MTH 418a: Inference-I Assignment No. 5: Methods of Estimation and Rao Blackwell Theorem

- 1. (**Review Problem**) Let X_1, \ldots, X_n be a random sample from p.m.f./p.d.f. $f_{\theta}, \theta \in \Theta$. In each of the following cases, find MME and MLE of θ . Also, determine if they are functions of a minimal sufficient statistic:
 - (i) $X_1 \sim N(\theta, \sigma_0^2), \Theta = \mathbb{R}, \sigma_0$ is a known positive constant;
 - (ii) $X_1 \sim \mathcal{N}(\mu_0, \theta^2), \Theta = (0, \infty), \mu_0$ is a known real constant;
 - (iii) $X_1 \sim \text{Exp}(\theta, \sigma_0), \Theta = \mathbb{R}, \sigma_0$ is a known positive constant;
 - (iv) $X_1 \sim \text{Exp}(\mu_0, \theta), \Theta = (0, \infty), \mu_0$ is a known real constant;
 - (v) $X_1 \sim U(\theta \sigma_0, \theta + \sigma_0), \Theta = \mathbb{R}, \sigma_0$ is a known positive constant;
 - (vi) $X_1 \sim U(\mu_0 \theta, \mu_0 + \theta), \Theta = (0, \infty), \mu_0$ is a known real constant;
 - (vii) $f_{\theta}(x) = \alpha_0 \frac{x^{\alpha_0 1}}{\theta^{\alpha_0}} I(0 < x < \theta), \Theta = (0, \infty), \alpha_0$ is a known positive constant;
 - (viii) $f_{\theta}(x) = \alpha_0 \frac{\theta^{\alpha_0}}{x^{\alpha_0+1}} I(x > \theta), \Theta = (0, \infty), \alpha_0$ is a known positive constant;
 - (ix) $X_1 \sim \text{Bin}(m_0, \theta), \Theta = (0, 1), m_0$ is a known positive integer;
 - (x) $X_1 \sim Bin(\theta, p_0), \Theta = \{1, 2, ...\}, p_0 \in (0, 1)$ is a known constant;
 - (xi) $X_1 \sim \text{Poisson}(\theta), \Theta = (0, \infty);$
 - (xii) $X_1 \sim \text{Gamma}(\theta, \alpha_0), \Theta = (0, \infty), \alpha_0$ is a known positive constant;
 - (xiii) $X_1 \sim \text{Gamma}(\sigma_0, \theta), \Theta = (0, \infty), \sigma_0$ is a known positive constant;
 - (xiv) $X_1 \sim \text{DEXP}(\theta, \sigma_0), \Theta = \mathbb{R}, \sigma_0$ is a known positive constant;

(xv) $X_1 \sim \text{DEXP}(\mu_0, \theta), \Theta = (0, \infty), \mu_0$ is a known real constant;

- 2. Find two examples where the MLE is not unique.
- 3. Let $X \sim \text{Gamma}(1, \alpha), \alpha > 0$. Show that $E(\ln X) = \psi(\alpha)$, where $\psi(\alpha) = \frac{d}{d\alpha} \ln \Gamma(\alpha) = \frac{\Gamma'(\alpha)}{\Gamma(\alpha)}, \alpha > 0$, is called the digamma function. Show that: (i) $\psi(\alpha) < \ln \alpha, \forall \alpha > 0$;
 - (ii) $\psi(\alpha)$ is an increasing function on $(0, \infty)$.
- 4. (i) Let X₁,..., X_n be a random sample from N(μ, σ²), where <u>θ</u> = (μ, σ) ∈ ℝ × (0, ∞) = Θ. Find the MLE and the MME of τ(<u>θ</u>) = P_θ(X₁ > 1);
 (ii) Let X₁,..., X_n be a random sample from Gamma(σ, α), where <u>θ</u> = (σ, α) ∈ (0, ∞) × (0, ∞) = Θ. Find the MLEs and MMEs of <u>θ</u> and τ(<u>θ</u>) = Var_θ(X₁);
 (iii) Let X₁,..., X_n be a random sample from DEXP(μ, σ), <u>θ</u> = (μ, σ), Θ = ℝ × (0, ∞). Find the MLE and the MME of <u>θ</u>.

- 5. Let X_1, X_2 be a random sample from a p.d.f. $f_{\theta}(x) = \frac{2}{\theta^2}(\theta x)I(0 < x < \theta), \theta \in (0, \infty) = \Theta$. Find the MME and the MLE of θ . Are they functions of a minimal sufficient statistic?
- 6. Let X_1, \ldots, X_n be a random sample from p.m.f./p.d.f. $f_{\theta}, \theta \in \Theta$. In each of the following cases, find MME and MLE of θ . Also determine if they are functions of a minimal sufficient statistic:
 - (i) $X_1 \sim N(\theta, \sigma_0^2), \Theta = (a, b), a, b \ (a < b)$ and σ_0 are known positive constants;
 - (ii) $X_1 \sim \text{Exp}(\theta, \sigma_0), \Theta = (a, b), a, b \ (a < b)$ and σ_0 are known positive constants;
 - (iii) $X_1 \sim \text{Bin}(m_0, \theta), \Theta = [\frac{1}{2}, 1), m_0$ is a known positive integer;
 - (iv) $X_1 \sim U(\theta_1, \theta_2), \underline{\theta} = (\theta_1, \theta_2), \Theta = \{(x, y) \in \mathbb{R}^2 : x < y\};$
 - $(\mathbf{v}) \ X_1 \sim \mathbf{U}(\theta_1 \theta_2, \theta_1 + \theta_2), \underline{\theta} = (\theta_1, \theta_2), \Theta = \{(x, y) \in \mathbb{R}^2 : -\infty < x < \infty, y > 0\}.$
- 7. Let X_1, \ldots, X_n be a random sample from $\text{Exp}(0, \theta), \theta \in \Theta = (0, \infty)$. Let c be a positive constant. What is being observed is only those X_i s whose values are less than c. Suppose that the observed values are Y_1, \ldots, Y_m and remaining (n m) observations that exceed c are not observed. Find the MLE of θ .
- 8. Prove the following inequalities for any non-degenerate random variable X: (i) $E(e^X) > e^{E(X)}$; (ii) $E(X)E(\frac{1}{X}) > 1$, provided P(X > 0) = 1; (iii) $E(\ln X) < \ln E(X)$, provided P(X > 0) = 1. Hence prove the AM-GM-HM inequality

$$\sum_{i=1}^{n} a_i w_i > \prod_{i=1}^{n} a_i^{w_i} > \frac{1}{\sum_{i=1}^{n} \frac{w_i}{a_i}},$$

for any positive constants $w_1, \ldots, w_n, a_1, \ldots, a_n$, such that $\sum_{i=1}^n w_i = 1$ and not all a_i s are the same.

9. Let X_1, \ldots, X_n be a random sample from $N(\theta, 1), \theta \in \mathbb{R} = \Theta$. For estimating θ under a loss function, consider the randomized estimator $\delta(\underline{x}) \sim N(\frac{x_1+x_2}{2}, 1)$.

(i) Find a randomized estimator that is based on a minimal sufficient statistic and has the same risk function as $\delta(\underline{x})$;

(ii) Under the squared error loss function find a non-randomized estimator better than δ .

10. Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from $\operatorname{Exp}(0,\theta), \theta \in (0,\infty) = \Theta$. For estimating θ under a loss function, consider the randomized estimator $\delta(\underline{x}) \sim U(\frac{n-1}{n}\overline{x}_{n-1}, \overline{x}_{n-1})$, where $\overline{x}_{n-1} = \frac{1}{n-1}\sum_{i=1}^{n-1} x_i$.

(i) Find a randomized estimator based on a minimal sufficient statistic having the same risk function as $\delta(\underline{X})$;

(ii) Under the squared error loss function find a non-randomized estimator better than δ .

11. Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from $N(\theta, 1)$, where $\theta \in \mathbb{R} = \Theta$ is the unknown parameter. For estimating θ , suppose that the loss function is either the absolute error loss function or the squared error loss function.

(i) Find an estimator dominating the estimator $\delta_1(\underline{X}) = \sum_{i=1}^n \alpha_i X_i$, where $\alpha_1, \ldots, \alpha_n$ are positive constants such that $\sum_{i=1}^n \alpha_i = 1$ and not all α_i s are the same;

(ii) Let n = 2m + 1. Find a randomized estimator, based on \overline{X} , which has the same risk function as the sample median $\delta_2(\underline{X}) = X_{(m+1)}$;

- (iii) Find an estimator better than $\delta_2(\underline{X}) = X_{(m+1)}$.
- 12. Let $X \sim \text{Bin}(n,\theta), \theta \in (0,1) = \Theta$. For estimating θ under the squared error loss function, consider the randomized estimator δ , such that $P(\delta(x) = \frac{x}{n}) = P(\delta(x) = \frac{1}{2}) = \frac{1}{2}$. Find a nonrandomized estimator better than δ . Also calculate the risk functions of the two estimators.
- 13. Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$, where $\theta \in (0, \infty) = \Theta$ is the unknown estimator. Consider estimation of θ under the absolute error loss function.

(i) Find an estimator, based on a minimal sufficient statistics, that is better than $\delta_0(\underline{X}) = \overline{X}$;

(ii) Find an estimator, based on a minimal sufficient statistics, that is better than $\delta_1(\underline{X}) = X_{(n-1)}$.