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Abstract

Let Xi,..., X, (Y1,...,Y,) be independent random variables such that X;
(Y;) follows the gamma distribution with shape parameter o and mean
(%), a>0N>0(u >0),i=1,...,n. Let A = (A,...,\),
(1, .-y pn) and let 7. (A; ) (P (s 2)) denote the reversed hazard rate of
max{Xi,..., X, } (max{Y,...,¥,}). In this note we show that if A weakly
majorizes p then 7., (X;z) > Fp.n(p; ), Vo > 0, thereby strengthening and
extending the results of Dykstra et al. [5], Khaledi et al. [11], and Lihong
and Xinsheng [15].
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1. Introduction and a review of literature

Let Xi,..., X, be independent and nonnegative random variables (i.e.
corresponding distributions have the common support Ry = [0, 00)) repre-
senting the lifetimes of n components and let Yi,... Y, be another set of
independent and nonnegative random variables representing the lifetimes of
another set of n components. For k € {1,...,n}, let X, and Y}., respec-
tively denote the kth order statistics based on random variables Xi,..., X,
and Y3,...,Y,. Then Xi., and Y., are the lifetimes of (n — k + 1)-out-of-n
systems constructed from the two sets of components and thus a stochastic
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comparison of these two random variables may be of interest. A vast liter-
ature on stochastic comparisons of order statistics from two heterogeneous
distributions is available. In order to provide a review of the literature on this
topic we will require definitions of some stochastic orders and the concept of
majorization, for which we refer the reader to Section 2 of the paper.

Suppose that the random variables X; and Y; have absolutely continu-
ous distribution functions F'(z; \;) and F'(z; u;), respectively, where A, p; >
0,i=1,...,n. Let F(z;\;) = 1—F(x; \;) and F(z; p;) = 1— F(x; 1) be the
corresponding survival functions. Let A = (A, ..., A,) and g = (p1, ..., ftn)-

First we will discuss results on stochastic comparisons of order statistics
under the proportional hazard rates (PHR) model (i.e. F(z;)\) = [Fo(z)]*, 2 €
R = (—00,00), A > 0, for some survival function Fp). Under the PHR model,
Pledger and Proschan [17] proved that

Ar = Vi < Xpws k=1,...,n. (1.1)

Proschan and Sethuraman [18] strengthened this result from componentwise
stochastic ordering to multivariate stochastic ordering by proving that

A= = Vi oo Vo) < (X - Xon). (1.2)

For two-component parallel systems, Boland et al. [2] strengthened result
(1.1) of Pledger and Proschan [17] by showing that

()\1, )\2) t (:ula ,u2) = )6:2 Shr X2:2- (13)

Using an example they also demonstrated that this result may not hold for
n > 3 component parallel systems. However, for two-component parallel
systems with exponentially distributed lifetimes, Dykstra et al. [5] showed
that

()‘1> )‘2) t (,ula ,u2) = )6:2 Slr X2:2- (14)

For the PHR model, Da et al. [4] further studied this problem and proved
that

)\1 S H1 S )\2 S H2 and )\2 - )\1 Z Ho — H1 = Yn:n Shr Xnn (15)

Zhao and Balakrishnan [20] extended results (1.3) and (1.4) by establishing
that:

min (A1, A2) < min(pg, po) < max(pg, to) < max(Ag, Ay) and
p
(A1, A2) = (p1, p2) = Yoo < Xooo; (1.6)



and

min(Ay, Ag) < min(uq, o) < max(pg, po) < max(Ag, Ay) and

w

(A1, A2) = (1, pro) = Yoo <jp Xoo. (1.7)

Earlier, Joo and Mi [7] had proved a weaker version of result (1.7) for the
particular case of exponential distribution (i.e. Fy(x) = e %, 2 € R,). For
parallel systems, Khaledi and Kochar [9] generalized result (1.1), due to
Pledger and Proschan [17], in another direction by establishing that

A g [,l, = Yn:n Sst Xnn (18)

Using an example they demonstrated that this result may not hold for other
order statistics. Khaledi and Kochar [9] also showed that:

n 1/n
Wi = (H >\]> y 7= 1, o n = Yn:n Shr Xn:n; (19>
j=1

and
n 1/n
Fy has DHR and p; = <H )\j> ci=1,...,n= Yo, <daisp Xnm- (1.10)
j=1

Earlier, Khaledi and Kochar [8] had proved results (1.8)—(1.10) for the par-
ticular case of exponential distribution. Moreover, Dykstra et al. [5] had
proved weaker forms of the results proved by Khaledi and Kochar [8]. For
exponential distributions with p; = %Z?:l Aj, @ =1,...,n, Dykstra et al.
[5] established that Y., <p, X and Y., <aisp Xpnm. For exponential dis-
tributions, Dykstra et al. [5] also showed that

Kochar and Xu [13] demonstrated that result (1.9), due to Khaledi and
Kochar [9], may not hold if we replace <y, ordering by <, ordering or by
<) ordering. However, they extended result (1.9) by proving that

1 n
== ST A== Y <t X 1.12
¥ n; jo n n X1 : ( )
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Recently, for two-component parallel systems, Zhao and Balakrishnan [21]
proved that:

Fy has DHR ,min(Aq, A2) < min(p, p2) < max (g, p2) < max(Aq, A2) and

rm

()‘17 )‘2) t (Mlv,UQ) = }/2:2 Smrl X2:2- (113)

Now we will provide a discussion on stochastic comparisons of order statis-
tics under the scale model (i.e. F(z;\) = Go(Az),x € R, A > 0, for some
distribution function Go). Let rg, and 7, respectively denote the hazard
function and the reversed hazard function of Gy. Pledger and Proschan [17]
proved the following results:

Gy has DHR and A g w=Yin <g Xpg, k=1,...,m; (1.14)
Go has DRHR and A = g = Yo <er X (1.15)

and .
Go has [HR and A = pu = Xy, < Yin- (1.16)

Hu [6] extended result (1.14) by showing that:

Gy has DHR, ¢y (z) = xrg,(z), x € Ry, is an increasing function and
A= = Vi ooy Vi) <% (Xm0 X)) (1.17)

It is worth mentioning here that the conditions of Hu [6] are satisfied by the
gamma distribution with

Go(z) = —/ tile™tdt, >00<qg<1,
0
and by Weibull distribution with
Go(z) = q/ ti7 e dt, >0,0<qg<]1.
0

For a function ¢ : A — R, where A C R, let ¢’ denote its derivative.
Recently, Khaledi et al. [11] proved the following results:
Yo(x) = 2°rg, () is decreasing (increasing) on Ry, and

A g M = }/1:n Shr (Zhr)Xl:n; (118)



Gp has DHR, v (z) = 2”r(; (z) is decreasing (increasing) on Ry, and

A t |2 = }/lzn Sdisp (Zdisp)Xlzn; (119>

3(xz) = xfg, () is decreasing on Ry, and A § p= Yoo <st Xnm; (1.20)
and
Yy(x) = 2?7, () is increasing (decreasing) on Ry, and
AZ = Yo <o (20) X (121)
Khaledi et al. [11] defined the generalized gamma distribution GG(p, q) as

Go(z) = P / t7 e " dt, x>0,p>0,q9>0. (1.22)
0

~ T(a/p)
Note that for p = 1 the generalized gamma distribution reduces to gamma
distribution and for p = ¢ it reduces to Weibull distribution. For GG(p, q)
distribution, given by (1.22), Khaledi et al. [11] established that:

p<land¢<1(p>1andq>1)= Gyhas DHR (IHR); (1.23)

for every p,q > 0,91 (x) = zrg,(x),z € Ry, is an increasing function;
(1.24)

p<landg<1(p>1landg>1)= (z)=2a’rg(z),r €Ry, isa
decreasing (an increasing) function; (1.25)
for every p,q > 0,v3(x) = 27, (x) is a decreasing function; (1.26)

and

p < 1= ty(z) = 2%, (), 2 € Ry, is an increasing function.  (1.27)

Thus, using result (1.17) of Hu [6], it follows that

p<1g<l and A= p= ViYoo) < (Xiyoooy Xon). (128

This is an extension of a similar result proved by Lihong and Xinsheng [15] for
gamma distributions (p = 1). Using results (1.18)—(1.21) and (1.23)—(1.27),
for GG(p, q) distributions, it follows that:

p < 1aq <1 (p > 1aq > ]-) and A g n = le:n <hr (zhr)Xlzn; (129)
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p<lg<l and A g H = Yin Sdisp Xin; (130)
p
for every p,q > 0, A = p = Yy <ot Xoiin; (1.31)

p < 1 and A g 7 = Yn:n Srh Xnn (132)

Now we will discuss some of the results on stochastic comparisons of order
statistics from heterogeneous gamma (i.e. GG(1,«),« > 0) distributions.

The following results are obvious consequences of results (1.16), (1.28), and
(1.31).

a>1and A g H = Xl:n <st }/ln7 (133>
(6% S 1 and )\ g j 7 = (}/1;”, ey Ynn) SSt (Xlzna s >Xnn)7 (134)
Va > O, A g n = Yn:n Sst Xnn (135>

It is worth mentioning here that results (1.33) and (1.34) were independently
proved by Lihong and Xinsheng [15]. They also proved result (1.35) under

the stronger condition A > p. Zhao and Balakrishnan [22] proved that

n 1/n
a<1land g = (HAj> i=1,...,n= Y <m Xpn. (1.36)
j=1

Note that result (1.36) is a generalization of a result due to Dykstra et al.
[5] for the exponential case (o = 1). Zhao and Balakrishnan [23] considered
the case when n = 2 and proved the following results:

p1 = A2, Ay > max(Aq, p2) and Ay < pg = Yoo <qisp X2:2; (1.37)

min(A1, A2) < min(puq, o) and Ao = papts = Yoo <disp X2:2; (1.38)

min(Aq, Ag) < min(uq, o) < max(pg, po) < max(Ag, Ag), and
(A1, A2) é (1, p12) = Yoo <aisp Xo:2 and Yoo <, Xo.o; (1.39)
and
<>\i1 %) - <i i) = Yo <o Xoo. (1.40)

Using a counter example, they demonstrated that result (1.39) on dispersive
ordering cannot be extended to n > 3 case.
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For a discussion on some recent results on stochastic comparisons of order
statistics from heterogeneous PHR and scale probability models the reader
may also refer to Khaledi and Kochar [10] and Kochar and Xu [12].

In this paper we continue the study on stochastic comparisons of orders
statistics from heterogeneous gamma distributions further by generalizing
result (1.11), due to Dykstra et al. [5], from the exponential case to the
gamma case. Specifically, in Section 3 of the paper, we show that

Va > O, A g M= Yn:n Srh Xnn

This result may also be viewed as an extension of results (1.33)—(1.35), and
generalization of a result proved by Lihong and Xinsheng [15].

2. Notation and definitions

Let X and Y be random variables having the distribution functions F
and G, the probability density functions f and g, the hazard functions r and
1, and the reversed hazard functions 7 and ji, respectively. Let F' =1 — F
and G = 1 — G be the corresponding survival functions. When we say
that a function is increasing (decreasing) it means that the function is non-
decreasing (non-increasing). Moreover all the distributions under study shall
be assumed to be absolutely continuous with support R, . For any probability
density funtion h, we will assume that {x € R: h(z) > 0} = R,.

Definition 2.1. X is said to be smaller than Y in the

(i) wsual stochastic order (written as X <y Y ) if F(t) < G(t), Vt € R;
(ii) hazard rate order (written as X <y Y ) if G(t)/F(t) is increasing in
t € Ry, or equivalently if r(t) > u(t),vt € Ry ;
(iii) reversed hazard rate order (written as X <., Y ) if G(t)/F(t) is increas-
ing int € (0,00), or equivalently if 7(t) < fi(t),Vt € (0,00);
(iv) mean residual life order (written as X <un YY) if

E(X,) < E(Y;),or /Oo F(z)dz/F(t) < /OO G(z)dx/G(t),Vt > 0,

where Xy = [X —t|X > t] and Y; = [Y —t|Y > t] are residual lifetimes
of random variables X and Y, respectively, at time t > 0;



(v) dispersive ordering (written as X <asp Y) if GTH(B) — Gla) >
FYB) — F71(a) whenever 0 < o < B < 1; here F~! and G are
the right continuous inverses of F' and G, respectively;

(vi) star ordering (written as X <, Y) if G"'F(x)/x is increasing in v €
R,.

It is well known that
X <ppn Y = X <g Y, and X <, V= X <y V.
Definition 2.2. (i) X is said to be log-concave on Ry if
flaz+(1—a)y) > (f@)*(f(y)'™™ whenever z,y € Ry and o € (0,1);
(ii) X (or F') is said to have an increasing hazard rate (IHR)
Flaz+(1—a)y) > (F(x))*(F(y)'"™* whenever x,y € Ry and o € (0,1);

(iii) X (or F) is said to have an increasing hazard rate in average (IHRA)
if F(Bx) > FP(x), forall0 < B <1 and v € R,;

(iv) X (or F') is said to have decreasing hazard rate (DHR) if F is log-convex
on R+ 5

(v) X (or F) is said to have decreasing reversed hazard rate (DRHR) if F
is log-concave on (0,00).

It is well known that X is log-concave = X has IHR = X has THRA.
Also X is log-concave = X is DRHR.

Definition 2.3. Let X = (X1,...,X,) and Y = (Y3,...,Y,) be random
vectors. Then X is said to be smaller than Y in multivariate stochastic
ordering (written as X <*Y ) if

E($(X)) < E(6(Y))

for all componentwise increasing functions ¢.

It is well known that X < Y implies X; <y Y;,7 = 1,...,n. For
definitions and properties of various stochastic orders and aging classes, one
may refer to Shaked and Shanthikumar [19], and Barlow and Proschan [1].

Definition 2.4. Let R" and R’} denote, respectively, the n-dimensional Eu-
clidean space and the product space Ry x --- x Ry, and let A C R"™.
—_———

n—times



(i) A point x = (x1,...,2,) € A is said to magjorize another point'y =
(Y1, - yn) € A (written as x = y) if

J

7 n n
fo(i)ﬁzy(i)> j=1...,n—=1, and Z!E(z)zzy(i),
=1 i=1 i=1

=1

where xy < -0 < 2y and yay < -0 < ym) denote the increasing
arrangements of the components of x and y, respectively.
(ii) A point x € A is said to weakly majorize another point y € A (written

as X g y) if
J j
Zaj(i) < Zy(i)a g=1...,n.
i=1 i=1

(iii) A pointx € R, is said to be p-larger than another pointy € R (written

p
asx = y) if
J

J
Haf(i)SHy(i), jzl,...,n.
i=1

i=1
(iv) A point x € R is said to reciprocal majorize another point y € R

(written as x > y) if

1 1
Zx(~ >Z j=1...,n.

i O B o

(v) A function ¢ : A — R is said to be Schur-convex (Schur-concave) on A
if
xzy = 9(x) 2 [<]d(y) forx,y € A

It is well known (see Khaledi and Kochar [8], Kochar and Xu [14] and
Zhao and Balakrishnan [20]) that, for x,y € R%,

m w p rm
XZYy=>XZy=>Xzy=>Xxy

Readers may also refer to Marshall and Olkin [16] and Bon and Paltanea [3]
for comprehensive details of majorization and p-larger order.



3. Comparison of reversed hazard rates

Let Xi,..., X, (Y1,...,Y,) be independent gamma random variables
with X; (Y;) having probability density function f(z;a,\;) (f(x;a, w)),
Ai>0(u; >0),i=1,...,n, where for A >0 and a > 0,

«@
A )\a—le—)\m T > 0’

flaya, ) = {F(a)

0 otherwise.

To prove the main result we need the following lemmas.

Lemma 3.1. Let W be a random wvariable having the probability density
function

(1 —u)>tevr

h(useny) = [7(1—t)atevt dt
0 otherwise,

f0<u<1
Fo<u<l, (3.1)

where a and y are given positive constants. Then, W has [HR.

Proof. We consider the following two cases:
Case I. 0 < a < 1andy > 0.
Let H denote the survival function of W. Then

d (1 — u)etev

Ki(u) = —InHu)=— , O<u<l1.
1) ) [ —t)atent dt

du

Clearly, K (u) is a decreasing function on (0, 1). Therefore In H(-) is concave
on (0,1) and hence W has IHR.

Case II. « > 1 and y > 0.

Using (3.1) we have

2
& Inh(u) = —

du?

a—1

(1 —u)?

<0, Yue(0,1),
i.e. Inh(-) is concave on (0, 1). Then it follows that W is log-concave, which
in turn implies that W has THR. O

Lemma 3.2. (Barlow and Proschan [1, p. 118].) Let X be a nonnegative
random variable with distribution function F' and let p, = fooo " dF(x), r =
1,2. If X has IHRA then pgy < 2u3.
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Theorem 3.1. For any o >0 and n > 2

A g H = Yn:n Srh Xnn

Proof. Fix x > 0. Then the reversed hazard rate of X,,., is

n

_ 1 (i)™ e~ T 1<
Fun(A 1) = =D 55 == o),
=1

a—1 ,—u €x
=1 Jo utlevdu —

where y )
y“e”
ply) = = o y>0.
( ) foy ua—l e u du fol(l _ u)a_l eyt du

In view of Theorem A.8 of Marshall and Olkin [16, p. 59] it suffices to show
that, for each x > 0, 7,,.,,(A, x) is decreasing in each A\;, i = 1,...,n, and is a
Schur-convex function of A € R}. Fix > 0. Clearly 7., (X, x) is decreasing
in each \;; 7 = 1,...,n. Then, in the light of Proposition C.1 of Marshall
and Olkin [16, p. 64], it suffices to show that ¢(-) is a convex function on
(0, 00). Define

1 ! a—1 _yu U
?ﬂ(y):m:/o(l—u) e’ du, y>0.
Then, for y > 0,
A )____ﬁ§ (v)
dy™ T Ty
and
&2 o)\ L)
Wy)d_y?@(y)ﬂ( o) ) B

.y fol w(l —u)* eV du ? fol u?(1 —u)* ey du
fol(l —u)* eyt du fol(l —u)* eyt du
= 2(E[W])* — E[W?], (32)
where W is a random variable as defined in Lemma 3.1. Since the random
variable W has THR, it follows that W has IHRA. Now, from Lemma 3.2,
it follows that 2u2 = 2(E[W])* > E[W?] = p., ie. dd—;gp(y) > 0,Vy > 0.
Hence ¢(y) is convex in y € (0, 00). O
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The following corollary is immediate from the above theorem and on using
the fact that A = u = X = pu.

Corollary 3.1. For any a > 0 and n > 2,

A t H = Yn:n Srh Xn:m
i.e. the reversed hazard rate of X,., is Schur-convex in X.

Recall that Theorem 3.1 for the particular case @« = 1 was proved by

Dykstra et al. [5] under a stronger condition of A g p. Thus Theorem 3.1
is a generalization of the result proved by Dykstra et al. [5]. Lihong and

Xinsheng [15] proved that, for any a > 0, A g p implies Y., <g X,
Using the result of of Khaledi et al. [11] it follows that the result of Lihong

and Xinsheng [15] holds under a weaker condition A g p. Thus, Corollary
3.1 also generalizes the result of Lihong and Xinsheng [15].
One may wonder whether the conclusion of Theorem 3.1 will remain true

if we replace g by é The following example shows that the answer of this
question is negative.
Example 3.1. For n = 2 and a = 1, let A = (A, \2) = (1,55) and

w

p
= (p1, o) = (2,44). It is easy to verify that A = g and X % p. For z > 0

7(x) = o (X, ) — Toa(p, )

% (p(2) + p(552) — p(22) — p(44a)),

where ¢(y) = y/(e? — 1),y > 0. It is easy to verify that 7*(0.2) = 0.444451
and 7(0.04) = —1.7994. Thus Xas Fu Yao.
4. Conclusions and Comments

Consider a parallel system P consisting of n (> 2) components having
random lifetimes X1, ..., X,,. Let X1,..., X, be independent gamma random
variables with X; having shape parameter o and mean /\%, a>0,\>0,1i=
1,...,n. In this paper we prove that for any a > 0

>\ g 122 = Xn:n Zrh Yn:nv n Z 2

12



A consequence of this result is that the reversed hazard rate of P is Schur-
convex in A = (\y,...,\,), i.e. for any @ > 0

A g 122 = Xn:n Zrh Yn:nv n Z 2

p
With the help of an example we also show that A > pu = Y55 <, Xo.0 may
not hold even for exponential distribution (i.e. for o = 1).
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