## MTH 418a: Inference-I Assignment No. 4: Basu's Theorem

1. Let $X_{1}, \ldots, X_{n}$ be a random sample from $N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma>0$.
(i) Show that $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ and $U=\frac{\bar{X}-\mu}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}}$ are independent. Are $\sum_{i=1}^{n}\left(X_{i}-\right.$ $\mu)^{2}$ and $V=\frac{\bar{X}-\mu}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}}$ also independent? Find the mean and variance of $U^{2}$.
(ii) Show that $\bar{X}$ and $\underline{T}=\left(X_{1}-\bar{X}, \ldots, X_{n}-\bar{X}\right)$ are independent. In particular, show that $\bar{X}$ and $W=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ are independent.
(iii) Find the conditional distribution function, conditional density and conditional expectation of of $X_{1}$, given $\bar{X}=t, t \in \mathbb{R}$.
(iv) Using the m.g.f. and findings in (ii), find the distribution of $W=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
2. Let $X_{1}, \ldots, X_{n}$ be a random sample from $\operatorname{Exp}(\mu, \sigma), \mu \in \mathbb{R}, \sigma>0$.
(i) Show that $\sum_{i=1}^{n}\left(X_{i}-\mu\right)$ and $U=\frac{X_{(1)}-\mu}{\sum_{i=1}^{n}\left(X_{i}-\mu\right)}$ are independent. Are $\sum_{i=1}^{n}\left(X_{i}-\mu\right)$ and $V=\frac{X_{(1)}-\mu}{\sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right)}$ also independent? Find the mean and variance of $U$.
(ii) Show that $X_{(1)}$ and $\underline{T}=\left(X_{1}-X_{(1)}, \ldots, X_{n}-X_{(n)}\right)$ are independent. In particular, show that $X_{(1)}$ and $\sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right)$ are independent.
(iii) Find the conditional distribution function, conditional density and conditional expectation of $X_{1}$, given $X_{(1)}=t, t>\mu$.
(iv) Using the m.g.f. and findings in (ii), find the distribution of $W=\sum_{i=1}^{n}\left(X_{i}-\right.$ $\left.X_{(1)}\right)$.
(v) Let $Z_{i}=\frac{X_{(n)}-X_{(i)}}{X_{(n)}-X_{(n-1)}}, i=1, \ldots, n-2$. Show that $\underline{T}=\left(X_{(1)}, \sum_{i=1}^{n}\left(X_{i}-X_{(1)}\right)\right)$ and $\underline{Z}=\left(Z_{1}, \ldots, Z_{n-2}\right)$ are independent.
3. Let $X_{1}, \ldots, X_{n}$ be a random sample from $U\left(\theta_{1}, \theta_{2}\right),-\infty<\theta_{1}<\theta_{2}<\infty$. Let $Z_{i}=\frac{X_{(i)}-X_{(1)}}{X_{(n)}-X_{(1)}}, i=2, \ldots, n-1$. Show that $\underline{T}=\left(X_{(1)}, X_{(n)}\right)$ and $\underline{Z}=\left(Z_{2}, \ldots, Z_{n-1}\right)$ are independent.
4. Let $X_{1}, \ldots, X_{n}$ be a random sample from $U(0, \theta), \theta>0$.
(i) Show that $X_{(n)}$ and $\underline{T}=\left(\frac{X_{1}}{X_{(n)}}, \ldots, \frac{X_{n}}{X_{(n)}}\right)$ are independent.
(ii) Find $E\left(\frac{X_{1}}{X_{(n)}}\right)$. Also find the conditional distribution function, conditional density and conditional expectation of $X_{1}$, given $X_{(n)}=t, 0<t<\theta$.
(iii) Find $E\left(\frac{\left.X_{(r)}\right)}{X_{(n)}}\right) r=1, \ldots, n-1$.
5. Let $X_{1}, \ldots, X_{n}$ and $Y_{1}, \ldots, Y_{n}$ be independent random samples from $N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $N\left(\mu_{2}, \sigma_{2}^{2}\right)$, respectively, $-\infty<\mu_{i}<\infty, \sigma_{i}>0, i=1,2$. Show that $\underline{T}=$ $\left(\bar{X}, \bar{Y}, \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}, \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}\right)$ and

$$
V(\underline{X})=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{1}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

are statistically independent.

