MTH 515a: Inference-II

Assignment No. 3: Location-Scale Invariant Estimation

1. Let X_{1}, \ldots, X_{n} be i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right)$ RVs, where $\underline{\theta}=(\mu, \sigma) \in \Theta=\mathbb{R} \times \mathbb{R}_{++}$is unknown. Consider estimation of σ^{2} under the affine group of transformations and the scaled squared error loss function $L(\underline{\theta}, a)=\left(\frac{a}{\sigma^{2}}-1\right)^{2}, a, \sigma \in \mathbb{R}_{++}$. Find the MRIE.
2. Let X_{1}, \ldots, X_{n} be a random sample from a population with the Lebesgue p.d.f.

$$
f_{\mu}(x)= \begin{cases}\frac{1}{\sigma} e^{-\frac{x-\mu}{\sigma}}, & \text { if } x \geq \mu \\ 0, & \text { if } x<\mu\end{cases}
$$

where $\mu \in \mathbb{R}$ and $\sigma>0$ are unknown. Let $\underline{\theta}=(\mu, \sigma)$. Consider the affine group of transformations.
(a) Find the MRIE of σ under the loss function $L(\underline{\theta}, a)=\left|\frac{a}{\sigma}-1\right|^{p}$, for $p=1$ or 2 ;
(b) Under the loss function $L(\underline{\theta}, a)=\frac{(a-\mu)^{2}}{\sigma^{2}}$, find the MRIE of μ;
(c) Under the loss function $L(\underline{\theta}, a)=\frac{(a-\eta)^{2}}{\sigma^{2}}$, find the MRIE of $\eta=\mu+\sigma$;
3. Let X_{1}, \ldots, X_{n} be a random sample from $\mathrm{U}(\mu-\sigma, \mu+\sigma)$ distribition, where $\mu \in \mathbb{R}$ and $\sigma>0$ are unknown. Let $\underline{\theta}=(\mu, \sigma)$.
(a) Find the MRIE of σ under the loss function $L(\underline{\theta}, a)=\left|\frac{a}{\sigma}-1\right|^{p}$, for $p=1$ or 2 ;
(b) Under the loss function $L(\underline{\theta}, a)=\frac{(a-\mu)^{2}}{\sigma^{2}}$, find the MRIE of μ. Can the findings be generalized to more general loss functions?;
(c) Under the loss function $L(\underline{\theta}, a)=\frac{(a-\eta)^{2}}{\sigma^{2}}$, find the MRIE of $\eta=\mu+\sigma$;
4. Let X_{1}, \ldots, X_{n} be i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right)$ RVs, where $\underline{\theta}=(\mu, \sigma) \in \Theta=\mathbb{R} \times \mathbb{R}_{++}$is unknown. Consider estimation of $\psi(\underline{\theta})=\mu$ under the affine group of transformations and the loss function $L(\underline{\theta}, a)=W\left(\frac{a-\mu}{\sigma}\right)$, $a, \mu \in \mathbb{R}$, where $W: \mathbb{R} \rightarrow \mathbb{R}$ is a convex and even function. Find the MRIE.
5. Let X_{1}, \ldots, X_{n} be i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right) \mathrm{RVs}$, where $\underline{\theta}=(\mu, \sigma) \in \Theta=\mathbb{R} \times \mathbb{R}_{++}$is unknown. Consider estimation of $\eta=\mu+c \sigma$ under the affine group of transformations and the loss function $L(\underline{\theta}, a)=\left(\frac{a-\eta}{\sigma}\right)^{2}, a, \mu \in \mathbb{R}$, where c is a given constant Find the MRIE. (Note for given $p \in(0,1)$, if $c=\Phi^{-1}(p)$ then the estimation problem at hand reduces to estimation of the p-th quantile of $\mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution).
6. Let $\underline{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\underline{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$ be two samples with joint p.d.f.

$$
\frac{1}{\sigma_{1}^{m} \sigma_{2}^{n}} f\left(\frac{x_{1}-\mu_{1}}{\sigma_{1}}, \cdots, \frac{x_{m}-\mu_{1}}{\sigma_{1}}, \frac{y_{1}-\mu_{2}}{\sigma_{2}}, \cdots, \frac{y_{n}-\mu_{2}}{\sigma_{2}}\right) .
$$

(a) Suppose that $\mu_{1}=\mu_{2}=0$ and consider estimation of $\eta=\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{b}$, for a fixed $b \neq 0$, under the loss $L(\underline{\sigma}, a)=W\left(\frac{a}{\eta}\right), \underline{\sigma}=\left(\sigma_{1}, \sigma_{2}\right) \in(0, \infty)^{2}$. Show that the problem is invariant under the group of transformations $\mathcal{G}=\left\{g_{r, s}: r>0, s>\right.$ $0\}$, where $g_{r, s}(\underline{x}, \underline{y})=(r \underline{x}, s \underline{y}), \underline{x} \in \mathbb{R}^{m}, \underline{y} \in \mathbb{R}^{n}, r>0, s>0$;
(b) Do the problem in (a) when μ_{1} and μ_{2} are unknown and the group of transformations is $\mathcal{G}=\left\{g_{r, s, c, d}: r>0, s>0, c \in \mathbb{R}, d \in \mathbb{R}\right\}$, where $g_{r, s, c, d}(\underline{x}, \underline{y})=$ $(r \underline{x}+c, s \underline{y}+d), \underline{x} \in \mathbb{R}^{m}, \underline{y} \in \mathbb{R}^{n}, r>0, s>0, c \in \mathbb{R}, d \in \mathbb{R}$;
(c) Under $\sigma_{1}=\sigma_{2}=\sigma>0$ (σ is unknown), discuss invariant estimation of $\Delta=\mu_{2}-\mu_{1}$ under a suitable group of transformations and loss function.
7. Consider Problem 6 (a) under the loss function $\frac{(a-\eta)^{2}}{\eta^{2}}$. Determine the MRIE of η in the following cases:
(a) $m=n=1, X \sim \operatorname{Gamma}\left(\alpha_{1}, \sigma_{1}\right), Y \sim \operatorname{Gamma}\left(\alpha_{2}, \sigma_{2}\right)$ with known $\alpha_{i}>$ $0, i=1,2$;
(b) $\underline{X} \sim N_{m}\left(0, \sigma_{1}^{2} I_{m}\right)$ and $\underline{Y} \sim N_{m}\left(0, \sigma_{2}^{2} I_{n}\right)$ are independent;
(c) $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}$ are independent with $X_{i} \sim \mathrm{U}\left(0, \sigma_{1}\right), i=1, \ldots, m$ and $Y_{i} \sim \mathrm{U}\left(0, \sigma_{2}\right), i=1, \ldots, n$.
8. Let X_{1}, \ldots, X_{m} and Y_{1}, \ldots, Y_{n} be two independent random samples, where $X_{i} s$ are i.i.d. having the common p.d.f. $\frac{1}{\sigma_{1}} f\left(\frac{x-\mu_{1}}{\sigma_{1}}\right), \mu_{1} \in \mathbb{R}, \sigma_{1}>0$, and $Y_{i} s$ are i.i.d. having the common p.d.f. $\frac{1}{\sigma_{2}} f\left(\frac{x-\mu_{2}}{\sigma_{2}}\right), \mu_{2} \in \mathbb{R}, \sigma_{2}>0$.
(a) Under the loss function $L(\underline{\theta}, a)=\frac{(a-\eta)^{2}}{\eta^{2}}$ and the transformation given in Problem $6(\mathrm{~b})$, obtain the MRIE of $\eta=\frac{\sigma_{2}}{\sigma_{1}}$ when
(i) f is the p.d.f. of $N(0,1)$;
(ii) f is the p.d.f. of $E(0,1)$;
(iii) f is the p.d.f. of $\mathrm{U}\left(-\frac{1}{2}, \frac{1}{2}\right)$;
(b) In (i)-(iii) above find the MRIE of $\Delta=\mu_{2}-\mu_{1}$ under the assumption $\sigma_{1}=$ $\sigma_{2}=\sigma$ and under the loss $\frac{(a-\Delta)^{2}}{\sigma^{2}}$.

