MTH 418a: Inference-I Assignment No. 1: Sampling Distributions

1. For a positive integer ν, let $X \sim t_{\nu}$. We know that $X \stackrel{d}{=} \frac{Z}{\sqrt{\frac{Y}{\nu}}}$, where $Z \sim N(0,1)$ and $Y \sim \chi_{\nu}^{2}$ are independently distributed. Using the aforementioned representation, find the mean and variance of t_{ν}. Also show that $t_{\nu}^{2} \sim f_{1, \nu}$.
2. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$, where $\mu \in(-\infty, \infty)$ and $0<\sigma<$ ∞. Let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Find means and variances of r.v.s $S_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $T=\frac{\bar{X}_{n}}{S_{n}}$.
3. For positive integers ν_{1} and ν_{2}, let $X \sim f_{\nu_{1}, \nu_{2}}$. We know that $X \stackrel{d}{=} \frac{Y_{1} / \nu_{1}}{Y_{2} / \nu_{2}}$, where $Y_{1} \sim \chi_{\nu_{1}}^{2}$ and $Y_{2} \sim \chi_{\nu_{2}}^{2}$ are independently distributed. Using this representation of $f_{\nu_{1}, \nu_{2}}$, find its mean and variance. Also show that $T=\frac{1}{f_{\nu_{1}, \nu_{2}}} \sim f_{\nu_{2}, \nu_{1}}$.
4. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be independent random samples from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, respectively, where $\mu_{i} \in(-\infty, \infty)$ and $0<\sigma_{i}<\infty, i=1,2$. Let $\bar{X}=\frac{1}{m} \sum_{i=1}^{m} X_{i}, \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}, S_{X}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2}$ and $S_{Y}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$. Find means and variances of following r.v.s:
(a) $T_{1}=\frac{\bar{X}-\bar{Y}}{\sqrt{S_{X}^{2}+S_{Y}^{2}}}$, when $m=n$ and $\sigma_{1}^{2}=\sigma_{2}^{2}$;
(b) $T_{2}=\frac{S_{X}}{S_{Y}}$.

Also, for $m=n$, find $\lim _{n \rightarrow \infty} P\left(U_{n} \leq 1\right)$, where $U_{n}=\frac{\sqrt{n}\left(\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)\right)}{\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}}$.
5. Let Z_{1}, \ldots, Z_{12} be a random sample from $N(0,1)$. Find the p.d.f.s of the following random variables:
(a) $Y_{1}=\frac{Z_{1}}{\sqrt{\sum_{i=2}^{11} Z_{i}^{2}}}$;
(b) $Y_{2}=\frac{Z_{1}+Z_{2}}{\left|Z_{1}-Z_{2}\right|}$;
(c) $Y_{3}=\frac{Z_{1}+Z_{2}}{Z_{1}-Z_{2}}$;
(d) $Y_{4}=\frac{Z_{1}^{2}+Z_{2}^{2}}{\sum_{i=3}^{11} Z_{i}^{2}}$;
(e) $Y_{5}=\frac{Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}}{\sum_{i=1}^{11} Z_{i}^{2}}$;
(f) $Y_{6}=\sum_{i=1}^{9}\left(Z_{i}-\bar{Z}_{9}\right)^{2}+Z_{10}^{2}$, where $\bar{Z}_{9}=\frac{1}{9} \sum_{i=1}^{9} Z_{i}$;
(g) $Y_{7}=\frac{3\left(Z_{11}+Z_{12}\right)}{\sqrt{Y_{6}}}$;
(h) $Y_{8}=\frac{Z_{11}^{2}+Z_{12}^{2}}{2 Y_{6}}$.
6. Let X_{1}, X_{2}, \ldots be a sequence of r.v.s such that the r.v. X_{n} follows the Poisson distribution with mean n. Find the values of $\lim _{n \rightarrow \infty} P\left(\frac{9 n}{10} \leq X_{n} \leq \frac{11 n}{10}\right)$, $\lim _{n \rightarrow \infty} P\left(X_{n} \leq n+2 \sqrt{n}\right)$ and $\lim _{n \rightarrow \infty} e^{-n} \sum_{j=0}^{[n-\sqrt{n}]} \frac{n^{j}}{j!}$, where, for any real number $x,[x]$ denotes the largest integer not exceeding x. .

Honors Problems

7. Let X_{1}, \ldots, X_{n} be a random sample from a population having d.f. F and the Lebegue p.d.f. f. Show that the d.f. of $X_{(r)}(r=1, \ldots, n)$ is

$$
G_{r}(y)=\sum_{i=r}^{n}\binom{n}{i}(F(y))^{i}(1-F(y))^{n-i}=\frac{n!}{(r-1)!(n-r)!} \int_{0}^{F(y)} u^{r-1}(1-u)^{n-r} d u
$$

Hence derive the expression for the p.d.f. of $X_{(r)}(r=1, \ldots, n)$. Using the above identities, derive the relationship between the d.f.s of binomial and beta distributions.
8. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Exp}(\theta)(0<\theta<\infty)$, and let $X_{(1)}, \ldots, X_{(n)}$ be the corresponding order statistics. Define $Y_{i}=(n-i+1)\left(X_{(i)}-X_{(i-1)}\right), i=$ $1, \ldots, n$, where $X_{(0)}=0\left(Y_{i} \mathrm{~s}\right.$ are called normalized spacings). Show that Y_{1}, \ldots, Y_{n} are i.i.d. $\operatorname{Exp}(\theta)$. Hence, show that $E\left(X_{(r)}\right)=\theta \sum_{i=n-r+1}^{n} \frac{1}{i}, \operatorname{Var}\left(X_{(r)}\right)=\theta^{2} \sum_{i=n-r+1}^{n} \frac{1}{i^{2}}$, $r=1, \ldots, n$, and $\operatorname{Cov}\left(X_{(r)}, X_{(s)}\right)=\theta^{2} \sum_{i=n-r+1}^{n} \frac{1}{i^{2}}, 1 \leq r<s \leq n$. Further, show that $T=n X_{(1)} \sim \operatorname{Exp}(\theta)$.
9. Let $X_{i} s$ be as defined in Problem 8. Let $U_{(1)}, \ldots, U_{(n-1)}$ be the order statistics based on a random sample of size $n-1$ from $U(0,1)$. Show that

$$
\left(U_{(1)}, \ldots, U_{(n-1)}\right) \stackrel{d}{=}\left(\frac{X_{1}}{\sum_{i=1}^{n} X_{i}}, \frac{X_{1}+X_{2}}{\sum_{i=1}^{n} X_{i}}, \ldots, \frac{\sum_{i=1}^{n-1} X_{i}}{\sum_{i=1}^{n} X_{i}}\right)
$$

