MTH 515a: Inference-II Assignment No. 1: Invariance

- 1. Let X_1, \ldots, X_n $(n \ge 2)$ be a random sample from an $N(\theta, 1)$ distribution, where $\theta \in \Theta = \mathbb{R}$. Consider estimation of θ under the squared error loss function. For any $\underline{x} \in \chi$, consider the randomized decision rule $\delta_0((-\infty, t]|\underline{x}) = \Phi(t x_1)$.
 - (i) Find a randomized estimator (say δ_1) that is a function of a minimal-sufficient statistic and has the same risk function as that of δ_0 .
 - (ii) Find a non-randomized estimator that dominates the estimators δ_0 and $\delta_2(\underline{X}) = X_1$.
- 2. Let $X \sim Bin(n, \theta)$, where $\theta \in \Theta = (0, 1)$ is unknown and n is a fixed positive integer. For estimating θ , under the squared error loss function, consider the randomized estimator

$$\delta_0(a|x) = \begin{cases} \frac{1}{2}, & \text{if } a = \frac{1}{2} \\ & & \\ \frac{1}{2}, & \text{if } a = \frac{x}{n} \end{cases}, x = 0, 1, \dots, n.$$

Find a non-randomized estimator that has uniformly smaller risk than δ_0 .

- 3. Let X_1, \ldots, X_{2n+1} be i.i.d. $N(\theta, 1)$ random variables, where $\theta \in \Theta = \mathbb{R}$ is unknown. Consider estimation of θ under a loss function $L(\theta, a), \theta \in \Theta, a \in \mathcal{A} = \mathbb{R}$.
 - (a) Find a randomized estimator based on the complete-sufficient statistic \overline{X} which has the same risk function as the sample median \widetilde{X} .
 - (b) Suppose that, for every fixed $\theta \in \Theta$, the loss function $L(\theta, a)$ is strictly convex in $a \in \mathcal{A}$. Find an estimator that dominates the sample median \widetilde{X} .
- 4. For an invariant estimation problem $(\mathcal{P}, \mathcal{A}, L)$, show that $\overline{\mathcal{G}} = \{\overline{g} : g \in \mathcal{G}\}$ is a group of transformations of \mathcal{P} into itself.
- 5. For an invariant estimation problem $(\mathcal{P}, \mathcal{A}, L)$, show that $\tilde{\mathcal{G}} = \{\tilde{g} : g \in \mathcal{G}\}$ is a group of transformations of \mathcal{A} into itself.
- 6. Let $\mathcal{P} = \{F_{\theta} : \theta \in \Theta\}$, where $\Theta = \mathbb{R}$ and F_{θ} is the distribution function of $X \sim \mathcal{N}(\theta, 1), \theta \in \Theta$. Let $\mathcal{A} = \Theta$ and consider estimating θ under the loss function

$$L(\theta, a) = W(|a - \theta|), \ a \in \mathcal{A}, \theta \in \Theta,$$

where W is some non-negative function defined on $\mathbb{R}_+ = [0, \infty)$. Let $\chi = \mathbb{R}$.

(a) Show that the estimation/decision problem is invariant under the additive group $\mathcal{G} = \{g_c : c \in \mathbb{R}\}$, where $g_c(x) = x + c, x \in \chi, c \in \mathbb{R}$;

- (b) Show that a decision rule δ is invariant under \mathcal{G} if, and only if, $\delta(A|x) = \delta(A+c|x+c), \forall A \in \mathcal{F}_{\mathcal{A}}, x \in \chi, c \in \mathbb{R}$, where $A+c = \{a+c : a \in A\}$ (or $Y_x + c \stackrel{d}{=} Y_{x+c}, \forall x \in \chi, c \in \mathbb{R}$, where, for each $x \in \chi, Y_x$ is a random variable corresponding to probability measure $\delta(\cdot|x)$);
- (c) Show that a non-randomized decision rule δ is invariant if, and only if, $\delta(x) = x + c, x \in \chi$, for some $c \in \mathbb{R}$;
- (d) For any invariant decision rule δ , show that the risk function $R_{\delta}(\theta)$ is constant (does not depend on $\theta \in \Theta$).

(Note: The loss function $L(\theta, a) = (a - \theta)^2$, $a \in \mathcal{A}, \theta \in \Theta$, corresponding to the choice $W(x) = x^2, x \in \mathbb{R}_+$, is called the squared error loss function.)

7. Let $\mathcal{P} = \{F_{\theta} : \theta \in \Theta\}$, where $\Theta = (0, 1)$ and F_{θ} is the distribution function of $X \sim \text{Bin}(n, \theta), \theta \in \Theta$; here *n* is a known positive integer. Let $\mathcal{A} = \Theta, \chi = \{0, 1, \dots, n\}$ and consider the problem of estimating θ under loss function

$$L(\theta, a) = W(|a - \theta|), \ a \in \mathcal{A}, \theta \in \Theta,$$

where $W : \mathbb{R}_+ \to \mathbb{R}_+$ is some function.

- (a) Find a suitable group of transformations \mathcal{G} under which the problem of estimating θ is invariant;
- (b) Show that a decision rule δ is invariant under \mathcal{G} if, and only if, $\delta(A|x) = \delta(1 A|n x), \forall A \in \mathcal{F}_{\mathcal{A}}, x \in \chi$, where $1 A = \{1 a : a \in A\}$ (or $1 Y_x \stackrel{d}{=} Y_{n-x}, \forall x \in \chi$, where, for each $x \in \chi, Y_x$ is a random variable corresponding to probability measure $\delta(\cdot|x)$);
- (c) Show that a non-randomized decision rule δ is invariant if, and only if, $1 \delta(x) = \delta(n-x), x \in \chi$;
- (d) For any invariant decision rule δ , show that $R_{\delta}(\theta) = R_{\delta}(1-\theta), \forall \theta \in \Theta$;
- (e) Does $\overline{\mathcal{G}}$ acts transitively on \mathcal{P} ?
- 8. Let $\mathcal{P} = \{F_{\theta} : \theta \in \Theta\}$, where $\Theta = \mathbb{R}_{++} = (0, \infty)$ and $F_{\theta}(x) = F(\frac{x}{\theta})$, $x \in \chi = \mathbb{R}_{+} = [0, \infty), \theta \in \mathbb{R}_{++}$, for some distribution function F. Consider the problem of estimating θ under the loss function

$$L(\theta, a) = W(|\frac{a}{\theta} - 1|), \ a \in \mathcal{A} = \Theta, \theta \in \Theta,$$

where $W : \mathbb{R}_+ \to \mathbb{R}_+$ is some function.

(a) Show that the estimation/decision problem is invariant under the scale (multiplicative) group $\mathcal{G} = \{g_c : c \in \mathbb{R}\}$, where $g_c(x) = cx, x \in \chi, c \in \mathbb{R}_{++}$;

- (b) Show that a decision rule δ is invariant under \mathcal{G} if, and only if, $\delta(A|x) = \delta(cA|cx), \forall A \in \mathcal{F}_A, x \in \chi, c \in \mathbb{R}_{++}$, where $cA = \{ca : a \in A\}$ (or $cY_x \stackrel{d}{=} Y_{cx}, \forall x \in \chi, c \in \mathbb{R}_+$, where, for each $x \in \chi, Y_x$ is a random variable corresponding to probability measure $\delta(\cdot|x)$);
- (c) Show that a non-randomized decision rule δ is invariant if, and only if, $\delta(x) = cx, x \in \chi$, for some $c \in \mathbb{R}$;
- (d) For any invariant decision rule δ , show that the risk function $R_{\delta}(\theta)$ is constant (does not depend on $\theta \in \Theta$).

(Note: The loss function $L(\theta, a) = (\frac{a}{\theta} - 1)^2$, $a \in \mathcal{A}, \theta \in \Theta$, corresponding to the choice $W(x) = x^2, x \in \mathbb{R}_+$, is called the scaled squared error loss function.)

9. Let $\mathcal{P} = \{F_{\theta} : \theta \in \Theta\}$, where $\Theta = \mathbb{R}$ and $F_{\theta}(x) = F(x - \theta)$, $x \in \chi = \mathbb{R}, \theta \in \Theta$, for some distribution function F. Consider the problem of estimating θ under the loss function

$$L(\theta, a) = W(|a - \theta|), \ a \in \mathcal{A} = \Theta, \theta \in \Theta,$$

where $W : \mathbb{R}_+ \to \mathbb{R}_+$ is some function.

- (a) Show that the estimation/decision problem is invariant under the additive group $\mathcal{G} = \{g_c : c \in \mathbb{R}\}$, where $g_c(x) = x + c, x \in \chi, c \in \mathbb{R}$;
- (b) Show that a decision rule δ is invariant under \mathcal{G} if, and only if, $\delta(A|x) = \delta(A+c|x+c), \forall A \in \mathcal{F}_{\mathcal{A}}, x \in \chi, c \in \mathbb{R}$, where $A+c = \{a+c : a \in A\}$ (or $Y_x + c \stackrel{d}{=} Y_{x+c}, \forall x \in \chi, c \in \mathbb{R}$, where, for each $x \in \chi, Y_x$ is a random variable corresponding to probability measure $\delta(\cdot|x)$);
- (c) Show that a non-randomized decision rule δ is invariant if, and only if, $\delta(x) = x + c, x \in \chi$, for some $c \in \mathbb{R}$;
- (d) For any invariant decision rule δ , show that the risk function $R_{\delta}(\theta)$ is constant (does not depend on $\theta \in \Theta$).