
MTH 515a: Inference-II
Assignment No. 4: Bayes and Minimax Estimation

1. Let X1, . . . , Xn be a random sample from Bin(1, θ) distribution, where θ ∈ Θ =
(0, 1). Consider estimation of θ under the squared error loss function L(θ, a) =
(a− θ)2, a, θ ∈ Θ = A. Consider the randomized decision rule δ0 defined by:

δ0(a|x) =

{
n
n+1

, if a = x
1

n+1
, if a = 1

2

.

Compare the supremum of risks of X and δ0 and hence conclude that X is not
minimax.

2. What are the conjugate priors for:

(a) Nk(θ, Ik), θ ∈ Rk;

(b) Bin(n, θ), θ ∈ (0, 1); (Binomial distribution with known number of trials n ∈
N)

(c) U(0, θ), θ > 0; (Uniform distribution)

(d) E(0, θ), θ > 0; (Exponential Distribution)

(e) Bin(n, θ), n ∈ {1, 2, . . .}; (Binomial distribution with known success probabil-
ity θ ∈ (0, 1))

3. Let X1, . . . , Xn be i.i.d. Poisson(θ) random variables, where θ ∈ Θ = (0,∞).
For a positive real number r, consider estimation of g(θ) = θr under the SEL
function and Gamma(α0, µ0) prior (α0, µ0 > 0). Find the Bayes estimator. Also
show that δ0(X) = X can not be Bayes estimator of θ with respect to any proper
prior distribution.

4. Let X be a random variable having a p.d.f. fθ(x), θ ∈ Θ, x ∈ χ, and let π be a
prior distribution on Θ ⊆ R. For a real-valued function g(θ) and a non-negative
function w(θ), such that

∫
Θ
w(θ)g(θ)dπ(θ) < ∞, consider estimation of g(θ) under

the loss function L(θ, a) = w(θ)(a− g(θ))2. Show that the Bayes action is

δπ(x) =

∫
Θ
w(θ)g(θ)fθ(x)dπ(θ)∫
Θ
w(θ)fθ(x)dπ(θ)

, x ∈ χ.

5. For i = 1, . . . , p, let δi be a Bayes estimator of θi under the SEL function. For real
constants c1, . . . , cp, show that

∑p
j=1 cjδj is a Bayes estimator of

∑p
j=1 cjθj under

the squared error loss.

6. Let X1, . . . , Xn be a random sample from N(θ, 1) distribution, where θ ∈ R, and
let π ∼ DE(0, 1) (Double Exponential distribution). Obtain the Bayes action under
the squared error loss.



7. Let X1, . . . , Xn be i.i.d. N(µ, σ2) random variables, where θ = (µ, σ) ∈ Θ = R×R++

is unknown. Consider estimation of g1(θ) = µ and g2(θ) = σ2 under SEL functions
and the prior for (µ, τ) = (µ, 1

2σ2 ) such that conditional prior distribution of µ given

τ is N(µ0,
σ2
0

τ
) and the marginal prior distribution of τ is Gamma(α0, v0) (µ0 ∈

R, σ0, α0, v0 > 0). Find Bayes estimators of g1(θ) and g2(θ).

8. Let X ∼ N(µ, σ2), with a known σ > 0 and unknown µ > 0. Consider estimating µ
under the squared error loss and non-informative prior π = the Lebesgue measure
on (0,∞). Show that the generalized Bayes action is

δ(x) = x+ σ ·
φ(x

σ
)

Φ(x
σ
)
, x ∈ R.

9. Let X1, . . . , Xn be i.i.d. N(θ, σ2
0) random variables, where θ ∈ Θ = R is unknown

and σ0 (> 0) is known. Consider estimation of g(θ) = θ under the SEL function
and N(µ0, τ

2
0 ) prior for θ (µ0, τ0 > 0). Find the Bayes estimator. Also show that

δ0(X) = X can not be Bayes with respect to any proper prior distribution but
it is an admissible and minimax estimator. Further show that δ0(X) = X is the
generalized Bayes estimator under the SEL function and non-informative prior π =
the Lebesgue measure on R.

10. Let X1, . . . , Xn be i.i.d. N(θ, σ2
0) random variables, where θ ∈ Θ = R is unknown

and σ0 (> 0) is known. Consider estimation of g(θ) = θ under the SEL function.
Let δa,b(X) = aX + b, a, b ∈ R. Show that δa,b is admissible whenever 0 < a < 1,
or, a = 1 but b = 0, and it is inadmissible whenever a > 1, or, a < 0, or, a = 1 but
b 6= 0.

11. Let X be a random vector having a distribution characterized by a parameter (pos-
sibly vector-valued) θ ∈ Θ ⊆ Rm. Let ψ(θ) be a real-valued estimand under the
squared error loss function. Let δ1,0(X) be an unbiased estimator of ψ(θ). Consider
estimators δa,b(X) = aδ1,0(X) + b, a, b ∈ R. Show that δa,b is an inadmissible esti-
mator under any of the following conditions: (a) a > 1; (b) a < 0; (c) a = 1 and
b 6= 0.

12. Let X be a random vector having a distribution characterized by a parameter (pos-
sibly vector-valued) θ ∈ Θ ⊆ Rm. Let ψ(θ) ∈ (c, d) be a real-valued estimand
under the squared error loss function. Let δ be an estimator of ψ(θ) such that
Pθ0(δ(X) /∈ (c, d)) > 0, for some θ0 ∈ Θ. Show that δ is an inadmissible estimator.

13. Let X1, . . . , Xn be i.i.d. Exp(θ) (Eθ(X1) = θ) random variables, where θ ∈ Θ =
(0,∞). Consider estimation of g(θ) = θ under the SEL function and Gamma(α0, µ0)
prior for τ = 1

θ
(α0, µ0 > 0). Let δa,b(X) = aX + b, a, b ∈ R.

(a) Find the Bayes estimator;



(b) Show that δ0(X) = X can not be Bayes with respect to any proper prior
distribution;

(c) Show that δa,b is inadmissible under any of the following conditions: (i) a > n
n+1

and b ≥ 0; (ii) a < 0; (iii) b < 0.

(d) Show that the Bayes estimator is inadmissible if α0 < 2;

(e) For a ∈ [0, n
n+1

) and b > 0, show that δa,b(X) is an admissible estimator.

(g) Can a minimax estimator be found?

(h) Find the generalized Bayes estimator of θ under Jeffery’s prior for θ. Also find
the generalized Bayes estimator under the uniform prior fS(θ) = 1, θ > 0 for
θ.

14. Let X1, . . . , Xn be i.i.d. Gamma(α, θ), where θ ∈ (0,∞) = Θ is unknown and
α > 0 is known. Consider estimation of g(θ) = θ under the loss function L(θ, a) =
(a
θ
− 1)2, a, θ ∈ Θ = A. Let δa,b(X) = aX + b, a, b ∈ R.

(a) Show that δa,b is inadmissible under any of the following conditions: (i) a >
n

nα+1
and b ≥ 0; (ii) a < 0; (iii) b < 0;

(b) For a ∈ [0, n
nα+1

) and b > 0, show that δa,b(X) is an admissible estimator;

(c) Find generalized Bayes estimator of θ with respect to Jeffery’s prior for θ.

15. Let X1, . . . , Xn be a random sample from Bin(m, θ) distribution, where θ ∈ Θ =
(0, 1) is unknown and m is a known positive integer.

(a) Find the minimax estimator of θ under the SEL function and show that

δ0(X) = X
m

is not a minimax estimator;

(b) Show that δ0(X) = X
m

is an admissible and minimax estimator of θ under the

loss function L(θ, a) = (a−θ)2
θ(1−θ) , a, θ ∈ (0, 1);

(c) Show that X
m

is an admissible estimator of θ under the squared error loss
function.

16. Let X1, . . . , Xn ne i.i.d. N(µ, σ2) random variables, where θ = (µ, σ) ∈ Θ = R×R++

is unknown. Consider estimation of g(θ) = µ under SEL function. For any estimator
δ show that supθ∈ΘRδ(θ) =∞. If Θ = R× (0, c], for some positive constant c, show

that δ0(X) = X is minimax.

17. Let X ∼ N(θ, 1), θ ∈ R. For estimating θ under the absolute error loss function
L(θ, a) = |a− θ|, a, θ ∈ R show that X is an admissible and minimax estimator.

18. Let X ∼ Poisson(θ), where θ ∈ (0,∞) = Θ is unknown. Consider estimation of
g(θ) = θ under the SEL function. Show that, for any estimator δ, supθ∈ΘRδ(θ) =∞.



19. Let X ∼ G(θ) (Geometric distribution with support {1, 2, . . .}), where θ ∈ (0, 1) is
unknown. Show that I{1}(X) is a minimax estimator of θ under the loss function

L(θ, a) = (a−θ)2
θ(1−θ) , a, θ ∈ (0, 1).

20. Let X ∼ NB(r, θ), where θ ∈ Θ = (0, 1) is unknown and r is a fixed positive integer.
Consider estimation of g(θ) = 1

θ
under the loss function L(θ, a) = θ2(a− 1

θ
)2, a, θ ∈

Θ = A, and Beta(α, β) (α, β > 0) prior. Find the Bayes estimator. Show that
δ0(X) = X+1

r+1
is admissible under the SEL function.

21. Let X1, . . . , Xn be a random sample from N(µ, σ2) distribution, where θ = (µ, σ) ∈
R × (0,∞) is unknown. Show that X is minimax estimator of µ under the loss

function L(θ, a) = (a−µ)2

σ2 , a ∈ R, θ = (µ, σ) ∈ R× (0,∞).

22. In a two-sample normal problem (independent random samples) with unknown
means find a minimax estimator of ∆ = µ2 − µ1 under the squared error loss
function when:

(a) the variances are known (possibly unequal);

(b) the variances σ2
1 and σ2

2 are unknown but σ2
i ∈ (0, ci], i = 1, 2, for some known

positive constants c1 and c2.

23. Let X ∼ N(θ, 1), θ ∈ R and dπ(θ) = eθdθ, θ ∈ R. For estimating θ under
the squared error loss function show that δGB(X) = X + 1 is a generalized-Bayes
estimator but neither minimax nor admissible.

24. Let X1, . . . , Xn be a random sample from a distribution Fθ ∼: E(θ, σ0), θ ∈ Θ = R
is unknown and σ0 > 0 is known. Find a minimax estimator of θ under the squared
error loss function.

25. Using heuristic (geometric) arguments show that:

(a) a Bayes rule may not be admissible;

(b) Bayes rule may not be unique;

(c) minimax rule may not be unique;

(d) minimax rule may not be admissible;

(e) Bayes rule may not be minimax.


