MTH 515a: Inference-II Assignment No. 5: Asymptotically Efficient Estimators

- 1. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with finite mean μ and finite variance $\sigma^2 > 0$. Let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$. Show that $\sqrt{n}(S^2 \sigma^2) \stackrel{d}{\to} Z \sim N(0, (\gamma 1)\sigma^4)$, as $n \to \infty$, where γ is the kurtosis of the parent distribution. Hence show that S^2 is a consistent estimator of σ^2 .
- 2. Consider the set-up of Problem 1. Find the asymptotic distributions of $\sqrt{n} \begin{pmatrix} X \mu \\ S^2 \sigma^2 \end{pmatrix}$ and $\sqrt{n}(\overline{X} + S - \mu - \sigma)$.
- 3. Let $\begin{pmatrix} X_i \\ Y_i \end{pmatrix}$, i = 1, 2, ... be a sequence of i.i.d. random vectors with $E(X_1) = \mu_1 \in \mathbb{R}$, $E(Y_1) = \mu_2 \in \mathbb{R}$, $\operatorname{Var}(X_1) = \sigma_1^2 > 0$, $\operatorname{Var}(Y_1) = \sigma_2^2 > 0$, $\operatorname{Corr}(X_1, Y_1) = \rho \in (-1, 1)$, $\operatorname{Var}(X_1^4) < \infty$ and $\operatorname{Var}(Y_1^4) < \infty$. Let $S_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$, $S_2^2 = \frac{1}{n} \sum_{i=1}^n (Y_i \overline{Y})^2$, $S_{1,2} = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})(Y_i \overline{Y})$ and $r = \frac{S_{1,2}}{S_1 S_2}$. Show that, as $n \to \infty$, $\sqrt{n} \left(\begin{pmatrix} S_1^2 \\ S_2^2 \\ S_{1,2} \end{pmatrix} - \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \rho \sigma_1 \sigma_2 \end{pmatrix} \right) \stackrel{d}{\to} N_3(\underline{0}, \Sigma^*)$,

for some p.d. matrix Σ^* . What are elements of Σ^* ?. When $\begin{pmatrix} X_i \\ Y_i \end{pmatrix}$, i = 1, 2, ... follow bivariate normal distribution, show that, as $n \to \infty$,

$$\sqrt{n}(r-\rho) \xrightarrow{d} N(0, (1-\rho^2)^2)$$

and $\sqrt{n} \left(\frac{1}{2} \ln \frac{1+r}{1-r} - \frac{1}{2} \ln \frac{1+\rho}{1-\rho}\right) \xrightarrow{d} N(0, 1)$

- 4. Let X_1, X_2, \ldots be a sequence of i.i.d. $U(0, \theta)$ random variables, where $\theta \in \Theta = (0, \infty)$. Let $X_{(n)} = \max\{X_1, \ldots, X_n\}, n = 1, 2, \ldots$ Show that $n(\theta X_{(n)}) \xrightarrow{d} Z \sim \exp(\theta)$, as $n \to \infty$. Hence show that $\delta_n(\underline{X}) = \frac{n}{n+1}X_{(n)}$ is a consistent estimator of θ .
- 5. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with common p.m.f./p.d.f.

$$g_{\theta}(x) = e^{\theta T(x) - \psi(\theta)}, \ x \in \chi \subseteq \mathbb{R}, \theta \in \Theta \subseteq \mathbb{R},$$

where Θ is an open set. Show that $\sqrt{n}(\frac{1}{n}\sum_{i=1}^{n}T(X_i)-\psi'(\theta)) \xrightarrow{d} N(0,\psi''(\theta))$, as $n \to \infty$. Hence show that $\frac{1}{n}\sum_{i=1}^{n}T(X_i)$ is a consistent estimator of $\psi'(\theta)$.

6. Let X_1, \ldots, X_n be i.i.d. $N(\theta, 1)$ random variables. Find a consistent estimator of

$$g(\theta) = \begin{cases} 0, & \text{if } \theta \neq 0\\ 1, & \text{if } \theta = 0 \end{cases}$$

- 7. Let the random variables X_1, \ldots, X_n have the common mean $\mu \in \mathbb{R}$ and variance $\sigma^2 \in (0, \infty)$, and that $\text{Cov}(X_i, X_j) = \rho_{j-i}, \ j \neq i$. For estimating μ , show that:
 - (a) the sample mean \overline{X} may not be consistent if $\rho_{j-i} = \rho \neq 0, \forall i \neq j$;
 - (b) the sample mean \overline{X} is consistent if $|\rho_{j-i}| \leq Mr^{j-i}$, with |r| < 1.
- 8. Let X_1, \ldots, X_n be i.i.d. random variables with mean μ and finite variance $\sigma^2 > 0$. Let

$$\delta_n(\underline{X}) = \begin{cases} \overline{X}, & \text{w.p. } 1 - \epsilon_n \\ A_n, & \text{w.p. } \epsilon_n \end{cases},$$

where ϵ_n and A_n (n = 1, 2, ...) are constants satisfying $\epsilon_n \to 0$ and $A_n \epsilon_n \to \infty$, as $n \to \infty$. Show that δ_n is consistent for estimating μ but $E_{\underline{\theta}}((\delta_n - \mu)^2) \not\rightarrow 0$, as $n \to \infty$.

9. Let X_1, \ldots, X_n be i.i.d. $U(0, \theta), \theta > 0$, and let $T = \max\{X_1, \ldots, X_n\}$. Let h be a four times differentiable function on $(0, \infty)$ with bounded fourth derivative on $(0, \infty)$. Show that

$$E_{\theta}(h(T)) = h(\theta) - \frac{\theta}{n}h'(\theta) + \frac{1}{n^2}[\theta h'(\theta) + \theta^2 h''(\theta)] + O(\frac{1}{n^3})$$

and $\operatorname{Var}_{\theta}(h(T)) = \frac{\theta^2}{n^2}[h'(\theta)]^2 + O(\frac{1}{n^3}).$

- 10. Let X_1, X_2, \ldots be i.i.d. Bin $(1, \theta)$, where $\theta \in \Theta = (0, 1)$. For estimating $g(\theta) = \operatorname{Var}_{\theta}(X_1)$, let δ_1 be the UMVUE. Find the limiting bias, limiting variance, asymptotic bias and asymptotic variance of δ_1 .
- 11. Let X_1, X_2, \ldots be i.i.d. Bin $(1, \theta)$, where $\theta \in \Theta = (0, 1)$. For estimating $g(\theta) = \theta$, let $\delta_n^{(1)}$ be the UMVUE and let $\delta_n^{(2)}$ be the minimax estimator under the SEL function. Find the LRE and ARE of $\delta_n^{(1)}$ relative to $\delta_n^{(2)}$. Are these estimators asymptotically efficient?
- 12. Let X_1, \ldots, X_n be i.i.d. gaussian random variables with finite mean θ and variance 1. Let u_0 be a given real constant. For estimating $g(\theta) = P_{\theta}(X_1 \leq u_0)$, let δ_1 be the UMVUE and let $\delta_2 = \frac{1}{n} \sum_{i=1}^n I(X_i \leq u_0)$. Find the LRE l_{δ_1, δ_2} and the ARE e_{δ_1, δ_2} . Are these estimators asymptotically efficient? Which estimator will you prefer?
- 13. Let X_1, \ldots, X_n be i.i.d. normal random variables having unknown mean μ and finite known variance $\sigma^2 > 0$. Let $h_r(\mu) = \mu^r$, r = 2, 3, 4. Determine up to $O(\frac{1}{n})$,
 - (a) the variance of the UMVUE of $h_r(\mu)$, r = 2, 3, 4;
 - (b) the bias of the MLE of $h_r(\mu)$, r = 2, 3, 4.

Repeat (a) and (b) when μ is known and σ is unknown and $h_r(\sigma) = \sigma^r$, r = 2, 4.

14. Let X_1, \ldots, X_n be i.i.d. Poisson random variables having mean $\theta > 0$.

- (a) Find the variance of the UMVUE of $P_{\theta}(X_1 = 0)$ up to $O(\frac{1}{n})$. Is the UMVUE CAN?
- (b) For estimating $h(\theta) = e^{-\theta}$, find the LRE and ARE of $\delta_{2,n} = [\#X_i = 0]/n$ relative to $\delta_{1,n} = e^{-\overline{X}}$.
- 15. Let $X \sim Bin(n, \theta)$ and let $h(\theta) = \theta(1 \theta)$. Find the UMVUE of $h(\theta)$. Is it CAN?
- 16. Let X_1, \ldots, X_n be i.i.d. $N(0, \sigma^2)$, where $\sigma > 0$.
 - (a) Show that $\delta_{1,n} = \frac{k}{n} \sum_{i=1}^{n} |X_i|$ is a consistent estimator of σ iff $k = \sqrt{\frac{\pi}{2}}$;
 - (b) Determine the LRE and ARE of $\delta_{1,n}$, with $k = \sqrt{\frac{\pi}{2}}$, relative to MLE $\delta_{2,n} = \sqrt{\frac{1}{n}\sum_{i=1}^{n}X_i^2}$.
- 17. Let X_1, \ldots, X_n be i.i.d. with $E_{\underline{\theta}}(X_1) = \mu$, $\operatorname{Var}_{\underline{\theta}}(X_1) = 1$ and $E_{\underline{\theta}}((X_1 \mu)^4) = \mu_4 \in \mathbb{R}$. Consider the unbiased estimators $\delta_{1,n} = \frac{1}{n} \sum_{i=1}^n X_i^2 1$ and $\delta_{2,n} = \overline{X}^2 \frac{1}{n}$ of the estimand $h(\underline{\theta}) = \mu^2$.
 - (a) Determine the ARE $e_{2,1}$;
 - (b) Show that $e_{2,1} \ge 1$ if the distribution of X_1 is symmetric;
 - (c) Find a distribution for which $e_{2,1} < 1$.
 - (d) Is $\delta_{2,n}$ CAN?
- 18. Let X_1, \ldots, X_n be i.i.d. Pareto random variables with p.d.f.

$$f_{\theta}(x) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & \text{if } x > 1\\ 0, & \text{otherwise} \end{cases},$$

where $\theta \in (0, \infty) = \Omega$ is unknown. Show that the MME estimator based on $\ln X_i$, $i = 1, \ldots, n$, has asymptotic variance equal to CRLB. Compare the variance of UMVUE of θ with CRLB.

19. Let X_1, \ldots, X_n be i.i.d. double exponential random variables with p.d.f.

$$f_{\theta}(x) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}}, \ -\infty < x < \infty,$$

where $\theta \in (0, \infty) = \Omega$ is unknown. Suppose that the estimate is $h(\theta) = \theta$.

- (a) Show that the MME and the UMVUE are the same and their variances attain CRLB;
- (b) Show that \overline{X} is asymptotically normal but not consistent;
- (c) Find a MME (say, $\delta_n^{(1)}$) based on X_i^2 , i = 1, ..., n and show that it is CAN. Compare its asymptotic variance with that of $\delta_n^{(2)} = \frac{1}{n} \sum_{i=1}^n |X_i|$. Find the LRE and ARE of $\delta_n^{(1)}$ relative to $\delta_n^{(2)}$. Are $\delta_n^{(1)}$ and $\delta_n^{(2)}$ asymptotically efficient?