On comparison of reversed hazard rates of two parallel systems comprising of independent gamma components

Neeraj Misraa, Amit Kumar Misraa,1

aDepartment of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur-208016, India.

Abstract

Let X_1, \ldots, X_n (Y_1, \ldots, Y_n) be independent random variables such that X_i (Y_i) follows the gamma distribution with shape parameter α and mean $\frac{\alpha}{\lambda_i}$, $\alpha > 0, \lambda_i > 0$ ($\mu_i > 0$), $i = 1, \ldots, n$. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$, $\mu = (\mu_1, \ldots, \mu_n)$ and let $\tilde{r}_{n.n}(\lambda; x)$ ($\tilde{r}_{n.n}(\mu; x)$) denote the reversed hazard rate of $\max\{X_1, \ldots, X_n\}$ ($\max\{Y_1, \ldots, Y_n\}$). In this note we show that if λ weakly majorizes μ then $\tilde{r}_{n.n}(\lambda; x) \geq \tilde{r}_{n.n}(\mu; x)$, $\forall x > 0$, thereby strengthening and extending the results of Dykstra \textit{et al.} [5], Khaledi \textit{et al.} [11], and Lihong and Xinsheng [15].

Keywords: Gamma distribution, Hazard rate order, Majorization, Order statistics, Reversed hazard rate order, Usual stochastic order.

1. Introduction and a review of literature

Let X_1, \ldots, X_n be independent and nonnegative random variables (i.e. corresponding distributions have the common support $\mathbb{R}_+ \equiv [0, \infty)$) representing the lifetimes of n components and let Y_1, \ldots, Y_n be another set of independent and nonnegative random variables representing the lifetimes of another set of n components. For $k \in \{1, \ldots, n\}$, let $X_{k:n}$ and $Y_{k:n}$ respectively denote the kth order statistics based on random variables X_1, \ldots, X_n and Y_1, \ldots, Y_n. Then $X_{k:n}$ and $Y_{k:n}$ are the lifetimes of $(n - k + 1)$-out-of-n systems constructed from the two sets of components and thus a stochastic

1Corresponding author. Tel.: +91-9839425105, Fax: +91-512-2597500. E-mail addresses: neeraj@iitk.ac.in (N. Misra), amishra@iitk.ac.in (A.K. Misra).

Preprint submitted to Journal of Multivariate Analysis June 22, 2011
comparison of these two random variables may be of interest. A vast literature on stochastic comparisons of order statistics from two heterogeneous distributions is available. In order to provide a review of the literature on this topic we will require definitions of some stochastic orders and the concept of majorization, for which we refer the reader to Section 2 of the paper.

Suppose that the random variables X_i and Y_i have absolutely continuous distribution functions $F(x; \lambda_i)$ and $F(x; \mu_i)$, respectively, where $\lambda_i, \mu_i > 0$, $i = 1, \ldots, n$. Let $\bar{F}(x; \lambda_i) = 1 - F(x; \lambda_i)$ and $\bar{F}(x; \mu_i) = 1 - F(x; \mu_i)$ be the corresponding survival functions. Let $\lambda = (\lambda_1, \ldots, \lambda_n)$ and $\mu = (\mu_1, \ldots, \mu_n)$.

First we will discuss results on stochastic comparisons of order statistics under the proportional hazard rates (PHR) model (i.e. $\bar{F}(x; \lambda_i) = [\bar{F}_0(x)]^{\lambda_i}, x \in \mathbb{R} \equiv (-\infty, \infty), \lambda > 0$, for some survival function \bar{F}_0). Under the PHR model, Pledger and Proschan [17] proved that

$$\lambda \succeq \mu \Rightarrow Y_{k:n} \leq_{st} X_{k:n}, \quad k = 1, \ldots, n.$$ \hspace{1cm} (1.1)

Proschan and Sethuraman [18] strengthened this result from componentwise stochastic ordering to multivariate stochastic ordering by proving that

$$\lambda \succeq \mu \Rightarrow (Y_{1:n}, \ldots, Y_{n:n}) \leq_{st} (X_{1:n}, \ldots, X_{n:n}).$$ \hspace{1cm} (1.2)

For two-component parallel systems, Boland et al. [2] strengthened result (1.1) of Pledger and Proschan [17] by showing that

$$(\lambda_1, \lambda_2) \succeq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{hr} X_{2:2}.$$ \hspace{1cm} (1.3)

Using an example they also demonstrated that this result may not hold for $n \geq 3$ component parallel systems. However, for two-component parallel systems with exponentially distributed lifetimes, Dykstra et al. [5] showed that

$$(\lambda_1, \lambda_2) \succeq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{hr} X_{2:2}.$$ \hspace{1cm} (1.4)

For the PHR model, Da et al. [4] further studied this problem and proved that

$$\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \mu_2 \text{ and } \lambda_2 - \lambda_1 \geq \mu_2 - \mu_1 \Rightarrow Y_{n:n} \leq_{hr} X_{n:n}. \hspace{1cm} (1.5)$$

Zhao and Balakrishnan [20] extended results (1.3) and (1.4) by establishing that:

$$\min(\lambda_1, \lambda_2) \leq \min(\mu_1, \mu_2) \leq \max(\mu_1, \mu_2) \leq \max(\lambda_1, \lambda_2) \text{ and } \hspace{1cm} (1.6)$$

$$(\lambda_1, \lambda_2) \succeq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{hr} X_{2:2};$$
and
\[
\min(\lambda_1, \lambda_2) \leq \min(\mu_1, \mu_2) \leq \max(\mu_1, \mu_2) \leq \max(\lambda_1, \lambda_2) \ 	ext{and} \
\begin{aligned}
(\lambda_1, \lambda_2) &\succeq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{tr} X_{2:2}.
\end{aligned}
\tag{1.7}
\]

Earlier, Joo and Mi [7] had proved a weaker version of result (1.7) for the particular case of exponential distribution (i.e. $F_0(x) = e^{-x}, x \in \mathbb{R}^+\). For parallel systems, Khaledi and Kochar [9] generalized result (1.1), due to Pledger and Proschan [17], in another direction by establishing that
\[
\lambda^p \succeq \mu \Rightarrow Y_{n:n} \leq_{st} X_{n:n}. \tag{1.8}
\]

Using an example they demonstrated that this result may not hold for other order statistics. Khaledi and Kochar [9] also showed that:
\[
\mu_i = \left(\prod_{j=1}^{n} \lambda_j \right)^{1/n}, \ i = 1, \ldots, n \Rightarrow Y_{n:n} \leq_{hr} X_{n:n}; \tag{1.9}
\]

and
\[
F_0 \text{ has DHR and } \mu_i = \left(\prod_{j=1}^{n} \lambda_j \right)^{1/n}, \ i = 1, \ldots, n \Rightarrow Y_{n:n} \leq_{disp} X_{n:n}. \tag{1.10}
\]

Earlier, Khaledi and Kochar [8] had proved results (1.8)–(1.10) for the particular case of exponential distribution. Moreover, Dykstra et al. [5] had proved weaker forms of the results proved by Khaledi and Kochar [8]. For exponential distributions with $\mu_i = \frac{1}{n} \sum_{j=1}^{n} \lambda_j, \ i = 1, \ldots, n, \ Dykstra \ et \ al. \ [5]$ established that $Y_{n:n} \leq_{hr} X_{n:n}$ and $Y_{n:n} \leq_{disp} X_{n:n}$. For exponential distributions, Dykstra et al. [5] also showed that
\[
\lambda^m \succeq \mu \Rightarrow Y_{n:n} \leq_{rh} X_{n:n}. \tag{1.11}
\]

Kochar and Xu [13] demonstrated that result (1.9), due to Khaledi and Kochar [9], may not hold if we replace \leq_{hr} ordering by \leq_{rh} ordering or by \leq_{lr} ordering. However, they extended result (1.9) by proving that
\[
\mu_i = \frac{1}{n} \sum_{j=1}^{n} \lambda_j, \ i = 1, \ldots, n \Rightarrow Y_{n:n} \leq_{lr} X_{n:n}. \tag{1.12}
\]
Recently, for two-component parallel systems, Zhao and Balakrishnan [21] proved that:

\(F_0 \) has DHR, \(\min(\lambda_1, \lambda_2) \leq \min(\mu_1, \mu_2) \leq \max(\mu_1, \mu_2) \leq \max(\lambda_1, \lambda_2) \) and

\[
(\lambda_1, \lambda_2)^{\text{rm}} \geq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{\text{mrl}} X_{2:2}.
\] (1.13)

Now we will provide a discussion on stochastic comparisons of order statistics under the scale model (i.e. \(F(x; \lambda) = G_0(\lambda x), x \in \mathbb{R}, \lambda > 0, \) for some distribution function \(G_0 \)). Let \(r_{G_0} \) and \(\tilde{r}_{G_0} \) respectively denote the hazard function and the reversed hazard function of \(G_0 \). Pledger and Proschan [17] proved the following results:

\(G_0 \) has DHR and \(\lambda \geq \mu \Rightarrow Y_{k:n} \leq_{\text{st}} X_{k:n}, k = 1, \ldots, n; \) \hspace{1cm} (1.14)

\(G_0 \) has DRHR and \(\lambda \geq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} X_{n:n}; \) \hspace{1cm} (1.15)

and

\(G_0 \) has IHR and \(\lambda \geq \mu \Rightarrow X_{1:n} \leq_{\text{st}} Y_{1:n}. \) \hspace{1cm} (1.16)

Hu [6] extended result (1.14) by showing that:

\(G_0 \) has DHR, \(\psi_1(x) = x r_{G_0}(x), x \in \mathbb{R}_+, \) is an increasing function and

\[\lambda \geq \mu \Rightarrow (Y_{1:n}, \ldots, Y_{n:n}) \leq_{\text{st}} (X_{1:n}, \ldots, X_{n:n}). \] (1.17)

It is worth mentioning here that the conditions of Hu [6] are satisfied by the gamma distribution with

\[
G_0(x) = \frac{1}{\Gamma(q)} \int_0^x t^{q-1} e^{-t} \, dt, \quad x > 0, 0 < q \leq 1,
\]

and by Weibull distribution with

\[
G_0(x) = q \int_0^x t^{q-1} e^{-t^q} \, dt, \quad x > 0, 0 < q \leq 1.
\]

For a function \(\psi : A \to \mathbb{R}, \) where \(A \subseteq \mathbb{R}, \) let \(\psi' \) denote its derivative. Recently, Khaledi et al. [11] proved the following results:

\(\psi_2(x) = x^2 r'_{G_0}(x) \) is decreasing (increasing) on \(\mathbb{R}_+, \) and

\[
\lambda \geq \mu \Rightarrow Y_{1:n} \leq_{\text{hr}} (\geq_{\text{hr}}) X_{1:n};
\] (1.18)
G_0 has DHR, $\psi_2(x) = x^2 r'_{G_0}(x)$ is decreasing (increasing) on \mathbb{R}_+, and
\[\lambda \succeq \mu \Rightarrow Y_{1:n} \leq_{\text{disp}} (\geq_{\text{disp}}) X_{1:n}; \] (1.19)

$\psi_3(x) = x r_{G_0}(x)$ is decreasing on \mathbb{R}_+, and $\lambda \succeq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} X_{n:n};$ (1.20)

and
\[
\psi_4(x) = x^2 r'_{G_0}(x) \text{ is increasing (decreasing) on } \mathbb{R}_+, \quad \lambda \succeq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} (\geq_{\text{st}}) X_{n:n}.
\] (1.21)

Khaledi et al. [11] defined the generalized gamma distribution $GG(p, q)$ as
\[
G_0(x) = \frac{p}{\Gamma(q/p)} \int_0^x t^{q-1}e^{-t^{p}} \, dt, \quad x > 0, p > 0, q > 0.
\] (1.22)

Note that for $p = 1$ the generalized gamma distribution reduces to gamma distribution and for $p = q$ it reduces to Weibull distribution. For $GG(p, q)$ distribution, given by (1.22), Khaledi et al. [11] established that:

$p \leq 1 \text{ and } q \leq 1 \text{ (} p \geq 1 \text{ and } q \geq 1 \implies G_0 \text{ has DHR (IHR);} \]
\[(1.23) \]

for every $p, q > 0, \psi_1(x) = x r_{G_0}(x), x \in \mathbb{R}_+$, is an increasing function; (1.24)

$p < 1 \text{ and } q < 1 \text{ (} p > 1 \text{ and } q > 1 \implies \psi_2(x) = x^2 r'_{G_0}(x), x \in \mathbb{R}_+, \text{ is a decreasing (an increasing) function;} \]
\[(1.25) \]

for every $p, q > 0, \psi_3(x) = x r_{G_0}(x)$ is a decreasing function; (1.26)

and
\[p < 1 \Rightarrow \psi_4(x) = x^2 r'_{G_0}(x), x \in \mathbb{R}_+, \text{ is an increasing function.} \] (1.27)

Thus, using result (1.17) of Hu [6], it follows that
\[p \leq 1, q \leq 1, \text{ and } \lambda \succeq \mu \Rightarrow (Y_{1:n}, \ldots, Y_{n:n}) \leq_{\text{st}} (X_{1:n}, \ldots, X_{n:n}). \] (1.28)

This is an extension of a similar result proved by Lihong and Xinsheng [15] for gamma distributions ($p = 1$). Using results (1.18)–(1.21) and (1.23)–(1.27), for $GG(p, q)$ distributions, it follows that:

$p < 1, q < 1 \text{ (} p > 1, q > 1 \text{) and } \lambda \succeq \mu \Rightarrow Y_{1:n} \leq_{\text{hr}} (\geq_{\text{hr}}) X_{1:n}; \] (1.29)
\[p < 1, q < 1 \text{ and } \lambda^m \geq \mu \Rightarrow Y_{1:n} \leq_{\text{disp}} X_{1:n}; \quad (1.30) \]

for every \(p, q > 0, \lambda \geq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} X_{n:n}; \quad (1.31) \]
\[p < 1 \text{ and } \lambda^m \geq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} X_{n:n}. \quad (1.32) \]

Now we will discuss some of the results on stochastic comparisons of order statistics from heterogeneous gamma (i.e. \(GG(1, \alpha), \alpha > 0 \)) distributions. The following results are obvious consequences of results (1.16), (1.28), and (1.31).
\[\alpha > 1 \text{ and } \lambda^m \geq \mu \Rightarrow X_{1:n} \leq_{\text{st}} Y_{1:n}; \quad (1.33) \]
\[\alpha \leq 1 \text{ and } \lambda^m \geq \mu \Rightarrow (Y_{1:n}, \ldots, Y_{n:n}) \leq_{\text{st}} (X_{1:n}, \ldots, X_{n:n}); \quad (1.34) \]
\[\forall \alpha > 0, \lambda^p \geq \mu \Rightarrow Y_{n:n} \leq_{\text{st}} X_{n:n}. \quad (1.35) \]

It is worth mentioning here that results (1.33) and (1.34) were independently proved by Lihong and Xinsheng [15]. They also proved result (1.35) under the stronger condition \(\lambda^m \geq \mu \). Zhao and Balakrishnan [22] proved that
\[\alpha \leq 1 \text{ and } \mu_i = \left(\prod_{j=1}^{n} \lambda_j \right)^{1/n}, \quad i = 1, \ldots, n \Rightarrow Y_{n:n} \leq_{\text{hr}} X_{n:n}. \quad (1.36) \]

Note that result (1.36) is a generalization of a result due to Dykstra et al. [5] for the exponential case (\(\alpha = 1 \)). Zhao and Balakrishnan [23] considered the case when \(n = 2 \) and proved the following results:
\[\mu_1 = \lambda_2, \lambda_2 \geq \max(\lambda_1, \mu_2) \text{ and } \lambda_1 \leq \mu_2 \Rightarrow Y_{2:2} \leq_{\text{disp}} X_{2:2}; \quad (1.37) \]
\[\min(\lambda_1, \lambda_2) \leq \min(\mu_1, \mu_2) \text{ and } \lambda_1 \lambda_2 = \mu_1 \mu_2 \Rightarrow Y_{2:2} \leq_{\text{disp}} X_{2:2}; \quad (1.38) \]
\[\min(\lambda_1, \lambda_2) \leq \min(\mu_1, \mu_2) \leq \max(\mu_1, \mu_2) \leq \max(\lambda_1, \lambda_2), \text{ and} \]
\[(\lambda_1, \lambda_2)^p \geq (\mu_1, \mu_2) \Rightarrow Y_{2:2} \leq_{\text{disp}} X_{2:2} \text{ and } Y_{2:2} \leq_{\ast} X_{2:2}; \quad (1.39) \]
and
\[\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2} \right)^m \geq \left(\frac{1}{\mu_1}, \frac{1}{\mu_2} \right) \Rightarrow Y_{2:2} \leq_{\ast} X_{2:2}. \quad (1.40) \]

Using a counter example, they demonstrated that result (1.39) on dispersive ordering cannot be extended to \(n \geq 3 \) case.
For a discussion on some recent results on stochastic comparisons of order statistics from heterogeneous PHR and scale probability models the reader may also refer to Khaledi and Kochar [10] and Kochar and Xu [12].

In this paper we continue the study on stochastic comparisons of order statistics from heterogeneous gamma distributions further by generalizing result (1.11), due to Dykstra et al. [5], from the exponential case to the gamma case. Specifically, in Section 3 of the paper, we show that

\[\forall \alpha > 0, \lambda \geq \mu \Rightarrow Y_{n:n} \leq_{rh} X_{n:n}. \]

This result may also be viewed as an extension of results (1.33)–(1.35), and generalization of a result proved by Lihong and Xinsheng [15].

2. Notation and definitions

Let \(X \) and \(Y \) be random variables having the distribution functions \(F \) and \(G \), the probability density functions \(f \) and \(g \), the hazard functions \(r \) and \(\mu \), and the reversed hazard functions \(\tilde{r} \) and \(\tilde{\mu} \), respectively. Let \(\bar{F} = 1 - F \) and \(\bar{G} = 1 - G \) be the corresponding survival functions. When we say that a function is increasing (decreasing) it means that the function is non-decreasing (non-increasing). Moreover all the distributions under study shall be assumed to be absolutely continuous with support \(\mathbb{R}^+ \). For any probability density function \(h \), we will assume that \(\{ x \in \mathbb{R} : h(x) > 0 \} = \mathbb{R}^+ \).

Definition 2.1. \(X \) is said to be smaller than \(Y \) in the

(i) usual stochastic order (written as \(X \leq_{st} Y \)) if \(\bar{F}(t) \leq \bar{G}(t) \), \(\forall t \in \mathbb{R}^+ \);

(ii) hazard rate order (written as \(X \leq_{hr} Y \)) if \(\bar{G}(t)/\bar{F}(t) \) is increasing in \(t \in \mathbb{R}^+ \), or equivalently if \(r(t) \geq \mu(t) \), \(\forall t \in \mathbb{R}^+ \);

(iii) reversed hazard rate order (written as \(X \leq_{rh} Y \)) if \(G(t)/F(t) \) is increasing in \(t \in (0, \infty) \), or equivalently if \(\tilde{r}(t) \leq \tilde{\mu}(t) \), \(\forall t \in (0, \infty) \);

(iv) mean residual life order (written as \(X \leq_{mrl} Y \)) if

\[E(X_t) \leq E(Y_t), \text{or } \int_t^\infty \bar{F}(x)/\bar{F}(t) \, dx \leq \int_t^\infty \bar{G}(x)/\bar{G}(t) \, dx, \forall t \geq 0, \]

where \(X_t = [X - t | X > t] \) and \(Y_t = [Y - t | Y > t] \) are residual lifetimes of random variables \(X \) and \(Y \), respectively, at time \(t > 0 \);
(v) dispersive ordering (written as $X \leq_{\text{disp}} Y$) if $G^{-1}(\beta) - G^{-1}(\alpha) \geq F^{-1}(\beta) - F^{-1}(\alpha)$ whenever $0 < \alpha \leq \beta < 1$; here F^{-1} and G^{-1} are the right continuous inverses of F and G, respectively;

(vi) star ordering (written as $X \leq_{\ast} Y$) if $G^{-1}F(x)/x$ is increasing in $x \in \mathbb{R}_+$.

It is well known that

$$X \leq_{\text{hr[rh]}} Y \Rightarrow X \leq_{\ast} Y, \text{ and } X \leq_{\text{hr}} Y \Rightarrow X \leq_{\text{mrl}} Y.$$

Definition 2.2.

(i) X is said to be log-concave on \mathbb{R}_+ if

$$f(\alpha x + (1 - \alpha)y) \geq (f(x))^{\alpha}(f(y))^{1-\alpha} \text{ whenever } x, y \in \mathbb{R}_+ \text{ and } \alpha \in (0, 1);$$

(ii) X (or F) is said to have an increasing hazard rate (IHR)

$$F(\alpha x + (1 - \alpha)y) \geq (F(x))^{\alpha}(F(y))^{1-\alpha} \text{ whenever } x, y \in \mathbb{R}_+ \text{ and } \alpha \in (0, 1);$$

(iii) X (or F) is said to have an increasing hazard rate in average (IHRA) if $F(\beta x) \geq F^\beta(x)$, for all $0 < \beta < 1$ and $x \in \mathbb{R}_+$;

(iv) X (or F) is said to have decreasing hazard rate (DHR) if F is log-convex on \mathbb{R}_+;

(v) X (or F) is said to have decreasing reversed hazard rate (DRHR) if F is log-concave on $(0, \infty)$.

It is well known that X is log-concave \Rightarrow X has IHR \Rightarrow X has IHRA. Also X is log-concave \Rightarrow X is DRHR.

Definition 2.3. Let $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$ be random vectors. Then X is said to be smaller than Y in multivariate stochastic ordering (written as $X \leq_{\ast} Y$) if

$$E(\phi(X)) \leq E(\phi(Y))$$

for all componentwise increasing functions ϕ.

It is well known that $X \leq_{\ast} Y$ implies $X_i \leq_{\ast} Y_i$, $i = 1, \ldots, n$. For definitions and properties of various stochastic orders and aging classes, one may refer to Shaked and Shanthikumar [19], and Barlow and Proschan [1].

Definition 2.4. Let \mathbb{R}^n and \mathbb{R}_+^n denote, respectively, the n-dimensional Euclidean space and the product space $\mathbb{R}_+ \times \cdots \times \mathbb{R}_+$, and let $A \subseteq \mathbb{R}^n$.

8
(i) A point \(\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{A} \) is said to majorize another point \(\mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{A} \) (written as \(\mathbf{x} \geq_m \mathbf{y} \)) if

\[
\sum_{i=1}^{j} x(i) \leq \sum_{i=1}^{j} y(i), \quad j = 1, \ldots, n - 1, \quad \text{and} \quad \sum_{i=1}^{n} x(i) = \sum_{i=1}^{n} y(i),
\]

where \(x(1) \leq \cdots \leq x(n) \) and \(y(1) \leq \cdots \leq y(n) \) denote the increasing arrangements of the components of \(\mathbf{x} \) and \(\mathbf{y} \), respectively.

(ii) A point \(\mathbf{x} \in \mathbb{A} \) is said to weakly majorize another point \(\mathbf{y} \in \mathbb{A} \) (written as \(\mathbf{x} \geq_w \mathbf{y} \)) if

\[
\sum_{i=1}^{j} x(i) \leq \sum_{i=1}^{j} y(i), \quad j = 1, \ldots, n.
\]

(iii) A point \(\mathbf{x} \in \mathbb{R}^n_+ \) is said to be \(p \)-larger than another point \(\mathbf{y} \in \mathbb{R}^n_+ \) (written as \(\mathbf{x} \geq_p \mathbf{y} \)) if

\[
\prod_{i=1}^{j} x(i) \leq \prod_{i=1}^{j} y(i), \quad j = 1, \ldots, n.
\]

(iv) A point \(\mathbf{x} \in \mathbb{R}^n_+ \) is said to reciprocal majorize another point \(\mathbf{y} \in \mathbb{R}^n_+ \) (written as \(\mathbf{x} \geq_{rm} \mathbf{y} \)) if

\[
\sum_{i=1}^{j} \frac{1}{x(i)} \geq \sum_{i=1}^{j} \frac{1}{y(i)}, \quad j = 1, \ldots, n.
\]

(v) A function \(\psi : \mathbb{A} \to \mathbb{R} \) is said to be Schur-convex (Schur-concave) on \(\mathbb{A} \) if

\[
\mathbf{x} \geq_m \mathbf{y} \implies \psi(\mathbf{x}) \geq [\leq] \psi(\mathbf{y}) \quad \text{for } \mathbf{x}, \mathbf{y} \in \mathbb{A}.
\]

It is well known (see Khaledi and Kochar [8], Kochar and Xu [14] and Zhao and Balakrishnan [20]) that, for \(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_+ \),

\[
\mathbf{x} \geq_m \mathbf{y} \Rightarrow \mathbf{x} \geq_w \mathbf{y} \Rightarrow \mathbf{x} \geq_p \mathbf{y} \Rightarrow \mathbf{x} \geq_{rm} \mathbf{y}
\]

Readers may also refer to Marshall and Olkin [16] and Bon and Páltánea [3] for comprehensive details of majorization and \(p \)-larger order.
3. Comparison of reversed hazard rates

Let $X_1, \ldots, X_n \ (Y_1, \ldots, Y_n)$ be independent gamma random variables with $X_i \ (Y_i)$ having probability density function $f(x; \alpha, \lambda_i) \ (f(x; \alpha, \mu_i))$, $\lambda_i > 0 \ (\mu_i > 0), \ i = 1, \ldots, n$, where for $\lambda > 0$ and $\alpha > 0$,

$$f(x; \alpha, \lambda) = \begin{cases} \frac{x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha) \lambda^{\alpha}} & x > 0, \\ 0 & \text{otherwise}. \end{cases}$$

To prove the main result we need the following lemmas.

Lemma 3.1. Let W be a random variable having the probability density function

$$h(u; \alpha, y) = \begin{cases} \frac{(1-u)^{\alpha-1} e^{yu}}{\int_0^u (1-t)^{\alpha-1} e^{yt} dt} & 0 < u < 1, \\ 0 & \text{otherwise}, \end{cases}$$

where α and y are given positive constants. Then, W has IHR.

Proof. We consider the following two cases:

Case I: $0 < \alpha < 1$ and $y > 0$.

Let \bar{H} denote the survival function of W. Then

$$K_1(u) = \frac{d}{du} \ln \bar{H}(u) = -\frac{(1-u)^{\alpha-1} e^{yu}}{\int_u^1 (1-t)^{\alpha-1} e^{yt} dt}, \quad 0 < u < 1.$$

Clearly, $K_1(u)$ is a decreasing function on $(0, 1)$. Therefore $\ln \bar{H}(\cdot)$ is concave on $(0, 1)$ and hence W has IHR.

Case II: $\alpha \geq 1$ and $y > 0$.

Using (3.1) we have

$$\frac{d^2}{du^2} \ln h(u) = -\frac{\alpha - 1}{(1-u)^2} \leq 0, \quad \forall u \in (0, 1),$$

i.e. $\ln h(\cdot)$ is concave on $(0, 1)$. Then it follows that W is log-concave, which in turn implies that W has IHR.

Lemma 3.2. (Barlow and Proschan [1, p. 118].) Let X be a nonnegative random variable with distribution function F and let $\mu_r = \int_0^\infty x^r dF(x), \ r = 1, 2$. If X has IHRA then $\mu_2 \leq 2\mu_1^2$.

10
Theorem 3.1. For any $\alpha > 0$ and $n \geq 2$

$$\lambda^w \succeq \mu \Rightarrow Y_{n:n} \leq_{rh} X_{n:n}.$$

Proof. Fix $x > 0$. Then the reversed hazard rate of $X_{n:n}$ is

$$\tilde{r}_{n:n}(\lambda, x) = \frac{1}{x} \sum_{i=1}^{n} (\lambda_i x)^{\alpha} e^{-\lambda_i x} \frac{1}{\int_0^{\lambda_i x} u^{\alpha-1} e^{-u} du} = \frac{1}{x} \sum_{i=1}^{n} \varphi(\lambda_i x),$$

where

$$\varphi(y) = \frac{y^{\alpha} e^{-y}}{\int_0^{y} u^{\alpha-1} e^{-u} du} = \frac{1}{\int_0^{1} (1-u)^{\alpha-1} e^{yu} du}, \quad y > 0.$$

In view of Theorem A.8 of Marshall and Olkin [16, p. 59] it suffices to show that, for each $x > 0$, $\tilde{r}_{n:n}(\lambda, x)$ is decreasing in each λ_i, $i = 1, \ldots, n$, and is a Schur-convex function of $\lambda \in \mathbb{R}_+^n$. Fix $x > 0$. Clearly $\tilde{r}_{n:n}(\lambda, x)$ is decreasing in each λ_i, $i = 1, \ldots, n$. Then, in the light of Proposition C.1 of Marshall and Olkin [16, p. 64], it suffices to show that $\varphi(\cdot)$ is a convex function on $(0, \infty)$. Define

$$\psi(y) = \frac{1}{\varphi(y)} = \int_0^{1} (1-u)^{\alpha-1} e^{yu} du, \quad y > 0.$$

Then, for $y > 0$,

$$\frac{d}{dy} \varphi(y) = -\frac{d}{dy} \psi(y) \frac{\psi^2(y)}{\psi'(y)},$$

and

$$\psi(y) \frac{d^2}{dy^2} \varphi(y) = 2 \left(\frac{d}{dy} \psi(y) \right)^2 - \frac{d^2}{dy^2} \psi(y) \frac{\psi^2(y)}{\psi'(y)}$$

$$= 2 \left(\frac{\int_0^{1} u(1-u)^{\alpha-1} e^{yu} du}{\int_0^{1} (1-u)^{\alpha-1} e^{yu} du} \right)^2 - \frac{\int_0^{1} u^2(1-u)^{\alpha-1} e^{yu} du}{\int_0^{1} (1-u)^{\alpha-1} e^{yu} du}$$

$$= 2E[W^2] - E[W^2], \quad (3.2)$$

where W is a random variable as defined in Lemma 3.1. Since the random variable W has IHR, it follows that W has IHRA. Now, from Lemma 3.2, it follows that $2\mu^2_1 = 2(E[W]^2) \geq E[W^2] = \mu_2$, i.e. $\frac{d^2}{dy^2} \varphi(y) \geq 0, \forall y > 0$. Hence $\varphi(y)$ is convex in $y \in (0, \infty)$. \square
The following corollary is immediate from the above theorem and on using
the fact that $\lambda^m \geq \mu \Rightarrow \lambda^w \geq \mu$.

Corollary 3.1. For any $\alpha > 0$ and $n \geq 2$,

$$\lambda \geq \mu \Rightarrow Y_{n:n} \leq_{\text{rh}} X_{n:n},$$

i.e. the reversed hazard rate of $X_{n:n}$ is Schur-convex in λ.

Recall that Theorem 3.1 for the particular case $\alpha = 1$ was proved by
Dykstra et al. [5] under a stronger condition of $\lambda \geq^m \mu$. Thus Theorem 3.1
is a generalization of the result proved by Dykstra et al. [5]. Lihong and
Xinsheng [15] proved that, for any $\alpha > 0$, $\lambda \geq^m \mu$ implies $Y_{n:n} \leq_{\text{st}} X_{n:n}$. Using the result of of Khaledi et al. [11] it follows that the result of Lihong
and Xinsheng [15] holds under a weaker condition $\lambda \geq^p \mu$. Thus, Corollary
3.1 also generalizes the result of Lihong and Xinsheng [15].

One may wonder whether the conclusion of Theorem 3.1 will remain tru e
if we replace \geq^w by \geq^p. The following example shows that the answer of this
question is negative.

Example 3.1. For $n = 2$ and $\alpha = 1$, let $\lambda = (\lambda_1, \lambda_2) = (1, 55)$ and
$\mu = (\mu_1, \mu_2) = (2, 44)$. It is easy to verify that $\lambda \geq^p \mu$ and $\lambda \not\geq^w \mu$. For $x > 0$

$$\tilde{r}^*(x) = \tilde{r}_{2:2}(\lambda, x) - \tilde{r}_{2:2}(\mu, x)$$

$$= \frac{1}{x} \left(\varphi(x) + \varphi(55x) - \varphi(2x) - \varphi(44x) \right),$$

where $\varphi(y) = y/(e^y - 1), y > 0$. It is easy to verify that $\tilde{r}^*(0.2) = 0.444451$
and $\tilde{r}^*(0.04) = -1.7994$. Thus $X_{2:2} \not\geq_{\text{rh}} Y_{2:2}$.

4. Conclusions and Comments

Consider a parallel system \mathcal{P} consisting of $n \geq 2$ components having
random lifetimes X_1, \ldots, X_n. Let X_1, \ldots, X_n be independent gamma random
variables with X_i having shape parameter α and mean $\frac{\alpha}{\lambda_i}, \alpha > 0, \lambda_i > 0, i = 1, \ldots, n$. In this paper we prove that for any $\alpha > 0$

$$\lambda \geq \mu \Rightarrow X_{n:n} \geq_{\text{rh}} Y_{n:n}, \quad n \geq 2.$$
A consequence of this result is that the reversed hazard rate of \mathcal{P} is Schur-convex in $\lambda = (\lambda_1, \ldots, \lambda_n)$, i.e. for any $\alpha > 0$

$$\lambda \succeq^m \mu \Rightarrow X_{n:n} \succeq_{rh} Y_{n:n}, \quad n \geq 2.$$

With the help of an example we also show that $\lambda \succeq^p \mu \Rightarrow Y_{2:2} \leq_{rh} X_{2:2}$ may not hold even for exponential distribution (i.e. for $\alpha = 1$).

References

