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Abstract

Let X1, . . . , Xn (Y1, . . . , Yn) be independent random variables such that Xi

(Yi) follows the gamma distribution with shape parameter α and mean α
λi

( α
µi
), α > 0, λi > 0 (µi > 0), i = 1, . . . , n. Let λ = (λ1, . . . , λn), µ =

(µ1, . . . , µn) and let r̃n:n(λ; x) (r̃n:n(µ; x)) denote the reversed hazard rate of
max{X1, . . . , Xn} (max{Y1, . . . , Yn}). In this note we show that if λ weakly
majorizes µ then r̃n:n(λ; x) ≥ r̃n:n(µ; x), ∀x > 0, thereby strengthening and
extending the results of Dykstra et al. [5], Khaledi et al. [11], and Lihong
and Xinsheng [15].

Keywords: Gamma distribution, Hazard rate order, Majorization, Order
statistics, Reversed hazard rate order, Usual stochastic order.

1. Introduction and a review of literature

Let X1, . . . , Xn be independent and nonnegative random variables (i.e.
corresponding distributions have the common support R+ ≡ [0,∞)) repre-
senting the lifetimes of n components and let Y1, . . . , Yn be another set of
independent and nonnegative random variables representing the lifetimes of
another set of n components. For k ∈ {1, . . . , n}, let Xk:n and Yk:n respec-
tively denote the kth order statistics based on random variables X1, . . . , Xn

and Y1, . . . , Yn. Then Xk:n and Yk:n are the lifetimes of (n− k + 1)-out-of-n
systems constructed from the two sets of components and thus a stochastic
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comparison of these two random variables may be of interest. A vast liter-
ature on stochastic comparisons of order statistics from two heterogeneous
distributions is available. In order to provide a review of the literature on this
topic we will require definitions of some stochastic orders and the concept of
majorization, for which we refer the reader to Section 2 of the paper.

Suppose that the random variables Xi and Yi have absolutely continu-
ous distribution functions F (x;λi) and F (x;µi), respectively, where λi, µi >
0, i = 1, . . . , n. Let F̄ (x;λi) = 1−F (x;λi) and F̄ (x;µi) = 1−F (x;µi) be the
corresponding survival functions. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn).

First we will discuss results on stochastic comparisons of order statistics
under the proportional hazard rates (PHR) model (i.e. F̄ (x;λ) = [F̄0(x)]

λ, x ∈
R ≡ (−∞,∞), λ > 0, for some survival function F̄0). Under the PHR model,
Pledger and Proschan [17] proved that

λ
m

� µ ⇒ Yk:n ≤st Xk:n, k = 1, . . . , n. (1.1)

Proschan and Sethuraman [18] strengthened this result from componentwise
stochastic ordering to multivariate stochastic ordering by proving that

λ
m
� µ ⇒ (Y1:n, . . . , Yn:n) ≤

st (X1:n, . . . , Xn:n). (1.2)

For two-component parallel systems, Boland et al. [2] strengthened result
(1.1) of Pledger and Proschan [17] by showing that

(λ1, λ2)
m
� (µ1, µ2) ⇒ Y2:2 ≤hr X2:2. (1.3)

Using an example they also demonstrated that this result may not hold for
n ≥ 3 component parallel systems. However, for two-component parallel
systems with exponentially distributed lifetimes, Dykstra et al. [5] showed
that

(λ1, λ2)
m
� (µ1, µ2) ⇒ Y2:2 ≤lr X2:2. (1.4)

For the PHR model, Da et al. [4] further studied this problem and proved
that

λ1 ≤ µ1 ≤ λ2 ≤ µ2 and λ2 − λ1 ≥ µ2 − µ1 ⇒ Yn:n ≤hr Xn:n. (1.5)

Zhao and Balakrishnan [20] extended results (1.3) and (1.4) by establishing
that:

min(λ1, λ2) ≤ min(µ1, µ2) ≤ max(µ1, µ2) ≤ max(λ1, λ2) and

(λ1, λ2)
p

� (µ1, µ2) ⇒ Y2:2 ≤hr X2:2; (1.6)
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and

min(λ1, λ2) ≤ min(µ1, µ2) ≤ max(µ1, µ2) ≤ max(λ1, λ2) and

(λ1, λ2)
w
� (µ1, µ2) ⇒ Y2:2 ≤lr X2:2. (1.7)

Earlier, Joo and Mi [7] had proved a weaker version of result (1.7) for the
particular case of exponential distribution (i.e. F̄0(x) = e−x, x ∈ R+). For
parallel systems, Khaledi and Kochar [9] generalized result (1.1), due to
Pledger and Proschan [17], in another direction by establishing that

λ
p

� µ ⇒ Yn:n ≤st Xn:n. (1.8)

Using an example they demonstrated that this result may not hold for other
order statistics. Khaledi and Kochar [9] also showed that:

µi =

(
n∏

j=1

λj

)1/n

, i = 1, . . . , n⇒ Yn:n ≤hr Xn:n; (1.9)

and

F0 has DHR and µi =

(
n∏

j=1

λj

)1/n

, i = 1, . . . , n⇒ Yn:n ≤disp Xn:n. (1.10)

Earlier, Khaledi and Kochar [8] had proved results (1.8)–(1.10) for the par-
ticular case of exponential distribution. Moreover, Dykstra et al. [5] had
proved weaker forms of the results proved by Khaledi and Kochar [8]. For
exponential distributions with µi =

1
n

∑n
j=1 λj , i = 1, . . . , n, Dykstra et al.

[5] established that Yn:n ≤hr Xn:n and Yn:n ≤disp Xn:n. For exponential dis-
tributions, Dykstra et al. [5] also showed that

λ
m
� µ ⇒ Yn:n ≤rh Xn:n. (1.11)

Kochar and Xu [13] demonstrated that result (1.9), due to Khaledi and
Kochar [9], may not hold if we replace ≤hr ordering by ≤rh ordering or by
≤lr ordering. However, they extended result (1.9) by proving that

µi =
1

n

n∑

j=1

λj , i = 1, . . . , n⇒ Yn:n ≤lr Xn:n. (1.12)
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Recently, for two-component parallel systems, Zhao and Balakrishnan [21]
proved that:

F0 has DHR ,min(λ1, λ2) ≤ min(µ1, µ2) ≤ max(µ1, µ2) ≤ max(λ1, λ2) and

(λ1, λ2)
rm

� (µ1, µ2) ⇒ Y2:2 ≤mrl X2:2. (1.13)

Now we will provide a discussion on stochastic comparisons of order statis-
tics under the scale model (i.e. F (x;λ) = G0(λx), x ∈ R, λ > 0, for some
distribution function G0). Let rG0

and r̃G0
respectively denote the hazard

function and the reversed hazard function of G0. Pledger and Proschan [17]
proved the following results:

G0 has DHR and λ
m

� µ ⇒ Yk:n ≤st Xk:n, k = 1, . . . , n; (1.14)

G0 has DRHR and λ
m
� µ ⇒ Yn:n ≤st Xn:n; (1.15)

and

G0 has IHR and λ
m
� µ ⇒ X1:n ≤st Y1:n. (1.16)

Hu [6] extended result (1.14) by showing that:

G0 has DHR, ψ1(x) = xrG0
(x), x ∈ R+, is an increasing function and

λ
m

� µ ⇒ (Y1:n, . . . , Yn:n) ≤
st (X1:n, . . . , Xn:n). (1.17)

It is worth mentioning here that the conditions of Hu [6] are satisfied by the
gamma distribution with

G0(x) =
1

Γ(q)

∫ x

0

tq−1e−t dt, x > 0, 0 < q ≤ 1,

and by Weibull distribution with

G0(x) = q

∫ x

0

tq−1e−tq dt, x > 0, 0 < q ≤ 1.

For a function ψ : A → R, where A ⊆ R, let ψ′ denote its derivative.
Recently, Khaledi et al. [11] proved the following results:

ψ2(x) = x2r′G0
(x) is decreasing (increasing) on R+, and

λ
m
� µ ⇒ Y1:n ≤hr (≥hr)X1:n; (1.18)
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G0 has DHR, ψ2(x) = x2r′G0
(x) is decreasing (increasing) on R+, and

λ
m
� µ ⇒ Y1:n ≤disp (≥disp)X1:n; (1.19)

ψ3(x) = xr̃G0
(x) is decreasing on R+, and λ

p

� µ ⇒ Yn:n ≤st Xn:n; (1.20)

and

ψ4(x) = x2r̃′G0
(x) is increasing (decreasing) on R+, and

λ
m

� µ ⇒ Yn:n ≤rh (≥rh)Xn:n. (1.21)

Khaledi et al. [11] defined the generalized gamma distribution GG(p, q) as

G0(x) =
p

Γ(q/p)

∫ x

0

tq−1e−tp dt, x > 0, p > 0, q > 0. (1.22)

Note that for p = 1 the generalized gamma distribution reduces to gamma
distribution and for p = q it reduces to Weibull distribution. For GG(p, q)
distribution, given by (1.22), Khaledi et al. [11] established that:

p ≤ 1 and q ≤ 1 (p ≥ 1 and q ≥ 1) ⇒ G0 has DHR (IHR); (1.23)

for every p, q > 0, ψ1(x) = xrG0
(x), x ∈ R+, is an increasing function;

(1.24)

p < 1 and q < 1 (p > 1 and q > 1) ⇒ ψ2(x) = x2r′G0
(x), x ∈ R+, is a

decreasing (an increasing) function; (1.25)

for every p, q > 0, ψ3(x) = xr̃G0
(x) is a decreasing function; (1.26)

and

p < 1 ⇒ ψ4(x) = x2r̃′G0
(x), x ∈ R+, is an increasing function. (1.27)

Thus, using result (1.17) of Hu [6], it follows that

p ≤ 1, q ≤ 1, and λ
m
� µ ⇒ (Y1:n, . . . , Yn:n) ≤

st (X1:n, . . . , Xn:n). (1.28)

This is an extension of a similar result proved by Lihong and Xinsheng [15] for
gamma distributions (p = 1). Using results (1.18)–(1.21) and (1.23)–(1.27),
for GG(p, q) distributions, it follows that:

p < 1, q < 1 (p > 1, q > 1) and λ
m
� µ ⇒ Y1:n ≤hr (≥hr)X1:n; (1.29)
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p < 1, q < 1 and λ
m
� µ ⇒ Y1:n ≤disp X1:n; (1.30)

for every p, q > 0,λ
p

� µ ⇒ Yn:n ≤st Xn:n; (1.31)

p < 1 and λ
m

� µ ⇒ Yn:n ≤rh Xn:n. (1.32)

Now we will discuss some of the results on stochastic comparisons of order
statistics from heterogeneous gamma (i.e. GG(1, α), α > 0) distributions.
The following results are obvious consequences of results (1.16), (1.28), and
(1.31).

α > 1 and λ
m

� µ ⇒ X1:n ≤st Y1:n; (1.33)

α ≤ 1 and λ
m
� µ ⇒ (Y1:n, . . . , Yn:n) ≤

st (X1:n, . . . , Xn:n); (1.34)

∀α > 0,λ
p

� µ ⇒ Yn:n ≤st Xn:n. (1.35)

It is worth mentioning here that results (1.33) and (1.34) were independently
proved by Lihong and Xinsheng [15]. They also proved result (1.35) under

the stronger condition λ
m
� µ. Zhao and Balakrishnan [22] proved that

α ≤ 1 and µi =

(
n∏

j=1

λj

)1/n

, i = 1, . . . , n⇒ Yn:n ≤hr Xn:n. (1.36)

Note that result (1.36) is a generalization of a result due to Dykstra et al.
[5] for the exponential case (α = 1). Zhao and Balakrishnan [23] considered
the case when n = 2 and proved the following results:

µ1 = λ2, λ2 ≥ max(λ1, µ2) and λ1 ≤ µ2 ⇒ Y2:2 ≤disp X2:2; (1.37)

min(λ1, λ2) ≤ min(µ1, µ2) and λ1λ2 = µ1µ2 ⇒ Y2:2 ≤disp X2:2; (1.38)

min(λ1, λ2) ≤ min(µ1, µ2) ≤ max(µ1, µ2) ≤ max(λ1, λ2), and

(λ1, λ2)
p

� (µ1, µ2) ⇒ Y2:2 ≤disp X2:2 and Y2:2 ≤∗ X2:2; (1.39)

and (
1

λ1
,
1

λ2

)
m

�

(
1

µ1
,
1

µ2

)

⇒ Y2:2 ≤∗ X2:2. (1.40)

Using a counter example, they demonstrated that result (1.39) on dispersive
ordering cannot be extended to n ≥ 3 case.
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For a discussion on some recent results on stochastic comparisons of order
statistics from heterogeneous PHR and scale probability models the reader
may also refer to Khaledi and Kochar [10] and Kochar and Xu [12].

In this paper we continue the study on stochastic comparisons of orders
statistics from heterogeneous gamma distributions further by generalizing
result (1.11), due to Dykstra et al. [5], from the exponential case to the
gamma case. Specifically, in Section 3 of the paper, we show that

∀α > 0,λ
w
� µ ⇒ Yn:n ≤rh Xn:n.

This result may also be viewed as an extension of results (1.33)–(1.35), and
generalization of a result proved by Lihong and Xinsheng [15].

2. Notation and definitions

Let X and Y be random variables having the distribution functions F
and G, the probability density functions f and g, the hazard functions r and
µ, and the reversed hazard functions r̃ and µ̃, respectively. Let F̄ = 1 − F
and Ḡ = 1 − G be the corresponding survival functions. When we say
that a function is increasing (decreasing) it means that the function is non-
decreasing (non-increasing). Moreover all the distributions under study shall
be assumed to be absolutely continuous with support R+. For any probability
density funtion h, we will assume that {x ∈ R : h(x) > 0} = R+.

Definition 2.1. X is said to be smaller than Y in the

(i) usual stochastic order (written as X ≤st Y ) if F̄ (t) ≤ Ḡ(t), ∀t ∈ R+;

(ii) hazard rate order (written as X ≤hr Y ) if Ḡ(t)/F̄ (t) is increasing in
t ∈ R+, or equivalently if r(t) ≥ µ(t), ∀t ∈ R+;

(iii) reversed hazard rate order (written as X ≤rh Y ) if G(t)/F (t) is increas-
ing in t ∈ (0,∞), or equivalently if r̃(t) ≤ µ̃(t), ∀t ∈ (0,∞);

(iv) mean residual life order (written as X ≤mrl Y ) if

E(Xt) ≤ E(Yt), or

∫
∞

t

F̄ (x) dx/F̄ (t) ≤

∫
∞

t

Ḡ(x) dx/Ḡ(t), ∀t ≥ 0,

where Xt = [X − t|X > t] and Yt = [Y − t|Y > t] are residual lifetimes
of random variables X and Y , respectively, at time t > 0;
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(v) dispersive ordering (written as X ≤disp Y ) if G−1(β) − G−1(α) ≥
F−1(β) − F−1(α) whenever 0 < α ≤ β < 1; here F−1 and G−1 are
the right continuous inverses of F and G, respectively;

(vi) star ordering (written as X ≤∗ Y ) if G−1F (x)/x is increasing in x ∈
R+.

It is well known that

X ≤hr[rh] Y ⇒ X ≤st Y, and X ≤hr Y ⇒ X ≤mrl Y.

Definition 2.2. (i) X is said to be log-concave on R+ if

f(αx+(1−α)y) ≥ (f(x))α(f(y))1−α whenever x, y ∈ R+ and α ∈ (0, 1);

(ii) X (or F ) is said to have an increasing hazard rate (IHR)

F̄ (αx+(1−α)y) ≥ (F̄ (x))α(F̄ (y))1−α whenever x, y ∈ R+ and α ∈ (0, 1);

(iii) X (or F ) is said to have an increasing hazard rate in average (IHRA)
if F̄ (βx) ≥ F̄ β(x), for all 0 < β < 1 and x ∈ R+;

(iv) X (or F ) is said to have decreasing hazard rate (DHR) if F̄ is log-convex
on R+;

(v) X (or F ) is said to have decreasing reversed hazard rate (DRHR) if F
is log-concave on (0,∞).

It is well known that X is log-concave ⇒ X has IHR ⇒ X has IHRA.
Also X is log-concave ⇒ X is DRHR.

Definition 2.3. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be random
vectors. Then X is said to be smaller than Y in multivariate stochastic
ordering (written as X ≤st Y) if

E(φ(X)) ≤ E(φ(Y))

for all componentwise increasing functions φ.

It is well known that X ≤st Y implies Xi ≤st Yi, i = 1, . . . , n. For
definitions and properties of various stochastic orders and aging classes, one
may refer to Shaked and Shanthikumar [19], and Barlow and Proschan [1].

Definition 2.4. Let Rn and Rn
+ denote, respectively, the n-dimensional Eu-

clidean space and the product space R+ × · · · × R+
︸ ︷︷ ︸

n−times

, and let A ⊆ Rn.
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(i) A point x = (x1, . . . , xn) ∈ A is said to majorize another point y =

(y1, . . . , yn) ∈ A (written as x
m
� y) if

j
∑

i=1

x(i) ≤

j
∑

i=1

y(i), j = 1, . . . , n− 1, and
n∑

i=1

x(i) =
n∑

i=1

y(i),

where x(1) ≤ · · · ≤ x(n) and y(1) ≤ · · · ≤ y(n) denote the increasing
arrangements of the components of x and y, respectively.

(ii) A point x ∈ A is said to weakly majorize another point y ∈ A (written

as x
w

� y) if
j
∑

i=1

x(i) ≤

j
∑

i=1

y(i), j = 1, . . . , n.

(iii) A point x ∈ Rn
+ is said to be p-larger than another point y ∈ Rn

+ (written

as x
p

� y) if
j
∏

i=1

x(i) ≤

j
∏

i=1

y(i), j = 1, . . . , n.

(iv) A point x ∈ Rn
+ is said to reciprocal majorize another point y ∈ Rn

+

(written as x
rm
� y) if

j∑

i=1

1

x(i)
≥

j∑

i=1

1

y(i)
, j = 1, . . . , n.

(v) A function ψ : A → R is said to be Schur-convex (Schur-concave) on A
if

x
m
� y =⇒ ψ(x) ≥ [≤] ψ(y) for x,y ∈ A.

It is well known (see Khaledi and Kochar [8], Kochar and Xu [14] and
Zhao and Balakrishnan [20]) that, for x,y ∈ Rn

+,

x
m
� y ⇒ x

w
� y ⇒ x

p

� y ⇒ x
rm
� y

Readers may also refer to Marshall and Olkin [16] and Bon and Pǎltǎnea [3]
for comprehensive details of majorization and p-larger order.
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3. Comparison of reversed hazard rates

Let X1, . . . , Xn (Y1, . . . , Yn) be independent gamma random variables
with Xi (Yi) having probability density function f(x;α, λi) (f(x;α, µi)),
λi > 0 (µi > 0), i = 1, . . . , n, where for λ > 0 and α > 0,

f(x;α, λ) =

{
λα

Γ(α)
λα−1e−λx x > 0,

0 otherwise.

To prove the main result we need the following lemmas.

Lemma 3.1. Let W be a random variable having the probability density
function

h(u;α, y) =







(1− u)α−1 eyu
∫ 1

0
(1− t)α−1 eyt dt

if 0 < u < 1,

0 otherwise,

(3.1)

where α and y are given positive constants. Then, W has IHR.

Proof. We consider the following two cases:
Case I: 0 < α < 1 and y > 0.
Let H̄ denote the survival function of W . Then

K1(u) =
d

du
ln H̄(u) = −

(1− u)α−1 eyu
∫ 1

u
(1− t)α−1 eyt dt

, 0 < u < 1.

Clearly, K1(u) is a decreasing function on (0, 1). Therefore ln H̄(·) is concave
on (0, 1) and hence W has IHR.
Case II: α ≥ 1 and y > 0.
Using (3.1) we have

d2

du2
ln h(u) = −

α− 1

(1− u)2
≤ 0, ∀u ∈ (0, 1),

i.e. ln h(·) is concave on (0, 1). Then it follows that W is log-concave, which
in turn implies that W has IHR.

Lemma 3.2. (Barlow and Proschan [1, p. 118].) Let X be a nonnegative
random variable with distribution function F and let µr =

∫
∞

0
xr dF (x), r =

1, 2. If X has IHRA then µ2 ≤ 2µ2
1.
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Theorem 3.1. For any α > 0 and n ≥ 2

λ
w
� µ ⇒ Yn:n ≤rh Xn:n.

Proof. Fix x > 0. Then the reversed hazard rate of Xn:n is

r̃n:n(λ, x) =
1

x

n∑

i=1

(λix)
α e−λix

∫ λix

0
uα−1 e−u du

=
1

x

n∑

i=1

ϕ(λix),

where

ϕ(y) =
yα e−y

∫ y

0
uα−1 e−u du

=
1

∫ 1

0
(1− u)α−1 eyu du

, y > 0.

In view of Theorem A.8 of Marshall and Olkin [16, p. 59] it suffices to show
that, for each x > 0, r̃n:n(λ, x) is decreasing in each λi, i = 1, . . . , n, and is a
Schur-convex function of λ ∈ Rn

+. Fix x > 0. Clearly r̃n:n(λ, x) is decreasing
in each λi, i = 1, . . . , n. Then, in the light of Proposition C.1 of Marshall
and Olkin [16, p. 64], it suffices to show that ϕ(·) is a convex function on
(0,∞). Define

ψ(y) =
1

ϕ(y)
=

∫ 1

0

(1− u)α−1 eyu du, y > 0.

Then, for y > 0,

d

dy
ϕ(y) = −

d
dy
ψ(y)

ψ2(y)
,

and

ψ(y)
d2

dy2
ϕ(y) = 2

(
d
dy
ψ(y)

ψ(y)

)2

−

d2

dy2
ψ(y)

ψ(y)

= 2

(∫ 1

0
u(1− u)α−1 eyu du

∫ 1

0
(1− u)α−1 eyu du

)2

−

∫ 1

0
u2(1− u)α−1 eyu du
∫ 1

0
(1− u)α−1 eyu du

= 2(E[W ])2 −E[W 2], (3.2)

where W is a random variable as defined in Lemma 3.1. Since the random
variable W has IHR, it follows that W has IHRA. Now, from Lemma 3.2,
it follows that 2µ2

1 = 2(E[W ])2 ≥ E[W 2] = µ2, i.e.
d2

dy2
ϕ(y) ≥ 0, ∀y > 0.

Hence ϕ(y) is convex in y ∈ (0,∞).
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The following corollary is immediate from the above theorem and on using

the fact that λ
m
� µ ⇒ λ

w
� µ.

Corollary 3.1. For any α > 0 and n ≥ 2,

λ
m
� µ ⇒ Yn:n ≤rh Xn:n,

i.e. the reversed hazard rate of Xn:n is Schur-convex in λ.

Recall that Theorem 3.1 for the particular case α = 1 was proved by

Dykstra et al. [5] under a stronger condition of λ
m
� µ. Thus Theorem 3.1

is a generalization of the result proved by Dykstra et al. [5]. Lihong and

Xinsheng [15] proved that, for any α > 0, λ
m
� µ implies Yn:n ≤st Xn:n.

Using the result of of Khaledi et al. [11] it follows that the result of Lihong

and Xinsheng [15] holds under a weaker condition λ
p

� µ. Thus, Corollary
3.1 also generalizes the result of Lihong and Xinsheng [15].

One may wonder whether the conclusion of Theorem 3.1 will remain true

if we replace
w
� by

p

�. The following example shows that the answer of this
question is negative.
Example 3.1. For n = 2 and α = 1, let λ = (λ1, λ2) = (1, 55) and

µ = (µ1, µ2) = (2, 44). It is easy to verify that λ
p

� µ and λ
w

� µ. For x > 0

r̃∗(x) = r̃2:2(λ, x)− r̃2:2(µ, x)

=
1

x
(ϕ(x) + ϕ(55x)− ϕ(2x)− ϕ(44x)) ,

where ϕ(y) = y/(ey − 1), y > 0. It is easy to verify that r̃∗(0.2) = 0.444451
and r̃∗(0.04) = −1.7994. Thus X2:2 �rh Y2:2.

4. Conclusions and Comments

Consider a parallel system P consisting of n (≥ 2) components having
random lifetimesX1, . . . , Xn. LetX1, . . . , Xn be independent gamma random
variables with Xi having shape parameter α and mean α

λi
, α > 0, λi > 0, i =

1, . . . , n. In this paper we prove that for any α > 0

λ
w
� µ ⇒ Xn:n ≥rh Yn:n, n ≥ 2.
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A consequence of this result is that the reversed hazard rate of P is Schur-
convex in λ = (λ1, . . . , λn), i.e. for any α > 0

λ
m
� µ ⇒ Xn:n ≥rh Yn:n, n ≥ 2.

With the help of an example we also show that λ
p

� µ ⇒ Y2:2 ≤rh X2:2 may
not hold even for exponential distribution (i.e. for α = 1).

References

[1] Barlow, R. E. and Proschan, F., 1975. Statistical Theory of Reliability and Life
Testing: Probability Models. Holt, Rinehart and Winston, New York.

[2] Boland, P. J., El-Neweihi, E. and Proschan, F., 1994. Applications of hazard rate
ordering in reliability and order statistics. Journal of Applied Probability 31, 180–
192.
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