MTH 515a: Inference-II Assignment No. 2: Location and Scale Invariant Estimation

1. Let X_1, \ldots, X_n be a random sample from $N(\theta, \sigma_0^2)$ distribution, where $\theta \in \mathbb{R} = \Theta$ is unknown and σ_0 is a known positive constant. Consider estimation of θ under the loss function

$$L(\theta, a) = W(a - \theta), \ a \in \mathcal{A} = \Theta, \theta \in \Theta,$$

where $W : \mathbb{R} \to \mathbb{R}$ is some convex function with $W(t) = W(-t), \forall t \in \mathbb{R}$. Show that $\delta_0(\underline{X}) = \overline{X}$ is the MRIE under additive group of transformations.

2. Let X_1, \ldots, X_n be a random sample from a population with Lebesgue p.d.f.

$$f_{\mu}(x) = \begin{cases} \sqrt{\frac{2}{\pi}} e^{-\frac{1}{2}(x-\theta)^2}, & \text{if } x \ge \theta\\ 0, & \text{if } x < \theta \end{cases},$$

where $\theta \in \mathbb{R} = \Theta$ is unknown. Find the MRIE of θ under the additive group of transformations and the squared error loss function.

3. Let X_1, \ldots, X_n be i.i.d. $E(\theta, \sigma_0)$ random variables with common p.d.f.

$$f_{\theta}(x) = \begin{cases} \frac{1}{\sigma_0} e^{-\frac{x-\theta}{\sigma_0}}, & \text{if } x \ge \theta\\ 0, & \text{if } x < \theta \end{cases}$$

where $\theta \in \mathbb{R} = \Theta$ is unknown and $\sigma_0 > 0$ is known. Consider estimation of θ under the loss function

$$L(\theta, a) = I_{(t,\infty)}(|\theta - a|), \theta, a \in \Theta,$$

where t > 0 is a given constant. Find the MRIE of θ under the additive group of transformations.

- 4. Let X_1, \ldots, X_n be i.i.d. $U(\theta \frac{1}{2}, \theta + \frac{1}{2})$ random variables, where $\theta \in \mathbb{R} = \Theta$ is unknown. Find the MRIE of θ under the additive group of transformations and the loss function $L(\theta, a) = W(a \theta), a, \theta \in \Theta$, where $W(\cdot)$ is convex and even.
- 5. Let X_1, \ldots, X_n be i.i.d. $DE(\theta, \sigma_0)$ (Double Exponential) random variables with common p.d.f.

$$f_{\theta}(x) = \frac{1}{\sigma_0} e^{-\frac{|x-\theta|}{\sigma_0}}, \ -\infty < x < \infty,$$

where $\theta \in \mathbb{R} = \Theta$ is unknown and $\sigma_0 > 0$ is known. Under the squared error loss function and additive group of transformations, find the MRIE of θ .

6. Let X_1, \ldots, X_n be i.i.d. $N(\theta, \sigma_0^2)$ random variables, where $\theta \in \mathbb{R} = \Theta$ is unknown and $\sigma_0 > 0$ is known. Let the loss function be

$$L(\theta, a) = \begin{cases} \alpha(a - \theta), & \text{if } \theta < a \\ \beta(\theta - a), & \text{if } \theta \ge a \end{cases}$$

where α and β are positive constants. Find the MRIE of θ under the additive group of transformations.

- 7. Let δ_0 be a location invariant estimator of θ . Under the squared error loss function show that δ_0 is MRIE iff δ_0 is unbiased and $E_{\theta}(\delta_0(\underline{X})U(\underline{X})) = 0, \forall \theta \in \mathbb{R} = \Theta$, for any function $U(\cdot)$ satisfying $U(x_1 + c, \ldots, x_n + c) = U(x_1, \ldots, x_n), \forall c \in \mathbb{R}, \underline{x} \in \mathbb{R}^n$, $\operatorname{Var}_{\theta}(U) < \infty$ and $E_{\theta}(U(\underline{X})) = 0, \forall \theta \in \Theta$.
- 8. Let X_1, \ldots, X_n be a random sample from N(0, θ^2) distribution, where $\theta \in \Theta = \mathbb{R}_{++}$ is unknown. Consider estimation of $\theta^r, r = 1, 2$, under the scaled squared error loss function $L(\theta, a) = (\frac{a}{\theta^r} 1)^2$, $a, \theta \in \Theta$. Find the MRIE of θ under the multiplicative group of transformation.
- 9. Let X_1, \ldots, X_n be i.i.d. $E(0, \theta)$ random variables with unknown scale parameter $\theta \in \mathbb{R}_{++} = (0, \infty)0$. Consider the scale goup of transformations.
 - (a) Find the MRIE of θ under the loss function $L(\theta, a) = |\frac{a}{\theta} 1|, \ \theta > 0, a > 0;$
 - (b) Find the MRIE of θ under the loss function $L(\theta, a) = (\frac{a}{\theta} 1)^2, \ \theta > 0, a > 0;$
 - (c) Find the MRIE of θ^2 under the loss function $L(\theta, a) = (\frac{a}{\theta^2} 1)^2, \ \theta > 0, a > 0.$
- 10. Let X_1, \ldots, X_n be a random sample from $U(0, \theta)$ distribution with unknown $\theta \in \Theta = \mathbb{R}_{++}$. Find the MRIE of θ under the multiplicative group of transformations and the scaled absolute error loss function $L(\theta, a) = |\frac{a}{\theta} 1|, a, \theta \in \Theta$.
- 11. Let X_1, \ldots, X_n be a random sample from the Pareto distribution with the Lebesgue p.d.f.

$$f_{\theta}(x) = \begin{cases} \frac{\alpha \theta^{\alpha}}{x^{\alpha+1}}, & \text{if } x \ge \theta\\ 0, & \text{if } x < \theta \end{cases},$$

where $\theta \in \mathbb{R}_{++}$ is unknown and $\alpha > 2$ is known. Find the MRIE of θ under the multiplicative group of transformations and the scaled squared error loss function $L(\theta, a) = (\frac{a}{\theta} - 1)^2, \ \theta, a \in \Theta.$

- 12. Let X_1, \ldots, X_m be a random sample from $N(\theta_1, 1)$ distribution and let Y_1, \ldots, Y_n be a random sample from $N(\theta_2, 1)$ distribution, where the two sample are mutually independent and $\underline{\theta} = (\theta_1, \theta_2) \in \mathbb{R}^2 = \Theta$ is unknown. Consider the problem of estimating $\eta = \theta_1 \theta_2$ under the loss function $L(\underline{\theta}, a) = W(a-\eta), a \in \mathbb{R} = \mathcal{A}, \underline{\theta} \in \Theta$, where W(t) is, even, convex and non-monotone function. Find a suitable group of transformations under which the given Estimation/decision problem is invariant. Also find the best invariant decision rule.
- 13. Let X_1, \ldots, X_m be a random sample from $E(0, \theta_1)$ distribution (exponential distribution with mean θ_1) and let Y_1, \ldots, Y_n be a random sample from $E(0, \theta_2)$ distribution, where the two sample are mutually independent and $\underline{\theta} = (\theta_1, \theta_2) \in \mathbb{R}^2_+ = (0, \infty) \times (0, \infty) = \Theta$ is unknown. Consider the problem of estimating $\eta = \frac{\theta_1}{\theta_2}$ under the loss function $L(\underline{\theta}, a) = (\frac{a}{\theta} 1)^2$, $a \in \mathbb{R}_+ = \mathcal{A}$, $\underline{\theta} \in \Theta$. Find a suitable group of transformations under which the given estimation problem is invariant. Also find the best invariant estimator.