Law analysis of Non-flow processes; Use of	9
steam tables & Mollier diagram, Application of I Law of Thermodynamics for	
Flow Process CV) –Steady-state processes, Throttling process; Transient Flow	
Processes - Charging & discharging of tanks.	
I Law Application to Chemically Reacting Systems: Fuels &	
Combustion, Theoretical Air/Fuel ratio, Standard heat of Reaction and effect	4
of temperature on standard heat of reaction, Adiabatic flame temperature.	
II Law of Thermodynamics & its Applications:	
Limitations of the I Law of Thermodynamics, Heat Engine, Heat	
Pump/Refrigerator. II Law of Thermodynamics – Kelvin Planck and Clausius	
statements & their equivalence. Reversible & irreversible processes,	10
Criterion of reversibility, Carnot cycle & Carnot principles, Thermodynamic	
Temperature scale, Clausius inequality, Entropy, Calculations of entropy	
change, Principle of entropy increase, T-S diagram, II Law analysis of Control	
Volume. Available energy, Availability; Second law efficiency	
Thermodynamic Potentials: Maxwell relations, Thermodynamic relations,	
Jacobian methods, Clapeyron and Kirchoff equations, Phase rule.	4
Power Cycles: Rankine cycle – Ideal and Reheat. Gas Power Cycles; Otto	3
cycle, Diesel cycle and Brayton cycle.	
Regrigeration Cycles: Vapor compression cycle, Air-standard refrigeration cycle.	2