
MTH 418a: Inference-I
Assignment No. 5: Methods of Estimation and Rao Blackwell

Theorem

1. (Review Problem) Let X1, . . . , Xn be a random sample from p.m.f./p.d.f. fθ, θ ∈
Θ. In each of the following cases, find MME and MLE of θ. Also, determine if they
are functions of a minimal sufficient statistic:

(i) X1 ∼ N(θ, σ2
0),Θ = R, σ0 is a known positive constant;

(ii) X1 ∼ N(µ0, θ
2),Θ = (0,∞), µ0 is a known real constant;

(iii) X1 ∼ Exp(θ, σ0),Θ = R, σ0 is a known positive constant;

(iv) X1 ∼ Exp(µ0, θ),Θ = (0,∞), µ0 is a known real constant;

(v) X1 ∼ U(θ − σ0, θ + σ0),Θ = R, σ0 is a known positive constant;

(vi) X1 ∼ U(µ0 − θ, µ0 + θ),Θ = (0,∞), µ0 is a known real constant;

(vii) fθ(x) = α0
xα0−1

θα0
I(0 < x < θ),Θ = (0,∞), α0 is a known positive constant;

(viii) fθ(x) = α0
θα0
xα0+1 I(x > θ),Θ = (0,∞), α0 is a known positive constant;

(ix) X1 ∼ Bin(m0, θ),Θ = (0, 1),m0 is a known positive integer;

(x) X1 ∼ Bin(θ, p0),Θ = {1, 2, . . .}, p0 ∈ (0, 1) is a known constant;

(xi) X1 ∼ Poisson(θ),Θ = (0,∞);

(xii) X1 ∼ Gamma(θ, α0),Θ = (0,∞), α0 is a known positive constant;

(xiii) X1 ∼ Gamma(σ0, θ),Θ = (0,∞), σ0 is a known positive constant;

(xiv) X1 ∼ DEXP(θ, σ0),Θ = R, σ0 is a known positive constant;

(xv) X1 ∼ DEXP(µ0, θ),Θ = (0,∞), µ0 is a known real constant;

2. Find two examples where the MLE is not unique.

3. LetX ∼ Gamma(1, α), α > 0. Show that E(lnX) = ψ(α), where ψ(α) = d
dα

ln Γ(α) =
Γ′(α)
Γ(α)

, α > 0, is called the digamma function. Show that:

(i) ψ(α) < lnα, ∀α > 0;

(ii) ψ(α) is an increasing function on (0,∞).

4. (i) Let X1, . . . , Xn be a random sample from N(µ, σ2), where θ = (µ, σ) ∈ R ×
(0,∞) = Θ. Find the MLE and the MME of τ(θ) = Pθ(X1 > 1);

(ii) Let X1, . . . , Xn be a random sample from Gamma(σ, α), where θ = (σ, α) ∈
(0,∞)× (0,∞) = Θ. Find the MLEs and MMEs of θ and τ(θ) = V arθ(X1);

(iii) Let X1, . . . , Xn be a random sample from DEXP(µ, σ), θ = (µ, σ),Θ = R ×
(0,∞). Find the MLE and the MME of θ.



5. Let X1, X2 be a random sample from a p.d.f. fθ(x) = 2
θ2

(θ − x)I(0 < x < θ), θ ∈
(0,∞) = Θ. Find the MME and the MLE of θ. Are they functions of a minimal
sufficient statistic?

6. Let X1, . . . , Xn be a random sample from p.m.f./p.d.f. fθ, θ ∈ Θ. In each of the
following cases, find MME and MLE of θ. Also determine if they are functions of a
minimal sufficient statistic:

(i) X1 ∼ N(θ, σ2
0),Θ = (a, b), a, b (a < b) and σ0 are known positive constants;

(ii) X1 ∼ Exp(θ, σ0),Θ = (a, b), a, b (a < b) and σ0 are known positive constants;

(iii) X1 ∼ Bin(m0, θ),Θ = [1
2
, 1), m0 is a known positive integer;

(iv) X1 ∼ U(θ1, θ2), θ = (θ1, θ2),Θ = {(x, y) ∈ R2 : x < y};
(v) X1 ∼ U(θ1 − θ2, θ1 + θ2), θ = (θ1, θ2),Θ = {(x, y) ∈ R2 : −∞ < x <∞, y > 0}.

7. Let X1, . . . , Xn be a random sample from Exp(0, θ), θ ∈ Θ = (0,∞). Let c be a
positive constant. What is being observed is only those Xis whose values are less
than c. Suppose that the observed values are Y1, . . . , Ym and remaining (n − m)
observations that exceed c are not observed. Find the MLE of θ.

8. Prove the following inequalities for any non-degenerate random variable X: (i)
E(eX) > eE(X); (ii) E(X)E( 1

X
) > 1, provided P (X > 0) = 1; (iii) E(lnX) <

lnE(X), provided P (X > 0) = 1. Hence prove the AM-GM-HM inequality

n∑
i=1

aiwi >
n∏
i=1

awii >
1∑n
i=1

wi
ai

,

for any positive constants w1, . . . , wn, a1, . . . , an, such that
∑n

i=1 wi = 1 and not all
ais are the same.

9. Let X1, . . . , Xn be a random sample from N(θ, 1), θ ∈ R = Θ. For estimating θ
under a loss function, consider the randomized estimator δ(x) ∼ N(x1+x2

2
, 1).

(i) Find a randomized estimator that is based on a minimal sufficient statistic and
has the same risk function as δ(x);

(ii) Under the squared error loss function find a non-randomized estimator better
than δ.

10. Let X1, . . . , Xn (n ≥ 2) be a random sample from Exp(0, θ), θ ∈ (0,∞) = Θ.
For estimating θ under a loss function, consider the randomized estimator δ(x) ∼
U(n−1

n
xn−1, xn−1), where xn−1 = 1

n−1

∑n−1
i=1 xi.

(i) Find a randomized estimator based on a minimal sufficient statistic having the
same risk function as δ(X);

(ii) Under the squared error loss function find a non-randomized estimator better
than δ.



11. Let X1, . . . , Xn (n ≥ 2) be a random sample from N(θ, 1), where θ ∈ R = Θ is the
unknown parameter. For estimating θ, suppose that the loss function is either the
absolute error loss function or the squared error loss function.

(i) Find an estimator dominating the estimator δ1(X) =
∑n

i=1 αiXi, where α1, . . . , αn
are positive constants such that

∑n
i=1 αi = 1 and not all αis are the same;

(ii) Let n = 2m+ 1. Find a randomized estimator, based on X, which has the same
risk function as the sample median δ2(X) = X(m+1);

(iii) Find an estimator better than δ2(X) = X(m+1).

12. Let X ∼ Bin(n, θ), θ ∈ (0, 1) = Θ. For estimating θ under the squared error loss
function, consider the randomized estimator δ, such that P (δ(x) = x

n
) = P (δ(x) =

1
2
) = 1

2
. Find a nonrandomized estimator better than δ. Also calculate the risk

functions of the two estimators.

13. Let X1, . . . , Xn be a random sample from U(0, θ), where θ ∈ (0,∞) = Θ is the
unknown estimator. Consider estimation of θ under the absolute error loss function.

(i) Find an estimator, based on a minimal sufficient statistics, that is better than
δ0(X) = X;

(ii) Find an estimator, based on a minimal sufficient statistics, that is better than
δ1(X) = X(n−1).


