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SSIM Compliant Modeling Framework With
Denoising and Deblurring Applications
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Abstract— In image processing, it is well known that mean
square error criteria is perceptually inadequate. Consequently,
image quality assessment (IQA) has emerged as a new branch
to overcome this issue, and this has led to the discovery of one
of the most popular perceptual measures, namely, the structural
similarity index (SSIM). This measure is mathematically simple,
yet powerful enough to express the quality of an image. Therefore,
it is natural to deploy SSIM in model based applications, such as
denoising, restoration, classification, etc. However, the non-convex
nature of this measure makes this task difficult. Our attempt
in this work is to discuss problems associated with its convex
program and take remedial action in the process of obtaining
a generalized convex framework. The obtained framework has
been seen as a component of an alternative learning scheme for
the case of a regularized linear model. Subsequently, we develop a
relevant dictionary learning module as a part of alternative learn-
ing. This alternative learning scheme with sparsity prior is finally
used in denoising and deblurring applications. To further boost
the performance, an iterative scheme is developed based on the
statistical nature of added noise. Experiments on image denoising
and deblurring validate the effectiveness of the proposed scheme.
Furthermore, it has been shown that the proposed framework
achieves highly competitive performance with respect to other
schemes in literature and performs better in natural images in
terms of SSIM and visual inspection.

Index Terms— SSIM, sparse representation, denoising,
deblurring.

I. INTRODUCTION

IN IMAGE science, a perceptually adequate measure is an
old and fundamental quest. Such a measure would play

a vital role in numerous image processing algorithms and
applications such as error criterion based algorithmic design
such as denoising, restoration, classification, super-resolution
and much more. However, deriving such a measure is a
non-trivial task [1]. A popular alternative to a perceptual
measure is the mean square error (MSE). The reasons for
its popularity is efficient computability for optimization tasks,
the amenability to analysis and optimality in estimation of
Gaussian distributed data. However, it does not consider the
true structure of the underlying signal. Bernd [2] had shown its
inefficiency to produce high quality images with an algorithm
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based on optimal MSE. Furthermore, Wang and Bovik [1], [3]
elaborately discuss pitfalls of MSE in terms of image quality
assessment (IQA). In particular, a good contrast image may
not meet with the original image (poor fidelity) but may be
perceptually adequate (of good quality). Therefore, it is natural
to design algorithms for different image processing tasks based
on the image quality metric (IQM).

We start our journey from IQA, which provides a convenient
platform over which ideas of good IQM were built. Indeed,
numerous contributions in the past two decades addressed
issue of providing good IQM measure [1], [4]–[7]. However,
in the context of using IQM in image processing algorithms,
desirable features of this metrics were its visual agreement
with human visual system (HVS), computational plausibility
and simplified mathematical definition so that it could be used
in various algorithms. In the literature, various IQA tech-
niques have been proposed, including full-reference (where
IQA is aimed to design assessment for test image in the
presence of a reference) [8]–[11], no-reference (where quality
assessment needs no reference image) [6], [12], [13] and
reduced-reference (where reference would be known partially)
[6], [14], [15] based schemes. For our purpose, we focus
on full-reference IQA (FR-IQA). In FR-IQA, the structural
similarity index (SSIM) proposed by Wang et. al. [8] is one
of the most aligned IQM with the above mentioned desirable
properties [3].

The popularity of SSIM is unparalleled, it is even incorpo-
rated into many practical hardware and software systems [4].
The SSIM index is an objective top-down approach. It is a
manifestation of usage of structural information by human
visual system (HVS) for comparison purposes and therefore,
it takes structural correlation as its main ingredient for com-
parison between reference and test image. It locally compares
luminance and contrast along with structural content of refer-
ence and test image. Finally, it pools up all this to give overall
IQM. It is experimentally found that quality assessment based
on SSIM index correlates better to mean opinion score (MOS)
obtained by subjective evaluation for large image database.
For details, interested readers may refer to Wang et. al. [8],
Wang and Bovik [1]. Many researchers have further tried to
explore other applications of the SSIM index. For instance,
Mahmud et. al. [16] modified Wiener filtering process in
BM3D denoising scheme [17] based on SSIM index. Their
scheme performs better than BM3D, however applied modifi-
cation is confined only to BM3D scheme. Rehman et al. [18]
have tuned sparse modeling algorithms based on SSIM for
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denoising and super-resolution applications. Their observation
revealed that the generated SSIM quality map of textured
regions appears to be much less noisy than smooth regions.
Unfortunately, their proposed modification works only for
�0-based sparse representation. Another interesting observa-
tion from their work [19] based on non-local mean (NLM),
when all weights are calculated separately using the �2 dis-
tance or the SSIM index from original image, is that NLM
based denoising is better for latter weights. It is worth while
to mention that SSIM index has shown sensitivity towards
non-structural distortion like rotation, translation scaling and
other misalignments. Sampat et. al. [20] were motivated by
said sensitivities and introduce complex wavelet structural
similarity index (CW-SSIM). The CW-SSIM index was further
used in classification task [21]. For real world data, perceptual
adequacy of SSIM index facilitated many image based appli-
cations range from compression [22], target recognition [23],
classification [21], fusion [24], restoration [18], [25], camera
design [26] and many more. Some interesting attempts have
been made to kick-start the use of SSIM index directly in
optimization driven applications. For example, Channappayya
and Bovik [27] designed a linear equalizer by transforming
problem into quasi-convex problem so that SSIM index could
be optimized. Furthermore, Otero and Vrscay elegantly solved
optimization of SSIM measure with �1-norm regularizer by
deploying a related gradient scheme [28]. In another attempt,
they derived a sequence of approximated smooth sub-problems
using mollifiers [29]. Recently Otero et. al. [30] deployed
Alternate Direction Method of Multipliers (ADMM) for
solving an unconstrained SSIM-based optimization problem.
Wang et. al. [31] came up with a new perspective and equipped
NLH1 and NLTV regularization functionals with structural
similarity information. Despite of mentioned attempts, there
still exist many interesting questions, for example, can we
formulate and solve optimization problem related to SSIM
in a generalized setting? Can there be any learning or
other boosting methods derived to explore full potential of
SSIM index? Can a generalized solver be tuned to SSIM
based optimization? The work reported here is an attempt to
answer these questions. A simplified (pseudo SSIM) function
(named as pS) is developed from SSIM, which aims to
take the benefits of SSIM and be easy to fit with opti-
mization framework. Additionally, components of alternat-
ing learning [32], [33] based on pS-function are developed.
Organization of the paper will be explored in the coming
section.

A. Paper Organization

Section II opens with a brief recap of the SSIM percep-
tual measure. Afterward, optimization plausible form of the
SSIM, the pssim-function and its features are investigated.
Section III discusses alternative learning and its components.
In the next step, our aim is to develop the pssim-function based
alternative learning components. For this, a convex program
based on pS-function discrepancy for a linear model with
an arbitrary choice of regularizer or constraint is derived.
Further, we derive the corresponding dictionary learning

scheme. In Section V, a stepwise clustering (used in later
sections) is explored. Subsequently, in Section VI, denoising
and deblurring problem with sparse regularized linear model
under the roof of our pssim-function is investigated. For further
calibration of the proposed scheme, an iterative scheme for
smoothness correction is introduced using the statistical nature
of the added noise. Section VII presents extensive experi-
mental results and their comparison with other methods. The
simulation results for denoising and deblurring applications
show the effectiveness of the proposed scheme especially with
respect to the SSIM index.

II. PROBLEM FORMULATION

A. SSIM Index

As mentioned earlier, SSIM [8] index compares the refer-
ence IR and test IT images of size (say N × N) in terms
of localized luminance l(z, y), contrast c(z, y) and structural
similarity s(z, y) information, where z and y are column
major ordering of the square patch obtained from IR and
IT , respectively. Suppose, size of these patch vectors is m
such that m � N . It is reasonable to compute luminance,
contrast and structural information locally because images
are considered to be spatially non-stationary. Additionally,
luminance component uses mean (first order statistics) while
contrast and structural components use second order statistics
in their expressions. Finally, these three localized attributes are
combined to produce local SSIM S(z, y),

S(z, y) = l(z, y)c(z, y)s(z, y)

= S1(μz, μy)S2(σz, σy)

= 2μzμy + C1

μ2
z + μ2

y + C1
∗ 2σzy + C2

σ 2
z + σ 2

y + C2
(1)

where, (μz, σz) and (μy, σy) are mean and standard deviation
pairs for reference patch vector z and test patch vector y,
respectively and C1, C2 are stability constants. To obtain the
final scalar score, locally assessed SSIM were pooled-up using
averaging (also called as mean SSIM or MSSIM). Recently,
Brunet et. al. [34] addressed mathematical nature of SSIM
index and concluded its S1(μz, μy) and S2(σz, σy) components
are non-convex but valid metrics, since translation invariance
does not hold [35].

B. Simplification for Optimization

Our first wish is to make local SSIM in Eq. (1) com-
patible for optimization. Notice that local SSIM assessment
S(z, y) ranges in between [−1, 1] and equals to 1 if z = y.
If we further assume reference and test patches as zero mean
vectors then S1(μz, μy) in Eq. (1) goes to 1 and vanishes.
This assumption makes sense since the reference patch is
inaccessible in model fitting and we directly estimate mean
component of reference patch by the observed test patch. Many
authors have adopted the said assumption in their model fitting
framework [18], [27]–[29]. Finally, local assessing pair S(z, y)
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reduces to

S(z, y) = S2(σz, σy) = 2σzy + C2

σ 2
z + σ 2

y + C2
(2)

T (z, y) = 1− S(z, y) = σ 2
z + σ 2

y − 2σzy

σ 2
z + σ 2

y + C2
(3)

The range of T in Eq. (3) would be [0, 2). As in [34], replacing
second order statistical terms with their estimates and for
(m − 1)C2 = C , Eq. (3) reduces to

T (z, y) = �z− y�2
�z�2 + �y�2 + C

(4)

where we assume reference and test vectors are z and y,
respectively. Notice that when T (z, y) approaches zero, then
reference and test vectors approach each other. The purpose
of the C is to provide stability, we choose to use it latter and
continue the analysis without it. Subsequently, Eq. (4) reduces
to

T (z; y) = �z− y�2
�z�2 + �y�2 (5)

If we restrict the range of T (z; y) in between interval [0, 1],
then this conditioned function for test vector y forms a convex
set in variable z. Therefore, set Z = {z | T (z, y) ∈ [0, 1]}
is a convex set. Notice that the mentioned restriction simply
emphasizes further closeness in context of loss function. The
following lemma encodes the above mentioned restriction in
terms of a simple condition.

Lemma 1: For given y ∈ Rm, set Z = {z | T (z, y) ∈ [0, 1]}
and Z � = {z | �z, y� > 0} are equal.

Proof: Suppose, an arbitrary z obeys �z, y� > 0, then
also −2�z, y� < 0, adding both side by �z�2 + �y�2 leads to
�z− y�2 < �z�2 + �y�2 and by Eq. (5), T (z, y) < 1 and by
definition T (z, y) ≥ 0. On the other hand, suppose T (z, y) ∈
[0, 1] and Eq. (5) leads to �z− y�2 < �z�2+�y�2; therefore,
�z, y� > 0. This concludes the proof. �
Next, suppose we define function f (z; y) in variable z for
given test patch y using T (z; y) as follows

f (z; y) = 2T (z; y)

1− T (z; y)
= �z− y�2
�y, z� (6)

In general, using f (z; y) instead of T (z; y) in minimization
task is hopeless. For example, consider the case of regularized
linear model for p ≥ 1.

minimize
x

f (Dx; y)+ λ �x�p

Above minimization is unbounded below. Suppose we include
condition z ∈ Z � in the definition of f (z; y). Such a stipulation
eliminates unboundedness while using f (z; y) in the mini-
mization procedure as well as makes f (z; y) non-negative.
Additionally, it is easy to verify that both f (z; y) and T (z; y)
are equivalent in terms of the optimal point for condition
z ∈ Z �. Furthermore, by lemma 1, the condition z ∈ Z � simply
implies T (z; y) ∈ [0, 1]. We now add a positive constant c in
the denominator for stability. We can also use c for tuning
the algorithm for given task. With this, function f (z; y) is
modified such that Z � equals to {z | �z,y�+ c > 0}. Let us call

this special function as a pseudo-SSIM function and represent
it by pS

pS(z; y) = pS(z; y)

qS(z; y)
= �z− y�2
�z,y� + c

f or z ∈ Z � (7)

In summary, strictly speaking due to the restricted domain,
it is not appropriate to use the pS function to measure
similarity between two different arbitrary images. Our purpose
in the development of the pS function is to efficiently embed
SSIM nature in model fitting with the objective of yielding
numerically stable schemes. For this, a solution in the suitably
constrained space is searched. Additionally, it requires the
provided test vector y to be centralized. It is interesting to note
that pS function is a ratio of MSE to correlation term between
test and unknown patch vector. In other words, pS function
further enforces affinity in correlation between the unknown
vector and the measured test vector. In the minimization
procedure, this roughly implies that for a given MSE sphere
of radius �, centered at y, the pS function emphasizes strong
candidacy for a higher positively correlated vector z.

III. FROM MODELING TO ALTERNATE LEARNING

Applications driven by the modeling framework require a
learning procedure to further boost the performance [32], [36],
[37]. Learning algorithms essentially determine the optimal
setting of model parameters. For this reason, an alternate
learning procedure is adopted by many authors [18], [33],
[36], [38]–[44]. An alternate learning procedure is essentially a
stepwise optimization procedure to capture the best hypothesis.
We briefly describe this learning procedure in a general setting

Consider, x and α are latent (or representation) variable and
model parameter respectively with a chosen model g(x; α).
Suppose the set � denotes restrictions on the latent variable
and model setting, representing plausible knowledge of the
problem. We are interested in solving the following problem,

minimize
xr ,α

N�
r=1

d(yr , g(xr ; α))

subject to (xr , α) ∈ � ; r = 1 · · · N (8)

where d is a suitable discrepancy measure and yr is the r th

observation from the training matrix Y = �
y1 · · · yr · · · yN

�
.

It is worth mentioning that the restrictions (�) further trans-
lates into the set of regularizers or/and constraints according
to the targeted application. The optimization problem (8) for
variables α and xr such that r = 1 · · · N is largely insolvable
simultaneously. Oftentimes, either variable coupling raises a
non-convex problem or simply, the problem is non-convex in
one variable and admits multiple global optima, for instance
[18], [36] [33], [38]. Consequently, one can only hope for
a sub-optimal solution [32]. This gives rise to an alternating
procedure to solve the optimization problem (8) and therefore
solves the problem for one variable at a time for a given
training set Y. The Algorithm 1 provides further details of the
process. Our attempted in this work, is to replace the fidelity
measure d in Eq. (8) by the pS function for a general setting.
For this, the corresponding solving strategies for the alternate
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Algorithm 1 Pseudo Code for Alternate Learning

learning components namely, latent coding and parameter
learning will be devised in the upcoming section.

IV. CONVEX REFORMULATION

In this section, our desire is to achieve the convex formu-
lation/program for pS function in order to efficiently solve
the latent coding stage in Algorithm 1. We will discuss two
formulations to do so. One approach is specialized for the
constrained case and the other approach leads to second
order cone programing (SOCP) [45]. This would help any
user to choose formulation according to their specification.
The importance of regularized linear models is well known:
they are very efficient both in computation and performance
[46]–[48]. So, we restrict ourselves to linear regularized or
constrained models for the rest of the paper. Mathematically,
a regularized linear model is expressed as f (x; α) = Dx with
regularizer or constraint on the latent variable x, where D is a
R

n×m matrix. We further assume that the regularizer/constraint
are convex. Theorem 1 translates the pS function based objec-
tive function under linear regularized model into the convex
program. Note that the choice of convex regularizer/constraint
is general, therefore the following convex program can be
applicable for broader range of applications. In Section IV-B,
an efficient solver is discussed to solve this convex program.

Theorem 1: Suppose model f (x; α) is Dx and the set
{�i |�i : Rm → R+, i = 1 · · · r} and {�i |�i : Rm → R, i =
1 · · · k} are convex regularizer and constraint set, respectively.
If compact notation of DTy is dy then the following holds

minimize pS(y, Dx)+�r
i=1 λi�i (x)

subject to x ∈ dom(pS)

≡
minimize p + q +�r

i=1 λi�i(x)

subject to dT
y x + c ≥ 0, q−p ≥ 0����y − Dx

q

���� ≤ p
(9)

minimize pS(y, Dx)
subject to x ∈ dom(pS)

�i (x) ≤ Li

for i = 1 · · · k
≡

minimize
1

w
�wy − Dz�2

subject to �i (z) ≤ 0
for i = 1 · · · k
w ≥ 0
dT

y z+wc = 1

(10)

Proof: See appendix A �

Algorithm 2 Dinkelbach’s Algorithm [51]

A. Matrix/Dictionary Learning

Olshausen and Field [49], [50] first introduced dictionary
learning procedure to understand HVS. Later, such MSE
based matrix learning found numerous applications in image
reconstruction and classification problems [33], [37], [38].
In this section, our focus is to develop the algorithm for the
parameter (dictionary) learning stage in the Algorithm 1 for
the pS function. For the sake of simplicity, we do not include
any regularizer on dictionary. However, the applied procedure
can easily be extended for such cases. Notice that equivalent
convex forms (9) and (10) of the original problem are derived
to solve latent variable x for fixed dictionary D. So, we directly
optimize the original objective function for dictionary learning.

We further constrain atoms of D = [d1 · · ·dm ] such
that each atom has unity norm. This not only makes the
optimization problem stable, but also reflects that we are
interested only in direction and not in the magnitude. Further,
dictionary learning is performed atom-wise separately. This
sub-optimal dictionary learning approach is very common
and has been explored by many authors [18], [33], [36] and
obtained impressive results. Thus, for training data matrix
Y = �

y1 · · · yr · · · yN
�

and for corresponding latent codes
X = [x1 · · · xr · · · xN ], the final learning problem boils down to

minimize
d1···dm

N�
r=1

pS(yr , Dxr )

subject to
��d j

��
2 = 1 for j = 1 · · ·m

�yr ,Dxr � + c > 0 for r = 1 · · · N (11)

Clearly, the problem in Eq. (11) induces a non-linear fractional
program. The pioneering work [51] of Dinkelbach, may be
seen as a precursor of such fractional programing. In his sem-
inal article, constrained convex by concave (natural extension
for minimization task) program has been iteratively solved,
as shown in Algorithm 2. In our case, another interesting
benefit of using Algorithm 2 is that the operation 5 given below
can be solved for entire dataset in order to learn dictionary D
atom-wise.

In order to do so, our plan is to map the constrained problem
in Eq. (11) to operation 5 of Algorithm-2. Then, operation 5 is
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converted into an unconstrained objective using method of
multiplier (MOM) [52] and finally optimized using coordinate
descent algorithm [53], [54].

By incorporating definition of pS function in the Opera-
tion 5 of Algorithm 2, we have following objective function
in matrix form (for simplicity we omit iterate variable k)

F = �Y− DX�2F − Tr((YSt )
T DX) (12)

where St is a diagonal matrix diag(t1 · · · tr · · · tN ) such that
any tr = pS(yr , Dxr ). In terms of the i th atom contribution,
Eq. (12) reduces to���Y− [DX]/ i − di xr T

i

���2

F
− Tr((YSt )

T ([DX]/ i + di xr T
i ))

(13)

Here, [DX]/ i encodes DX without i th column and row of D
and X, respectively and xr T

i is the i th row of X. Suppose,
E/ i = Y − [DX]/ i and denoting xr T

i (YSt )
T by β ∈ R

n (for
simplicity we omit the index i ), then Eq. (13) reduces to���ET − xr dT

���2

F
− βT d (14)

Therefore, the term affecting only the j th component of d is���ET
j − xr d j

���2

2
− β j d j (15)

where ET
j is the j th column of ET matrix. Next, we simplify

the constrained part of operation 5 in Algorithm-2. For this,
we first deal with the constrained set �xr D,yr �+c > 0 for r =
1 · · · N . The constraint associated with arbitrary observation y
and corresponding latent variable x can be written as

ξ ≡
m�

p =i

x p(dT
py)+ xi (dT

i y)+ c = g + xi (dT
i y)

We see that the contribution of the j th coordinate is (for
simplicity the index i is omitted)

ξ j ≡ g� + x y j d j

where g� is equals to g + x
�

k = j dk yk .
Suppose index set I is defined such that I ⊆ {1 · · · N}

and r ∈ I if r th latent-observation pair (xr , yr ) violates
the constraint. Therefore, the augmented penalty term of
MOM [52] for j th coordinate becomes�

r∈I
[(g�ρ + x y j d j )

2]r − ρ2
r (16)

where [.]r operator represents argument with respect to r th
observation, g�ρ = g� +ρ and, ρr is the multiplier correspond-
ing to r th observation. Considering only relevant in Eq. (16)
containing optimization variables, we have

2d j

�
r∈I
[g�ρx y j ]r + d2

j

�
r∈I
[(x y j )

2]r

≡ 2d jω + d2
j ϕ (17)

where
�

r∈I [g�ρx y j ]r and
�

r∈I [(x y j )
2]r are denoted by ω

and ϕ, respectively. Finally, combining Eq. (15) and (17),
we can easily obtain the MOM expression. The resulting

MOM expression is finally optimized to get the update rule
given below for the j th component of dictionary atom d.

d j =
�ET

j ,xr � + β j /2− λω

�xr�22 + λϕ
(18)

where λ is the associated penalty parameter. The update rule
for any r th multiplier ρr is

ρ+r :=
�

ρ−r + �xr D,yr � + c r ∈ I
ρ−r else

(19)

After updating all components of d using Eq. (18), we finally
normalize the atoms of the dictionary D. In this way, after
executing updates for each atom, we have one dictionary
D update. Note that the above update rule can be easily
implemented in the distributed computing environment. The
performance of this learning technique will be discussed in
application Section VI.

B. Choice of Solver

Choosing a solver to solve convex program in Eq. (9)
or (10) for latent variable x is an important issue. Recently,
Brendan et. al. [55] originated a first order split conic solver
(SCS). Its attractive properties include low runtime complexity,
efficient handling of a broad range of large scale problems
and issuance of a token for infeasibility and unboundedness
of the convex program. Briefly, the SCS forms a linear KKT
system for the prototype convex problem and embeds two new
variables, which decode the status of the solution. This system
is proven to be self-dual and further posed as the feasibility
problem. The alternative direction multiplier (ADMM) is used
to solve posed feasibility problem. In order to improve the
convergence rate, over-relaxation and relative scaling strategies
have been adopted (for detail see [55]).

Computationally significant components in the SCS solver
are initialization and the iterative computing module. Main
modules of initialization are sparse LDL factorization [56]
and relative scaling. Sparse LDL factorization is a direct
method for efficient subspace projection and relative scaling
benefits the convergence rate in practice. It is worth mention-
ing that if for different inputs, the problem in hand permits
no alteration of data used in factorization, then the entire
initialization component of the solver is cacheable. For such
cases, the computational efficiency significantly improves,
depending on problem structure. Later we use this observation
for improving efficiency for a particular case.

V. IMAGE PATCHES AND CLUSTERING

Patch based methods stack patches, e.g. , y ∈ R
m (m

is the size of image patch) into a image to patch buffer
Y = �

y1 · · · yN
�
. Each element y of this patch-buffer captures

localized nature, for instance, homogeneous, texture, edges, etc
of the given image. Milanfar [57] suggested that an image filter
behaves differently for flat, edged or multi-oriented patches.
Guoshen and Shapiro [40] used oriented nature of patches
to initialize an mixture model. Wang and Moral [58] also
included the patch nature in their Gaussian factor mixture and
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finally adapted filtering by SURE [59] aid. We wish to take
benefit of such segregation. For this, we use oriented infor-
mation to make clusters using Harris detector [60]. In detail,
gradient pair (�yx ,�yy) of each patch y is computed to
form 2× 2 matrix My = [�yx �yy][�yx �yy]T . Afterward,
the eigen value pair (λh, λl ) such that λh ≥ λl is computed
efficiently for each My using,

λh = 0.5

⎛
⎝Tr(My)+



2

Tr(My)− 2 det(My)

⎞
⎠

λl = 0.5

⎛
⎝Tr(My)−



2

Tr(My)− 2 det(My)

⎞
⎠

where det and Tr are the determinant and the trace operator
respectively. The overall procedure for labeling each patch in
Y = �

y1 · · · yN
�

is in two-steps. In the first step, we labeled
any patch as oriented or non-oriented and in the second step,
non-oriented is classified into flat or multi-oriented label.
To execute the first step, the ratio λh/λl is used, since it
captures orientation information [58], [60]. Intuitively, if this
ratio is high, this means My approaches to rank 1 and
therefore, the patch exhibits orientation. We adaptively com-
puted a threshold value to declare a patch to be oriented.
In our implementation, the threshold value is identified by first
reducing the dynamic range of λh/λl for all vectors in Y using
sigmoid function [61] followed by normalization. Afterward,
the histogram is computed and finally Otsu’s method [62] is
applied to obtain the threshold value.

All patches having higher values than the obtained threshold
are identified as oriented patches and rest as non-oriented.
We have also tried various permutations to fit a sequence of
fixed threshold values on different images taken from BSD
dataset1 for the iterative scheme given in the Algorithm 3.
However, the threshold values computed from Otsu’s method
works better. Intuitively, it may be because Otsu’s method
uses statistical properties of available data. On the other
hand, it is very hard to find an optimal sequence of fixed
threshold values that performs well independently of the data
characteristics, especially in the iterative algorithm settings.
In the second step, we further classified non-oriented patches
into flat and multi-oriented patch labels. For this, we collected
λh for all non-oriented patches. Subsequently, normalized
them and evaluated mean μλh and variance σλh . Finally, the
threshold value was μλh − 3σλh . If the normalized λh value
of a non-oriented patch has lower value than the threshold,
we assign its candidacy to the flat group, otherwise to the
multi-oriented group. Furthermore, to find the exact member-
ship of candidate y in the flat group, the following low cost
test was applied

σy ≤ Cσ−
where C = 1.6 and σy and σ− are the estimated variance for
patch and image, respectively. Here, image variance σ− can be
computed using suitable algorithm, for instance Algorithm 3
in Section VI uses [63]. Only if the given patch passes the

1www.eecs.berkeley.edu/Research/Projects/CS /vision/bsds/

Algorithm 3 Proposed Ps-Sparse Denoising Scheme

Fig. 1. Oriented patches example. Left: Zoomed (location marked by dotted
yellow lines) oriented, flat and multi oriented patches in an Image. Right:
Corresponding map (Omap ) (a) Multi Oriented (green) (b) Oriented (blue)
(c) flat (red).

above test it is labeled as flat: otherwise it is labeled as
multi-oriented. An alternative useful interpretation of σy is the
deviation of y from its mean μy value in the chi-square sense
and therefore, it is a simple chi-square test against the expected
DC value. An example of such a labeling is shown in figure 1.

We further localize patch-nature using clustering in the
oriented and multi-oriented groups. The clustered patch meth-
ods have shown improvement in performance, for example,
in the seminal work of Dong et. al. [41], [64]. We apply the
well known K-mean [61] clustering technique in oriented and
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multi-oriented groups. However, instead of directly applying
K-means on raw data, high frequency information, as sug-
gested in [64], [65], is used in the K-means algorithm.
In summary, the above mentioned clustering approach is
stepwise and resembles divisive (top-down) type hierarchical
clustering [61]. The main difference is that at each different
level, the splitting algorithm is different. The applicability and
robustness of the said clustering scheme will be discussed with
respect to denoising application in Section VI.

VI. EXPERIMENT: DENOISING AND DEBLURRING

Denoising problem aims to find clean image Iac from
observable noisy image Iob. For our case we assume noise
is additive white Gaussian noise N (AWGN) of zero mean
and standard deviation σ . The mathematical representation of
the problem is

Iob = Iac +N (20)

Notice that because of additive Gaussian corruption, it is hope-
less to get actual clean image Iac and therefore, at best anyone
can only hope for its good estimate Îac. The goodness of
the estimate is measured by widely acceptable measures, e.g.,
PSNR, SSIM, etc. Researchers including Dabov et. al. [66],
Wang and Morel [58], Elad and Aharon [33], Dong et. al. [41],
[64], Yu et. al. [40], Zhang et. al. [44], Niknejad et. al. [43]
and many more have shown great interest in this non-obvious
problem. We further assume all image patches y obey the
following data model.

y = Dx + n (21)

where, D is the dictionary matrix and x is the latent vari-
able. Powerful theoretical analysis from compressive sampling
suggests to choose an overcomplete D and sparse x, as the
governing module.

Briefly, our patch based denoising procedure includes clus-
tering as preprocessing (elaborately discussed in Section V)
and sparsity prior general formulation discussed in Section IV
(see details in the Subsection VI-A). Afterwards, statistical
information about noise was also included in the scheme
(discussed in the Subsection VI-B). A detailed description of
the scheme is presented in Algorithm 3.

A. Formulation Fixing

In Section III we discussed embedding the pS function in
the general alternate learning procedure. In this section we
move one step further and apply �1-norm regularized linear
overcomplete model on general formulation given in Eq. (9).
Subsequently, the latent coding stage of learning Algorithm 1
boils down to sparse coding. The targeted optimization prob-
lem for our denoiser is translated into the following form

minimize
D,x

p + q + λ �x�1
subject to dy

T x + c ≥ 0, q − p ≥ 0����y − Dx
q

���� ≤ p (22)

where y ∈ R
m , D ∈ R

m×n , x ∈ R
n and dy ∈ R

n are
observable patch vectors, overcomplete dictionary (m < n),
sparse vector and projection of the observation on dictionary
rows, respectively. For our experiments, settings of m and
n are 64 and 256, respectively. It is worthwhile to mention
that the problem in (22) admits a non-unique solution similar
to its MSE based counterpart. For a given measurement y,
if (D∗, x∗) attains optimality, then by choosing P = diag(p)
for p ∈ {−1,+1}n, (D∗P, Px∗) are also optimal points. Note
that the final estimate is the product of D and x and therefore,
the mentioned ambiguity has no effect on the performance.

B. Algorithmic Calibration

For our denoiser, we assume that the variance σ of the added
AWGN is known. We can therefore embed this statistical infor-
mation in the denoiser to boost the performance. Many state-
of-the-art denoisers leverage such information; e.g., the KSVD
denoiser [33], the SA-BM3D [66] denoiser, etc. In our case,
suppose the given patch vector (say y) selects Eq. (22) after
identifying its cluster label (for details see Section V) for
further processing and the obtained latent (sparse) code is x.
As a result the patch estimate ŷ of patch vector y using
pS-sparse data model given in Eq. (22) is Dx. Consequently,
the support of obtained sparse x encodes the required dic-
tionary atoms in D. So to enforce obtained sparsity from
Eq. (22) a sub-dictionary Dsub is constructed using support of
sparse x. Further, based on noise characteristics of the given
problem statement, the estimated patch ŷ is required to project
on the variance-ball centered at ŷ using sub-dictionary Dsub.
In addition to this, we further enforce sparsity by including
sparse promoting attributes. Consequently, the final projection
equation becomes

x� ← minimize
x

�x�s s, t,
��ŷ − Dsubx

��2
2 ≤ C1σ

2 (23)

where s is a sparse promoting norm. Indeed, to keep compu-
tation low and maintain sparsity criteria, we choose the value
of s to be 0. Interested readers may refer to [67]–[69] for
detailed discussion on �0 and �1 sparsity and their interconnec-
tion. This projection module includes necessary smoothness
in the denoised image. Interestingly, a similar strategy has
been explored by Wang and Simoncelli [70] in the gradient
ascent/descent scheme for image synthesis. The inspiring work
of Dong et. al. [41] has further motivated us to embed smooth
sparse coefficients correction. For this, the sparse coefficients
of the dominated atoms of Dsub are further corrected by
patch residual r. where r is equal to y − ŷ. We assume
dictionary Dsub atoms corresponding to non-zero coefficient
in x� (Eq. (23)) to be the dominated atoms (say Dt iny). Corre-
sponding sparse coefficients r� are computed using Eq. (23).
Therefore, the final smooth sparse code becomes x� + r�.
However, for further structural correction on the obtained patch
estimate, we again back-project this estimate using Eq. (22).
Retrospectively, this back and forth projection naturally boils
down to an iterative scheme. A detailed description of the
proposed SSIM denoiser scheme is presented in Algorithm 3.
The coming sections discuss the learning procedure settings
and denoiser settings in detail.
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C. Comments on Learning Procedure and Setting
We have collected images from the BSD training dataset2

and converted them into gray scale. Afterward, labeling of
each patch for all images using stepwise clustering (explained
in Section V) is performed. At the end of the clustering
process, 70 subsets of patches for the oriented class and
100 patch subsets for the multi-oriented class are formed.
Note that the number of subsets chosen is based on the elbow
method.3 These subsets are learned independently using Algo-
rithm 1 of Section III. The latent coding step is processed using
the smooth translated version of Eq. (22) given in Eq. (38) via
SCS solver. Additionally, the parameter (dictionary) learning
step is accomplished by Algorithm 2 for one iteration, where
operation 5 is performed by Eq. (18) and (19) for three
iterations.

The dy combines training example y with optimization
variable x+ and x− in a linear equality constraint. Therefore,
Eq. (38) becomes a non-separable linear equality constraint.
The relative scaling parameters D, E, σ and ρ of the SCS
solver [55] depend on this linear equality constraint. Con-
sequently, we have non-cacheable factorization. Therefore,
a significant portion (15-25% in our case) of computing time
per example patch is spent in the factorizyation.

This observation characterizes some relevant and interesting
questions for Eq. (38). Is it really necessary to extract the
scaling parameter for each example separately? If not, then
how could we obtain a global parameter at least for an
individual cluster? and what are the necessary changes we
need to make in the optimizer? To answer these questions we
studied 2 methods, namely (A) and (B). In method (A) learn-
ing process, we apply scaling and factorization for each
example individually. In method (B), we pick the individual
cluster center (since, in a mean square error sense, the cluster
centers are the closest approximation to the respective cluster
members) to generate scaling and factorization and use it
for the learning of each cluster member. The said task also
requires necessary modification in LDL factorization of the
SCS solver which is derived in appendix B. We conduct
extensive experiments for denoising problem under cacheable
(method (B)) and non-cacheable (method (A)) initialization
and report this in Table-I. Further discussion on these results
will be carried out in the results Section-VII.

The � and maximum iterate K , settings of alternating
learning Algorithm-1, are set to 10−2 and 80, respectively.
The penalty parameter λ in Eq. (18) is set to 0.1. Addition-
ally, the intrinsic parameters of the SCS solver for sparse
(latent) coding stage (Eq. (38)) are 500, 10−3, 5 and 1.8 for
maximum solver iterate, solver tolerance, relative scaling and
over relaxation, respectively for both (A) and (B) methods.
Further, c and λ parameters of the Eq. (38) are set to 1 and
0.3, respectively. Finally, all learned dictionaries are initialized
with the overcomplete DCT dictionary.

D. Comments on Denoiser Procedure and Setting
For an appropriate setting of the denoiser, in Eq. (24),

we again analyze the denominator of Eq. (5) with respect to

2www.eecs.berkeley.edu/Research/Projects/CS /vision/bsds/
3https://bl.ocks.org/rpgove/0060ff3b656618e9136b

the data model Eq. (21). Notice that the Eq. (24) gives rise to
some interesting and insightful thoughts.

�y�22 + �z�22 = �y,y� + �z,z�
= �y,Dx + n� + �Dx,y− n�
= 2�y,Dx� + �y − Dx,n�

(absorbing 2) = �y,Dx� + 0.5�n,n�
(in numerator) = �y,Dx� + 0.5 �n�22 (24)

First, if ancillary scalars are omitted, we observe that pS and T
given in Eqs. (5) and (7), respectively approximate each other
for c = 0.5 �n�22. Second, the data model and the pS function
are applied locally: therefore, it is sufficient to know a 2nd

order characterization of the noise component �n�22 at the local
level. Notice that number of patches for given image is large,
for instance, 512×512 image has 255025 patches of size 8×8.
Therefore, computational requirement to estimate �n�22 is high.
Complexity in the estimation of �n�22 may further increase
because of the iterative nature of the scheme. Therefore,
we applied an heuristic i.e. we assume that the fraction of local
observation � �y�22 approximates 0.5 �n�22. We obtain value of
� empirically and kept it constant for all test images in Fig-2.
Corresponding results are reported in Table-II and Table-I for
both methods (A) and (B). Flat patches represent homogeneous
regions in real world images. As discussed in Subsection II-B,
the pS function is applied on zero mean patch vectors and
therefore suitable patches should have significant variation.
On the contrary, flat patches have almost zero variation and
thus, require a different mechanism to clean them. For this,
we iteratively perform group-wise thresholding on such flat
patches. First, inside a local window, similar flat patches are
collected and then subjected to only group-wise thresholding
in 3D transformed domain [17]. Finally, patches are aggregated
in their respective locations.

The settings of intrinsic parameters of SCS solver denoiser 3
to perform sparse (latent) coding (38) are 300, 10−2, 5 and
1.5 for maximum solver iterate, solver tolerance, relative
scaling and over relaxation, respectively for both the proposed
methods (A) and (B). The � in Eq. (24) is set to 0.4 for
lower noises (σ ≤ 40), else 0.15. The regularization parameter
for each cluster γl such that 1 ≤ l ≤ 170 is obtained
by cross-validation from cluster data set added with AWGN
set at σ=20. Note that we have evaluated the regularization
set independently for the methods (A) and (B). However,
in method (B), the cluster center is used to set the relative
scaling parameters of the SCS solver. In the upcoming section,
a detailed comparison of proposed denoiser with other state-
of-the-art denoising schemes is explored and discussed.

VII. RESULTS AND DISCUSSIONS

To verify the performance of our proposed methodol-
ogy, twenty test images (shown in Fig-2) were chosen. The
proposed methods (A) and (B) were executed in Matlab
environment. For dictionary learning, the method (B) was
significantly faster than the method (A). This was due to the
large training size of patch-buffer per cluster and subsequently,
the cumulative initialization time was significant (approxi-
mately 15-20 min) per cluster. However, denoising time of
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Fig. 2. Twenty test images labeled as 1 to 20. From left to right and top to
bottom.

Fig. 3. Denoising comparison for 4th test image with moderate noise
(σ = 20) corruption. Top row: original, the SA-BM3D [66] (SSIM = 0.781),
the NCSR [41] (SSIM = 0.773). Bottom row: the LINC [43] (SSIM = 0.759),
the GHP [44] (SSIM = 0.777) and the proposed method (SSIM = 0.779).

method (B) was 0.5-1.0 min faster than method (A). The
average denoising time for method (A) to denoise 256× 256
image was around 3.0 min on a PC (Intel i7-4790K at
4.4GHz). Our implementation is based on multi-core program-
ming. Performance of method (A) and (B) is compared in
the Table-I. It can be seen that method (A) performs better
than method (B) for moderate noise. However, performances
of both the methods in high noise are very close.

A. Comparison With Sparse Techniques

Table-II reports performance of the proposed method (A)
and four other state-of-the-art denoisers. The other denois-
ers are the SA-BM3D denoiser [66], Gaussian mixture
model (GMM) based linear estimator with neighborhood patch
clustering (LINC) denoiser [43], the non-locally centralized
sparse representation (NCSR) denoiser [41] and the gradient
histogram estimation and preservation (GHP) denoiser [44].
Each state-of-the-art denoiser has different traits. For instance,
Milad et. al. used Gaussian mixture model (GMM) with
a novel patch weighting scheme in the LINC denoiser.
Zhang et. al. pioneered the usage of a gradient histogram in
the GHP scheme. Dong et. al. addressed the correction of
sparse coefficients by non-local centralization in the NCSR
method and Dabov et. al. embedded principal component
analysis based spatial adaptation and collaborative filtering in
the SA-BM3D denoiser. In Table-II, the best two performing
methods’ index are highlighted in the average row.

Additionally, the bottom left of the Fig-7 plots the average
SSIM performance (last row of Table-II). Furthermore, one can

Fig. 4. Denoising comparison for 20th test image with moderate noise
(σ = 20) corruption. Top row: original, the SA-BM3D [66] (SSIM = 0.808),
the NCSR [41] (SSIM = 0.796). Bottom row: the LINC [43] (SSIM = 0.803),
the GHP [44] (SSIM = 0.800) and the proposed method (SSIM = 0.812).

Fig. 5. Denoising comparison for 20th test image with moderate noise
(σ = 50) corruption. Top row: original, the SA-BM3D [66] (SSIM = 0.599),
the NCSR [41] (SSIM = 0.577). Bottom row: the LINC [43] (SSIM = 0.570),
the GHP [44] (SSIM = 0.568) and the proposed method (SSIM = 0.601).

Fig. 6. Denoising comparison for 4th test image with moderate noise
(σ = 20) corruption. Top row: original, the SA-BM3D [66] (SSIM = 0.714),
the NCSR [41] (SSIM = 0.704). Bottom row: the LINC [43] (SSIM = 0.703),
the GHP [44] (SSIM = 0.713) and the proposed method (SSIM = 0.732).

observe that the proposed method achieves highly competitive
denoising performance. In terms of average SSIM results,
the proposed method (A) performs nearly to the SA-BM3D for
small to moderate noise corruption. For higher noise NCSR
and method (A) outperform.

Fig-6, 3, 4 and 5 visually compare various denoiser
responses for some test images. In Fig-6 (moderate corruption
i.e. σ = 20), one can observe that SA-BM3D, GHP and
the proposed method (A) perform well, corresponding to

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KANPUR. Downloaded on February 05,2022 at 03:59:24 UTC from IEEE Xplore.  Restrictions apply. 



2620 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE I

THE PSNR (dB) AND SSIM VALUES OF PROPOSED METHOD(A) AND METHOD(B)

zoom-box orange. However, LINC recovers details present in
the top right corner of the orange zoom-box but over-smooths
the other part. The NCSR, although not aggressively smooth
inside the orange zoom-box, still weakly preserves detail
presented in the top right region of the orange zoom-box.
On the other hand, if we compare visual performance in the
green zoom-box of Fig-6, the method (A) excels in visual
performance compared to other denoisers. It has been observed
that if an image contains large smooth regions, (for instance
1st (Lena) test image) the performance of LINC and NCSR
denoiser would be excelled as shown in the top right of Fig-7.
On inspection of the green zoom-box region of Fig-3, we can
identify its diverse nature, i.e. it contains texture portion at the
top, almost uniform portion at bottom, connected thin white
bar structures and a very fine detailed background. Due to
such diverse information, it may shed light on the behavior of
different denoisers. For example, the bottom region recovers

better in cases of SA-BM3D, NCSR and GHP denoisers, since
all these denoisers have correction strategies using neighboring
information. However, the top texture portion and background
details recover gracefully for the case of method (A) and GHP
denoisers. On the other hand, structural information of the
vertical bar is preserved in case of LINC, SA-BM3D and
the proposed method (A). Finally, Fig-4 and 5 compare 20th
(walkbridge) test image for the cases of moderate (σ = 20)
and high noise (σ = 50), respectively. On inspection of
zoom-box green in Fig-4, it is clear that for moderate noise,
SA-BM3D, GHP, LINC and the proposed method (A) recover
structural information. However, finer details are also recov-
ered gracefully in method (A). On the other hand, for very
high noise, the proposed method (A) preserves better structural
information than other denoisers as shown in Fig-5. We believe
that it is because the proposed algorithm iteratively builds
mutual consent between smoothing and structural module
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TABLE II

THE PSNR (dB) AND SSIM VALUES OF SA-BM3D, GHP, NCSR, LINC AND PROPOSED METHOD(A) ARE REPORTED.
THE BEST 2 AVERAGE VALUES OF PSNR AND SSIM ARE HIGHLIGHTED

as explained in Section-VI-B and thus, does not promote
aggressive smoothing.

B. Comparison With Deep Learning Techniques
In the era of deep learning, it is interesting to compare

proposed method with deep learning model based denois-
ing schemes. Table-III reports performance of the proposed
method (A) with other sparsity based schemes and the state-
of-the-art deep learning based denoising schemes with respect
to three different dataset, namely Kodak24,4 Test20 (shown

4http://r0k.us/graphics/kodak

in Fig-2) and Test405 (shown in Fig-8). The comparing deep
learning based frameworks reported in Table-III are Resid-
ual learning based CNN (DnCNN) [71] and Deep iterative
down-up convolutional neural network (DIDN) [72]. In the
DnCNN scheme, Zhang et. al. [71] elegantly applied resid-
ual learning to separate Gaussian noise using CNN in the
discriminative fashion. On the other hand, Yu et. al. [72]
modifies down-scaling and up-scaling layers of the U-Net [73]
for image denoising task in the DIDN scheme. We see

5http://decsai.ugr.es/cvg/CG/base.htm
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Fig. 7. SSIM vs corruption (σ ) Plot: Top-left: 4th test image Top-right: 1st
test image Bottom-left: 20th test image Bottom-right: Average.

Fig. 8. Test40: Forty test images labeled as 1 to 40. From left to right and
top to bottom.

from Table-III that the performance of proposed scheme is
highly competitive to other schemes for small and moderate
corruption. Fig-9 and 10 visually compare various denoiser
responses for given test images. In Fig-9 (moderate corruption
i.e. σ = 20), one can observe that DIDN, DnCNN and the
proposed method (A) perform well. However, other methods
weakly preserve details presented in the zoom-box. On the
other hand, on inspection of the zoom-box region of Fig-10,
again we can identify that structural contents are well pre-
served by DIDN, DnCNN and the proposed method (A).
It is interesting to port the proposed pS function in the deep
learning framework. This requires extensive study separately
and will be explored in the near future.

C. Comparison With Other Related Techniques

Recently, Wang et. al. [31] have came up with a new per-
spective and equipped popular regularization functionals with
structural similarity information in the nonlocal variational
modeling. In details, they elegantly equipped NLH1 and NLTV
regularization functionals with structural similarity informa-
tion by incorporating it in the corresponding nonlocal gradi-
ents. Afterward, ADMM and CG based optimization routines
were developed to solve corresponding problems (for detail
see [31]). Additionally, authors had found that NLTV based
variational model with CG solver i.e. SS-NLTV-CG [31] per-
formed considerably better relative to other variants. Table-IV

Fig. 9. Denoising comparison for 25th test image in Test40 dataset with
moderate noise (σ = 20) corruption. Top row: original, noisy, the DnCNN [71]
(SSIM = 0.781). Middle row: the DIDN [72] (SSIM = 0.786), the BM3D [17]
(SSIM = 0.769), the NCSR [41] (SSIM = 0.767). Bottom row: the GHP [44]
(SSIM = 0.768), the LINC [43] (SSIM = 0.762), and the proposed method
(SSIM = 0.778).

Fig. 10. Denoising comparison for 26th test image in Test40 dataset with
moderate noise (σ = 20) corruption. Top row: original, noisy, the DnCNN [71]
(SSIM = 0.795). Middle row: the DIDN [72] (SSIM = 0.789), the BM3D [17]
(SSIM = 0.781), the NCSR [41] (SSIM = 0.777). Bottom row: the GHP [44]
(SSIM = 0.784), the LINC [43] (SSIM = 0.776), and the proposed method
(SSIM = 0.787).

reports performance comparison of the proposed method(A)
with available results of SS-NLTV-CG [31] scheme for various
test images. Furthermore, one can observe that for low level
corruption both techniques perform very closely. However, for
moderate and high corruption proposed method achieves better
performance. Again we see that the proposed method(A) is
quite competitive.

D. Restoring Blur and Noisy Images

Deblurring problems are typically formulated as inverse
problems and modeled as Iob = H Iac + N , where Iac is
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TABLE III

THE AVERAGE PSNR (dB) AND SSIM VALUES OF DNCNN, DIDN, BM3D, NCSR, GHP, LINC AND PROPOSED METHOD(A) ARE REPORTED

TABLE IV

THE PSNR (dB) AND SSIM VALUES OF THE SS-NLTV-CG [31]
SCHEME AND PROPOSED METHOD(A) ARE REPORTED

the image to be estimated while Iob is the observed degraded
image. The degradation is caused due to linear blur operator
H and added AWGN noise N . Notice that if H is the
identity operator then deblurring problem reduces to denoising
problem. In this section, the proposed method is tested for
non-blind image deblurring. Our simulation setting is similar
to [31] i.e. Gaussian blur kernel (fspecial(‘gaussian’, 21, 1))
and Moffat blurring function (psfMoffat([21 21], 3, 5)) were
used. In detail, the reference image first convolves with the
said blur kernel and subsequently Gaussian noise N (AWGN)
of zero mean and standard deviation σ = 10 is added to
generate final distorted image. Table-V lists out the PSNR and
SSIM values of the proposed method and SS-NLTV-CG [31]
scheme reported in [31]. We see that the proposed method
achieves highly competitive performance and even better in
some cases.

TABLE V

THE PSNR (dB) AND SSIM VALUES OF THE SS-NLTV-CG [31]
SCHEME AND PROPOSED METHOD(A) FOR

DEBLURRING ARE REPORTED

VIII. CONCLUSION AND FUTURE WORK

In this paper, we developed the pS function that surrogates
SSIM behavior as fidelity measure in model fitting and learn-
ing. Subsequently, an iterative procedure has been developed
as denoiser that tries to reach mutual consent of both the
smooth operation and the structural fidelity via the above
learned model. Thanks to the power of SCS conic solver, this
leads to a computationally efficient algorithm for learning and
fitting tasks. Extensive experimental results have demonstrated
that the proposed scheme can preserve the sharpness of the
edges and suppress undesirable artifacts. This work clearly
further indicates the importance of SSIM fidelity as exten-
sively explained in [3]. In addition to Gaussian denoising,
it would be interesting to study pS function with different
noise distributions. It requires separate extensive study. For
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instance, what regularization should be taken and how to
embed noise information in the corresponding scheme. This
can be one of the possible research works in the future. The
proposed framework has also been applied for deblurring task.
However, it would be interesting to study pS function with
other restoration tasks, for example, image inpainting, super-
resolution, etc. The said applications will be further explored
in the future work.

APPENDIX A
PROOF OF THEOREM 1

It is obvious that for �� = {x | dT
y x+ c = 0} ∪� such that

dom(pS) is equal to � = {x | dT
y x + c > 0}, following P1

and P2 problems are equivalent

(P1) minimize pS(y, Dx)+
�k

i=1
λi�i (x)

subject to x ∈ �

≡ (P2) minimize pS(y, Dx)+
�k

i=1
λi�i(x)

subject to x ∈ �� (25)

because the P1 equation is feasible by definition and above
added set does not alter the optimal point. Subsequently,
we rearrange the P2 equation in the epigraph using the
definition of pS function

minimize t +
�k

i=1
λi�i (x)

subject to �y − Dx�2 ≤ tw

dT
y x + c = w, w ≥ 0 (26)

Note that by definition t and w are non-negative and therefore,
tw = (t/2+w/2)2 − (t/2−w/2)2. Suppose t/2+w/2 = p
and t/2 −w/2 = q , then we have w = q−p, t = q + p and

�y − Dx�2 ≤ p2 − q2 ≡
����y − Dx

q

���� ≤ p (27)

Finally, substituting t and w and using (27), we establish
SOCP equivalent given in (9).

In order to prove (10), suppose (x∗) and (z∗, w∗) are optimal
points for the left and the right side of the equivalence in (10).
The sets X and Z, as defined below in the Eq. (28) for
convex functions �i ; 1 · · · k, are convex. Since, w �i (z/w) is
perspective function of �i convex function, hence w �i (z/w)
is also convex [45].

X = {x | x ∈ �, �i (x) ≤ Li , i = 1 · · · L}
Z = {(z, w) |w�i (z/w) ≤ 0, i = 1 · · · k,

dT
y z+wc = 1, w > 0} (28)

Further, if any x ∈ X obeys relation z = wx such that w =
1

dT
y x+c

> 0, then for i = 1 · · · k following holds

�i (x) ≤ 0⇒ w �i (z/w) ≤ 0 (29)

dT
y z+wc = 1 (30)

pS(y, Dx) = w�y − Dx�2 = 1

w
�wy − Dz�2 (31)

Subsequently, any feasible point x in X translates into feasible
point (z, w) in Z. Furthermore, Eq. (31) implies that objective

values are identical for the left and the right side of the
equivalence in (10). Consequently, we have

1

w∗
�w∗y− Dz∗�2 ≤ pS(y, Dx∗) (32)

Conversely, let any (z, w) in Z obey relation x = z/w then
for i = 1 · · · k following holds,

dT
y z+wc = 1⇒ w = 1

dT
y x + c

> 0⇒ x ∈ � (33)

w �i (z/w) ≤ 0⇒ �i (x) ≤ 0 for i = 1 · · · k (34)
1

w
�wy − Dz�2 = w �y − Dz/w�2 = pS(y, Dx) (35)

We conclude, any feasible point in Z mapped through relation
x = z/w is feasible to set X. Furthermore, by relation (35)
the objective values of both left and right side of Eq. (10) are
identical. Therefore,

pS(y, Dx∗) ≤ 1

w∗
�w∗y − Dz∗�2 (36)

Together with (32) and (36) we conclude the equivalence.

APPENDIX B
SIMPLIFICATION FOR CONIC SOLVER

Consider optimization problem related to �1 norm regular-
ized model with pS function recorded in Eq. (22). Suppose,
we construct x+ and x− from x in Eq. (22) as follows

x−i =
�
|xi | xi < 0

0 else

x+i =
�

xi xi > 0

0 else

Then, the following relations hold and are used to make
Eq. (22) smooth for SCS conic solver [55].

x = x+ − x−
0 � x+, 0 � x−

�x�1 = 1T (x+ + x−) (37)

Let y− Dx = v, then smooth version of Eq. (22) is

minimize p + q + λ1T (x+ + x−)

subject to Dx+ − Dx− + v − y = 0

w = dT
y (x+ − x−)+ c, q − p ≥ 0����v

q

���� ≤ p , x+ � 0, x− � 0 (38)

Clearly, optimization variables (x+, x−) in Eq. (38) decode
solution to original problem (22) by using relation x+−x− =
x. Additionally from theorem 1 and relation dy = DT y implies
that for each new test patch y, SCS solver requires to compute
sparse permuted LDL factorization [56] for linear constraint in
Eq. (38). Subsequently, execution of initialization step for each
test vector in SCS solver is inevitable. For details interested
readers may refer to Brendan et. al. [55]. In order to overcome
this problem in caching process, we first note definition of
matrix M from [55] as follows

M =


I AT

−A I

�
(39)
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where, A is constituted from the linear part of Eq. (38).
By rearranging this linear part, one can represent linear con-
strained related to dT

y as first row of matrix AT . Subsequently,
matrix M can be represented as

M =


1 aT(t)
−a(t) M�

�
(40)

where,

a(t) = �
dT

y dT
y −1 0

�
& M� =


I(N−1) AT

(N−1)

−A(N−1) I

�

Note that vector a is represented with argument t to emphasis
its varying nature with different observations y. In order to
deduce new global caching factorization for Eq. (38), we start
with borrowing Eq.(27) from [55],

I AT

−A I

� 
zx

zy

�
=


I AT

A −I

� 
zx

zy

�
=


wx

−wy

�
(41)

Considering Eq. (39) and (40) and simplifying above, we get


1 aT(t)

a(t) M�
�⎡

⎣ z0
zx\0
zy

�⎤
⎦ =

⎡
⎣ w0

wx\0
−wy

�⎤
⎦ (42)

Applying Sherman-Morrison-Woodbury formula and Schur
complement [74], we have following equation set

zx\0
zy

�
= S−1

�
wx\0
−wy

�
−w0a(t)

�

z0 = w0 − aT


zx\0
zy

�

S−1 = (M� − aaT)−1 = M�−1 + M�−1aaTM�−1

1− aTM�−1aT
(43)

The first two equations in the above set are used to obtain
unknown coefficients of Eq. (42) using the last equation in
the set.

Conclusively, global caching factorization is still achiev-
able but with respect to M� rather than M. In other words,
for given observation computationally non-iterative quantities
(e.g. M−1h) and iterative one (e.g. Eq. (41)) in [55] can be
made cacheable with respect to M� for different test vector
y. Additionally, M is computed for different test vector using
Eq. (43). In this way, we can avoid initialization process of the
solver for each new observation for improving computational
efficiency.
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