MTH 418a: Inference-I Assignment No. 6a: Rao-Cramer Lower Bounds

1. Let X_{1}, \ldots, X_{n} be a random sample from a p.d.f./p.m.f. f_{θ}, where $\theta \in \Theta$ is an unknown parameter. In each of the following cases find the Rao-Cramer lower bound on unbiased estimators of $g(\theta)$ and compare it with the variance of the UMVUE of $g(\theta)$:
(i) $X_{1} \sim N\left(\mu, \theta^{2}\right)$, where μ is known, $\Theta=(0, \infty), g(\theta)=\theta^{2}$;
(ii) $X_{1} \sim N\left(\mu, \theta^{2}\right)$, where μ is known, $\Theta=(0, \infty), g(\theta)=\theta$;
(iii) $X_{1} \sim \operatorname{Bin}(1, \theta), \Theta=(0,1), g(\theta)=\theta$;
(iv) $X_{1} \sim \operatorname{Bin}(1, \theta), \Theta=(0,1), g(\theta)=\theta(1-\theta)$;
(v) $X_{1} \sim \operatorname{Poisson}(\theta), \Theta=(0, \infty), g(\theta)=\theta$;
(vi) $X_{1} \sim \operatorname{Poisson}(\theta), \Theta=(0, \infty), g(\theta)=e^{-\theta}(1+\theta)$;
(vii) $X_{1} \sim \operatorname{Gamma}(\alpha, \theta)$, where $\alpha>0$ is known, $\Theta=(0, \infty), g(\theta)=\theta$;
(vii) $X_{1} \sim \operatorname{Gamma}(\alpha, \theta)$, where $\alpha>0$ is known, $\Theta=(0, \infty), g(\theta)=\theta^{2}$.
2. Suppose that \underline{X} has a p.m.f./p.d.f. f_{θ}, where $\theta \in \Theta$ is an unknown real parameter. Let g be a real-valued function defined on Θ. For any $\theta \in \Theta$, define $A_{\theta}=\{x$: $\left.f_{\theta}(x)>0\right\}$ and $B_{\theta}=\left\{\Delta: \theta+\Delta \in \Theta, g(\theta) \neq g(\theta+\Delta)\right.$, and $\left.A_{\theta+\Delta} \subseteq A_{\theta}\right\}, \theta \in \Theta$. Let δ be an unbiased estimator of $g(\theta)$. Show that

$$
V_{\theta}(\delta) \geq \sup _{\Delta \in B_{\theta}}\left[\frac{(g(\theta+\Delta)-g(\theta))^{2}}{E_{\theta}\left[\left(\frac{f_{\theta+\Delta}(\underline{X})}{f_{\theta}(\underline{\underline{X}}}-1\right)^{2}\right]}\right], \theta \in \Theta .
$$

3. Let X_{1}, \ldots, X_{n} be a random sample from $U(0, \theta)$, where $\theta \in(0, \infty)=\Theta$. Using Problem 2, find a lower bound on unbiased estimators of θ. Is it attained by the UMVUE of θ ?
4. Let X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$, where $\underline{\theta}=(\mu, \sigma) \in \mathbb{R} \times(0, \infty)=$ Θ. Find a lower bound on unbiased estimators of $\psi(\underline{\theta})=\mu+\sigma$. Is this lower bound attained by the UMVUE of $\psi(\underline{\theta})$?
5. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Bin}(1, \theta)$, where $\theta=(0, \infty)=\Theta$. Let $\underline{\delta}=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ be an unbiased estimator of $\underline{\psi}(\underline{\theta})=(\theta, 1-\theta, \theta(1-\theta))$. Find a matrix B such that $V_{\theta}(\delta)-B$ is non-negative definite. Hence find lower bounds on unbiased estimators of $\psi_{i}(\underline{\theta}), i=1,2,3$. Compare these lower bounds with those obtained in Problem 1 (iii) \& (iv).
6. Let X_{1}, \ldots, X_{n} be a random sample from $\operatorname{Exp}(\theta)$, where $E_{\theta}\left(X_{1}\right)=\theta=(0, \infty)=\Theta$. Let $\underline{\delta}=\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ be an unbiased estimator of $\psi(\underline{\theta})=\left(\theta, \theta^{2}, \theta^{3}\right)$. Find a matrix B such that $V_{\theta}(\delta)-B$ is non-negative definite. Hence find lower bounds on unbiased estimators of $\psi_{i}(\underline{\theta}), i=1,2,3$. Compare these lower bounds with the variances of the respective UMVUEs.
