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ABSTRACT
Pharmacokinetic fluorescence optical tomography (PK-FOT) and
dynamic contrast enhancement (DCE) based multispectral optoa-
coustic tomography (DCE-MSOT) are non-ionizing alternatives to
nuclearmedicineand radiologicalmodalities suchasDCE-PET/CT/MRI
for spatially-resolved quantitative imaging of PK parameters and
fluorophore-concentrations. The present work introduces for the
first time in literature, a fluorescence photoacoustic tomography
(FPAT) based fully-nonlinear PK-FPAT reconstruction framework; in
a 2-compartment PK-model and optical-fluorescence modelled fre-
quency domain photoacoustic equation setting. From boundary
pressure measurements, we solve the dynamic FPAT (compartment-
concentration) state and (PK) parameter estimation problem with
two shape-basedRBF level-set reconstruction schemes in regularized
trust region settings; a Jacobian-based Gauss–Newton filter and our
newly proposed gradient-based gradient filter. The reconstruction
algorithms are validated in two dimensional settings with synthetic
cancer mimicking phantoms. Our PK-FPAT algorithms lead to more
stable and superior reconstructions (observed in reconstructed nor-
malized mean square errors having lesser-variation-between and
reduced-values-across data-noise levels, respectively) than those
obtained by PK-FOT for similar test cases, while, with respect to
current DCE-MSOT schemes, incorporating more complete forward
models including optical fluorescence and coupled-ODE compart-
ment models with no simplifying assumptions (within the accuracy
of the models considered) on the fluence, and reconstructing actual
(rather than scaled) PK-parameters, in a fully-nonlinear framework.
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1. Introduction

Pharmacokinetic rates of contrast agents provide quantitative physiological information
for analysing the vascular permeability characteristics of blood vessels in the tissue, in
early cancer detection and drug metabolism studies. Nuclear medicine and radiological
imaging modalities such as PET, MRI, or CT are used for pharmacokinetic (PK) imaging
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based upon the dynamic contrast enhancement (DCE) of the injected contrast agents[1–8].
Non-ionizing alternatives to these include those based upon fluorescence optical tomogra-
phy(FOT) in single modality [9–13] or hybrid FOT-X-ray-CT schemes[14–16], or multi-
spectral optoacoustic tomography(MSOT) [17–21]. First preliminary PK-reconstructions
using the upcomingmodality of fluorescence photoacoustic tomography(FPAT) have been
recently shown by us in a Gauss–Newton filter framework [22].

DCE-MSOT seeks to overcome the issues of poor-temporal resolution or spatio-
temporal resolution-tradeoff in CT/PET/MRI-based DCE, or the high cost of CT/MRI-
DCE systems that have good spatial and temporal resolution. Current DCE-MSOT
schemes [17,21] use region-of-interest compartment PK-models and constraints regard-
ing spatial/temporal properties of the fluence distributions, on the photoacoustic signals
(instead of the underlying concentrations) to obtain approximate scaled estimates of PK-
parameters via pixel-wise linear/nonlinear-model based regression, from first stage recon-
structions of the photoacoustic signal. We recall that the photoacoustic signal refers to the
absorbed optical energy density source obtained from inversion of the measured pressure
data. They differ from previous MSOT-based approaches such as in the qualitative [20] or
semi-quantitative [18] approaches, in that they give a quantitative DCE-MSOT framework
that does not need the photoabsorber-concentrations in each pixel as inputs, in addition
to dispensing with the need for optical fluence correction via suitable approximations on
the fluence distribution, such as the its spatial constancy in background components and
time-invariance.

However, primary conceptual limiting assumptions in [17] about the fluence only
changing in pixels where the contrast agent accumulates with the endogeneous fluence
staying constant, and, assuming that the contrast agent concentration in the plasma is
known as function of time; in addition to the fluorescence propagation not being con-
sidered in the modelling process. In our present work, we propose for the first time
in literature, a fully-nonlinear dynamic FPAT reconstruction framework from boundary
pressure measurements for quantitative PK parameters and fluorophore-concentrations,
using an optical-fluorescence modelled frequency-domain photoacoustic-equation and
coupled 2-PK-compartment-model. We thus do not need any assumptions on the flu-
ence or on the concentration of the fluorophore in the plasma(other than the use of a
coupled-compartment model).

PK-FOTworks such as in [9,11–13] utilize physiological/functional compartmentmod-
els to obtain tomographic reconstructions of PK-rates from measured excitances; these
rates are used to determine metabolic behaviour in the region of interest. Photoacoustic
tomography has been proposed as an augmentation to stabilize the FOT reconstruc-
tions by reconstructing the optical parameters from photoacoustically generated pressure
data; thus yielding fluorescence photoacoustic tomography (FPAT) [23,24]. Also, as is well
known, quantitative photoacoustic tomography, (resp. it’s fluorescence counterpart, FPAT)
while retaining good optical contrast properties, enables better resolution quantitative
optical-parameter information to be retrieved from greater depth [25] than is possible
using only diffuse optical tomography (resp., FOT).

The emerging of fluorescent markers having high quantum efficiencies and low
toxicity[26] necessitate the taking of fluorescence propagation into account in the pho-
toacoustic process, yielding FPAT formulations rather than the quantitative photoacoustic
tomography [23]. Fluorescence photoacoustic tomography (FPAT) has been proposed to
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recover the absorption coefficient of the fluorophore from measured pressure data, in a
static setting [23,24,27–29]. In [24,29], a two-step method is assumed, where the absorbed
optical energy density is reconstructed from the pressure signal followed by recovery of
the absorption coefficient from the absorbed optical energy density. The use of one-step
schemes in FPAT recovering the fluorophore absorption coefficient directly from the pres-
sure signal using Jacobian or gradient information in a one-step framework, have been
proposed recently in [23,27] and [28] corresponding to optical propagation being mod-
elled in the diffuse approximation and the full radiative transfer equation, respectively.
The motivation of using gradient-based schemes stems from the computational complex-
ity of the adjoint problem in the measurement Jacobian-based methods being O(N) (N
being the number of nodes in the domain) as compared to that for the adjoint problem in
costfunction-gradient computation being O(1)) [28]. On the other hand, the number of
iterations consumed by Jacobian-based reconstruction schemes such as theGauss–Newton
method are usually much less than that for the gradient-based BFGS-type schemes owing
to second-order information used in the Gauss–Newton method as against the first-order
information-based gradient schemes.

Shape-based reconstructions in tomographic imaging reduce the search space dimen-
sions and improve computational feasibility in large scale and dynamic problems, in
addition to potentially reducing clutter in limited-data reconstructions [30–33]. A 2D
Gauss–Newton filter-based PK-FOT reconstruction scheme has been formulated in a
radial basis function (RBF) based level-set framework [11]; the scheme uses the nonlin-
ear optical fluorescence-basedmeasurement equation and a coupled-ODE 2-compartment
PK-model.

The dynamic pharmacokinetic problem can be solved using statistical methods like
Kalman filter [9,10] or deterministic methods like Gauss–Newton filter [31,34]. We fur-
ther propose a gradient filter framework in our present work, to reduce the computational
complexity involved in the Jacobian-based Gauss–Newton filtermethod. The present work
proposes fully nonlinear Gauss–Newton filter (GNF) and gradient filter (GF) reconstruc-
tion schemes in a regularized trust-region framework for one-step PK-FPAT from photoa-
coustic pressure data, in an RBF-based level-set setting for a 2-compartment coupled-ODE
PK-model. AHermite interpolation-based noncompact-RBF representation is used for the
level-set description of the boundary of the inhomogeneity/pathology [31,32].

We mention with respect to DCE-MSOT formulations such as in [17,21], that, in
our complete-model-based PK-tomographic reconstruction framework, the coupled-ODE
2-compartment model-based dynamical state-equations used are directly in terms of
the concentrations and not approximations w.r.t an intermediate photoacoustic signal.
No assumptions are made on the fluence or underlying compartment-wise concen-
trations in the course of the formulation; the one-step reconstruction scheme takes
into account the full nonlinear relationship between the pressure data and the under-
lying concentrations/absorption-coefficients, without needing to reconstruct the inter-
mediate photoacoustic signal (the absorbed optical energy density). Moreover, the PK
parameters reconstructed in our work are the actual parameters and not their scaled
approximations.

The algorithmic methodology sets up a state-space model governing the tomographic
process using a 2-compartment model-based coupled-ODE state-equation and fluores-
cent photoacoustic measurement equation. The (time-varying) states are designated as
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the spatially-resolved compartment-wise concentrations, and the (temporally constant)
parameters are the spatially resolved pharmacokinetic parameters and volume fractions.
We then solve the corresponding state and parameter estimation problem with bound-
ary photoacoustic pressure measurements using regularized GNF and GF schemes in a
trust-region framework. For the GNF, we derive the requisite Jacobians relating the change
in the boundary measurements to the change in the exogeneous fluorophore’s pharma-
cokinetic rates, concentrations, volume fractions and the shape parameters. For the GF,
the gradients relating the change in cost function to the above mentioned parameters are
derived.

We havemodeled the photoacoustic process by the frequency domain (Helmholtz) pho-
toacoustic equation, and the corresponding optical propagation through tissue by a set of
coupled diffusion-approximation equations at the excitation and emission wavelengths.

The validation of the proposed algorithm is carried out on synthetic test cases of cancer
mimicking phantoms of invasive ductal carcinoma (IDC) and adenocarcinoma (AC) types,
for various noise levels in the data. To the best of our knowledge, this is the first PK-FPAT
formulation and study in literature.

The present work goes beyond the recent preliminary results presented by us [22] in
that:

(a) We have proposed and numerically validated a regularized gradient filter(GF) recon-
struction scheme in addition to the earlier Gauss–Newton filter(GNF) scheme.

(b) The detailed formulation and derivation of the GNF Jacobians and GF gradient and
corresponding schemes have been given in the present manuscript, and, detailed
numerical studies have now been included for tumour-mimicking phantoms of two
different kinds of cancer (invasive ductal carcinoma and adenocarcinoma) for vari-
ous noise levels in the data and importantly the results have been well quantified by
error-metrics.

This paper follows our earlier paper on pharmacokinetic fluorescence optical
tomography(PK-FOT) [11], and conceptually differs/builds from it in that: (a) We have
now obtained reconstruction schemes for the PK-FPAT problem; the earlier paper was
about PK-FOT, (b) we have proposed a regularized gradient filter reconstruction scheme
and apply it to PK-FPAT, in addition to the trust-region-based Gauss–Newton filter
scheme used in our previous work. (c) We have used non-compactly supported Hermite
interpolation-based RBFs in the present work as against the compactly supported RBFs
used in the previous work

In Section 2, we describe the fluorescence-based photoacoustic processmodel and com-
partment modelling of the fluorophore pharmacokinetics, in addition to stating the prob-
lem of PK-FPAT. In Section 3, we present the PK 2-compartment model-based state–space
framework, in a non-compact RBF-based level-set representation of the states and param-
eters. Section 4 derives the Jacobians and gradients needed for the GNF and GF schemes,
respectively, with Section 5 presenting the reconstruction schemes employed. Numerical
validation of the algorithms and discussion of results are contained in Section 5. Summary
and conclusions are given in Section 6. Appendix 1 contains the requisite expressions of
adjoint field calculations needed in gradient calculations for the GF. Appendix 2 contains
the definitions of the error measures. List of acronyms are given in Appendix 3.
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2. Background: tomographic process and problem statement

2.1. Process overview

Fluorescent contrast agents have the potential to aid cancer detection by binding to the
blood plasma, forming a macromolecule and leaking into the cancerous tissue [35]. After
mixing a drug with fluorophore marker and its injection into the body (using IV bolus),
laser light is irradiated into the region of interest at the excitation wavelength of the
marker and that, along with emitted fluorescent light create a heat source in the patho-
logical domain (photoacoustic heating), leading to a pressure wave propagating in the
medium. The compartmental concentrations and PK-rates of the injected fluorophores can
be tomographically monitored in the body with FPAT by using measurements of pressure
waves(originating from the fluorophore and haemoglobin) generated due to photoacoustic
heating of the region of interest.

Pressure-wave time-series are recorded at each measurement time (the time-span of
each such pressure time-series being very small compared to the measurement time spac-
ing). The pressure time-series at each measurement time is Fourier transformed into cor-
responding frequency domain pressure data (as shown in the numerical studies section);
in our work, the acoustic wave propagation model considered is the frequency-domain
Helmholtz equation. Fluorescent light propagation in the medium can be described using
coupled excitation-emission propagation equations in the diffusion approximation for
radiative transfer.

Reconstruction schemes are proposed by means of obtaining the best possible optical
parameters that fit the measured data, in our work, via the minimization of a nonlinear
least squares data-residual-functional, as described in the sequel.

2.2. Models for the FPAT process

When a short-pulsed laser source (fulfilling the thermal confinement conditions) illumi-
nates the tissue, energy is absorbed by the fluorophores and chromophores. The absorbed
energy causes thermoelastic expansion in the tissue, which leads to a pressure wave gen-
eration. The propagation of the pressure wave in an homogenous acoustic medium with
the excitation pulse satisfying the thermal and stress confinement conditions is described
in the frequency domain by the photoacoustic equation [36]:

(∇2 + k2)p(�r, k) = ik
vβ
cp

h(�r) in� (1)

with the Sommerfeld radiation condition given by [37,38]

�n · ∇p(�r, k)+ ikp(�r, k) = 0 on ∂� (2)

where v is the speed of acoustic wave in themedium, β is the thermal expansion coefficient,
cp is the specific heat, k = ωp/v is the wave number at angular frequency ωp, and h(�r) is
the absorbed optical energy density, given by:

h(�r) = (μaxf (�r)+ μaxi(�r))�x(�r)+ (μamf (�r)+ μami(�r))�m(�r). (3)

where (′x/m′ stands for either ‘x’ (excitation) or ‘m’ (emission)) �x (J/mm2) is the exci-
tation photon density, �m (J/mm2) is the emission photon density, μa(x/m)i and μa(x/m)f
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being the absorption coefficients due to intrinsic chromophores and extrinsic fluorophores,
respectively. In the diffusion approximation, the absorption coefficients and the photon
density are related through the coupled diffusion equations [39]:

−∇ · (Dx∇�x)+ kx�x = Sx
in�

−∇ · (Dm∇�m)+ km�m = η�x

(4)

subject to the Robin boundary conditions

�n · (Dx∇�x)+ bx�x = 0
on ∂�

�n · (Dm∇�m)+ bm�m = 0
(5)

Dx/m = 1
3(μa(x/m)i+μa(x/m)f +μ′

s(x/m))
, η = φqμaxf , bx/m = 1−R(x/m)

2(1+R(x/m))
,

kx/m = μa(x/m)i + μa(x/m)f
Sx (J/mm2) is the laser excitation source, Dx/m is the diffusion coefficient at exci-

tation/emission wavelength, kx/m is a decay coefficient, μ′
s(x/m) being the respective

reduced scattering coefficient, (all in mm−1) at the two wavelengths, η is the quan-
tum yield (as defined in [24,40]) and φq being the fluorescence quantum efficiency
[24,29,40–42], bx/m are Robin boundary coefficients, Rx/m are the Fresnel reflection
coefficients.

2.3. Compartmental pharmacokinetic models

A two compartment model is used [9,11,43], to describe the fluorophore exchange in the
region of interest, which is divided into a plasma compartment and an extracellular and
extravascular space (EES) compartment as shown in Figure 1. The concentration of the flu-
orophore is linked to the absorption coefficient of the fluorophore by the following relation
[9]:

μa(x/m)f (�r, t) = ln10 · ε(x/m) · C(�r, t) (6)

where εx/m is the fluorophore molar extinction coefficient, C(�r, t) is the total fluorophore
concentration in the tissue.

We note from Equation (6) that we can write μamf ≡ εsμaxf , where εs ≡ εm/εx.
Now, C(�r, t) is given by [9]

C(�r, t) = vp(�r)Cp(�r, t)+ ve(�r)Ce(�r, t) (7)

Here, Cp (μM) and Ce (μM) (respectively, vp and ve) denote the concentration
(respectively, volume fraction) of the fluorophore in the plasma and EES compart-
ment, respectively. Volume fraction of a particular compartment is defined as the ratio
of volume of distribution in that compartment to the total volume of distribution
(V = Ve + Vp).
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Figure 1. Block diagram of two compartment model.

The dynamic concentration of optical parameters μaxf and μamf is assumed to vary as
per the compartment-modelled coupled ODE-system [9,11]

Ċ(�r, t) = K(kpe(�r), kep(�r), kelm(�r))C(�r, t) (8)

where �r denotes spatial coordinates and C(�r, t) =
[
Ce(�r,t)
Cp(�r,t)

]
; K(kpe(�r), kep(�r), kelm(�r)) =[ −kep(�r) kpe(�r)

kep(�r) −(kpe(�r)+kelm(�r))
]

Here, kpe (s−1) denotes the transfer rate of fluorophore from plasma to EES compart-
ment, kep (s−1) denotes the transfer rate of fluorophore from EES to plasma compartment,
kelm (s−1) is the rate at which fluorophore is eliminated from region of interest. In the
case of invasive ductal carcinoma (IDC), the value of kpe is reported in the range of 0.069
inside the tumour and 0.03 outside the tumour [10], kep is reported around 0.049 inside
the tumour and 0.017 outside the tumour [10]. High pharmacokinetic rates in the tumour
region results in high volume fractions; the range of ve (resp. vp) being given in [7](resp.
[35,43]) as 0.2 to 0.5(resp. 0.013 to 0.067).

The discrete time state model corresponding to time instants tj and tj+1 (indexed as j
and j+ 1, respectively) for (8) is given by [9,44]

C(�r, j + 1) = T(τ11(�r), τ12(�r), τ21(�r), τ22(�r))C(�r, j) (9)

where

T ≡ eK�t ≡
[
τ11(�r) τ12(�r)
τ21(�r) τ22(�r)

]
(10)

and�t = tj+1 − tj is the measurement sampling interval.

2.4. The reconstruction problem

The inverse problem of reconstructing from the pressure data the unknown pharmacoki-
netic rates (kpe, kep, kelm), concentrations (Ce and Cp) and volume fractions (ve and vp)
is proposed with non-compact RBF level-set based GNF and GF schemes. The sensitivi-
ties of the measured data as well as the cost-function-gradient with respect to unknown
parameters are derived using the frequency domain Helmholtz equation (to model pres-
sure signal propagation) and coupled diffusion equation (to model light propagation)
for reconstructing the pharmacokinetic parameters directly from the boundary pressure
measurements.
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3. RBF level-set based 2-compartment PK state-model

3.1. Shape representation

The contrast in the pharmacokinetic rates [9,11] around the cancerous tissue compared to
the healthy tissue is due to leaky vasculature around the cancerous tissue [35,45]. Assuming
the rates to be piece-wise constant, they can be represented as [11,31]:

kξ (�r) = kiξ (�r)Hε(s(�r))+ koξ (�r)(1 − Hε(s(�r))) (11)

where ξ ∈ {ep, pe, elm}, and kiξ (�r) and koξ (�r) are the values inside and outside the tumour
region, respectively. Hε represents a mollified Heaviside function with transition half-
width ε [32,46], and s(�r) is a function whose zero level-set represents the boundary of
the tumour, and whose value is positive (resp. negative) inside (resp. outside) the tumour
region; in our work we use a signed-distance function for s.

In this work s(�r) is represented using RBF via aHermite interpolation scheme [31,32,47]
to fit a few on-curve points (called the centres of the RBF, and denoted by rc1, . . . , r

c
m, m

denotes the number of RBF centres used) and the normal unit vectors to the boundary at
those points (denoted by n1, . . . ,nm where ni ≡ (cosθ ci , sinθ

c
i ) for some θ ci ). The level-set

function can be written in the form as [32]

s(r) = ps(r)+
m∑
j=1

[cj�(r − rcj )− dj(Dnj�)(r − rcj )] (12)

where ps(.) is a (typically) low-order polynomial of degree k−1, �(.) ≡ φ(‖.‖), with φ
in our work being an unbounded and non-compactly supported real valued function on
[0,∞] called the basic function; � is chosen a twice continuously differentiable func-
tion conditionally positive definite of order k in the appropriate sense, and Dnjψ(r) ≡
nj · (∇ψ)(r) denotes the directional derivative functional w.r.t a unit normal nj. The
coefficients c and d are RBF coefficients.

In the two-dimensional setting considered in this work, the shape parameters are the
RBF-centre coordinates {rcj ≡ (xcj , y

c
j ), j = 1, . . . ,m} and unit normals represented using

the angles {θ jc, j = 1, . . . ,m}, corresponding in the vector notation to xc, yc, θ c.
The concentrations Ce and Cp and volume fractions ve and vp are spatially dependent

on pharmacokinetic rates. Hence their level-set representation is given by [11]:

C(e/p)(�r, j) = Ci
(e/p)(j)Hε(s(�r))+ Co

(e/p)(j)(1 − Hε(s(�r)))
v(e/p)(�r) = vi(e/p)(�r)Hε(s(�r))+ vo(e/p)(�r)(1 − Hε(s(�r)))

(13)

where Ci
(e/p)(resp. v

i
(e/p)) and Co

(e/p)(resp. v
o
(e/p)) are assumed piecewise constant values of

concentration(resp. volume fraction) inside and outside the tumour, respectively. Using
the level-set representation of concentrations and volume fractions, the relation between
μa(x/m)f and C can be written at each time instant, in the form of Equation (11) as :

μ(�r, j) = ln10 · ε · [(Ce(j)ivie + Ci
p(j)v

i
p)Hε(s(�r))+ (Co

e (j)v
o
e + Co

p(j)v
o
p)(1 − Hε(s(�r)))]

(14)
where the subscripts on μ have been omitted for ease of notation.
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3.2. State equation

We set up the compartment model-based state equation as we have previously derived in
[11], and is written as

�j+1 = A(�j) ·�j ≡ fj(�j) (15)

where f denotes the nonlinear state transition function and, matrix A(�j) is

A(�j) ≡
⎡
⎣Ti 0 0
0 To 0
0 0 I3m+10

⎤
⎦ ; Ti/o =

[
τ
i/o
11 (k) τ

i/o
12 (k)

τ
i/o
21 (k) τ

i/o
22 (k)

]
(16)

where�j is defined as

�j ≡ {Ci
e(j),C

i
p(j),C

o
e (j),C

o
p(j)︸ ︷︷ ︸

C

, kipe, k
i
ep, k

i
elm, k

o
pe, k

o
ep, k

o
elm︸ ︷︷ ︸

k

, vie, v
o
e , v

i
p, v

o
p︸ ︷︷ ︸

v

, xc, yc, θ c︸ ︷︷ ︸
γ

}. (17)

with the assumption that the state equation is exact. The state equation is assumed exact
in the sense that we do not consider any process noise. This is why we can express the
state at any time instant in terms of the initial state, thus significantly reducing the com-
putational requirements and possible numerical inaccuracies, by using a reduced number
of unknowns and not requiring the often difficult tuning of the unknown process noise
statistics as in a Kalman filter.

3.3. Measurement equation

Pressure time-series measurements are taken for each measurement time at the detector
locations to track the changes in the fluorophore concentration; the time-span of each such
pressure time-series being very small compared to the measurement time spacing. At each
measurement time, the time domain pressure signal is converted to the frequency domain
using discrete Fourier transform. The magnitude spectrum and the frequency spacing in
the discrete Fourier transform sequence are used to determine the set of angular frequen-
cies. The range of frequencies considered are based on the Fourier magnitude spectrum
of the data, as explained in the numerical studies section.The predicted measurements are
obtained by solving the steady state coupled diffusion equation and photoacoustic equation
using finite element method in the frequency domain.

The matrix form of the finite element equations for lth frequency is given by

Alpl = Blh (18)

where the finite elementmatricesAl andBl are given in the appendix of [23], for l = 1 . . . L,
with L being the number of angular frequencies ωp used.

The discretized heat source h is given by:

h = (μaxf + μaxi)	�x + (μamf + μami)	�m (19)

where the nodal values of the excitation and emission fluences, �x and �m, respectively,
are calculated using finite element discretization as in [23,39]. Hence the complex pressure
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measurements at detectors, gl corresponding to photoacoustic source h is given by:

gl = Dpl = D(Al)−1Blh ≡ Z lh (20)

whereD is aND × Nmatrix (N is the number of discretized nodes) with each row all zeros
except for 1 in the column corresponding to a detector location.

The discrete-timemeasurement equation at time j can thus bewritten from (20) in terms
of the concatenated measurement vector at that time instant y

j
and the corresponding

(concatenated across frequencies) measurement function g
j
(= [g1

j
; g2

j
; · · · ; gL

j
]) is given

as:

y
j
≡ g

j
(�j) = g

j
(fj−1(. . . f0(�0))) (21)

The measurement equation for time instant j and for frequency l can be written as:

gl
j
(�j) = Z lh(�j) = Z l((μaxf (j)+ μaxi)	�x(j)+ (μamf (j)+ μami)	�m(j)) (22)

The unknown states are the compartment-wise fluorophore concentrations and the
unknown parameters are the PK-rates and volume fractions. These unknown states and
parameters are related to the boundary photoacoustic pressure measurements by the
measurement equation as in Equations (21 ) and ( 22), with the relation between the con-
centrations and the absorption coefficients being given as in Equation (14). This clearly
defines the relation between the measured photoacoustic pressure on the boundary to the
unknown states and parameters. In summary, the PK-FPAT state-variable model consist-
ing of the state-model Equation (15) and the measurement model Equation (21) has now
been set up in order to solve for the states (Ci

e,Ci
p,Co

e ,Co
p) and the parameters (k, v, γ ).

The solution of this problem is presented below in two reconstruction schemes, the
Jacobian-based GNF and the gradient-based GF. In this work, the state (concentration)
and parameter (pharmacokinetic as well as shape parameters) estimation problem is solved
using two deterministic schemes, the Jacobian-based GNF [11,31,34] and the gradient-
based GF that is introduced in this work.

4. GNF and GF frameworks for RBF level set-based PK-FPAT

4.1. Regularized least-squares problem

The Tikhonov regularized nonlinear least squares problem to be minimized with respect
to the parameter of interest,�0 is given by [11,31,34]:

�̂0 = argmin�0 F(�0) := 1
2

∥∥(g(�0)− y)
∥∥2 + τ‖�0 −�c‖2 (23)

where τ is the regularization parameter used with the minimum-norm regularization
functional, where �c represents an a priori known constant vector; y and g(�0) are the
concatenated set of observed and model-predicted measurements, respectively.

In our work, we have solved the above nonlinear regularized least squares problem in a
trust region setting in two frameworks; using a (Jacobian based) Gauss–Newton algorithm
to obtain the corresponding GN filter and using a gradient-based scheme to obtain a cor-
responding filter, that we call the gradient filter (GF). In this section, we now evaluate the
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Jacobian and gradient terms that are needed to solve the above least squares problem with
GNF and GF schemes, respectively. In the following section, we outline the overall trust
region-based optimization schemes used.

4.2. The basic GNF scheme and Jacobian evaluations

The solution to the above minimization problem is first presented with the trust region-
based iteratively regularized GN algorithm developed in [11]. A regularized GN update p�
solves at the current iterate� [11,31,48,49]

p̂� = argminp�

∥∥∥∥ J(�)p� + r√
τ(�−�c + p�)

∥∥∥∥2 (24)

where the Jacobian J and the residual r are given by

J =

⎡
⎢⎣

J0
...

JM−1

⎤
⎥⎦ ; r =

⎡
⎢⎣

r0
...

rM−1

⎤
⎥⎦ ; (25)

M denotes the number of time instants, Jacobian and residual at time instant j are given by

Jj = [J1j ; J
2
j ; · · · ; JLj ]; rj = [r1j ; r

2
j ; · · · ; rLj ]; (26)

The residual at time instant j, for photoacoustic frequency l, is given by

rlj = glj(�j)− ylj = glj(fj−1(. . . f0(�0)))− ylj; (27)

The Jacobian at time instant j and for photoacoustic signal frequency l is given by:

Jlj = Gl
j[�j]Fj−1[�j] . . . F0[�0] (28)

where Gl
j[·] and Fj−1[·] are the Jacobian matrices corresponding to measurement glj(·) and

state transition fj−1(·) functions, respectively. The Fj−1[·] is evaluated as in [11], and the
Gl
j[·] is calculated as shown in the following subsection.

4.2.1. Jacobian ofmeasurement function
The Jacobian of the measurement function (20) with respect to the states and parameters
at a given time instant j is given by

Gl
j =

⎡
⎢⎣ ∂glj
∂C(j)︸ ︷︷ ︸
ND×4

∂glj
∂k︸︷︷︸

ND×6

∂glj
∂v︸︷︷︸

ND×4

∂glj
∂γ︸︷︷︸

ND×3m

⎤
⎥⎦ (29)

where ND is the number of detectors. The sensitivity equation with respect to
α ∈ {Ci

e(j),Ci
p(j),Co

e (j),Co
p(j), kipe, kiep, k

i
elm, k

o
pe, koep, k

o
elm, v

i
e, voe , vip, vop, xc, yc, θ

c} is calcu-
lated using the following chain rule:

∂glj
∂α

= Z l

⎡
⎣ ∂hj

∂μ
j
axf

×
∂μ

j
axf

∂α
+ ∂hj

∂μ
j
amf

×
∂μ

j
amf

∂α

⎤
⎦ (30)

with Z l and hj being defined in Equation (20) and Equation (19), respectively.
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Recalling that μamf = εsμaxf , we obtain the derivative of hj with respect to μj
axf as an

N × N matrix, given by:

∂hj

∂μ
j
axf

= �x
∂�

j
x

∂μaxf
+ diag(�j

x)+�m
∂�

j
m

∂μaxf
+ εsdiag(�

j
m) (31)

where�x = diag(μaxf + μaxi), and�m = diag(εsμaxf + μami).
The sensitivity of the fluence �m and �x with respect to μaxf are evaluated using the

adjoint method, where the adjoint fields are calculated with the Dirac source present on all
the nodes in the domain.

The sensitivity of μaxf with respect to unknowns � can be derived as given in [11].
In the present work, we have used non-compactly supported Hermite interpolation-based
RBF representation, the necessary shape derivatives ∂s

∂γ
are derived in our earlier work [32].

4.3. Basic GF scheme and gradient evaluation

In order to solve the basic nonlinear least squares problem Equation (23) in a gradient-
based setting, we use a quasi-Newton BFGS scheme, which in turn requires the evaluation
of gradients of the costfunction. This gradient-based deterministic manner of solution of
Equation (23) is called the gradient filter (GF) by us in line with the nomenclature of the
Gauss–Newton filter, to solve the state and parameter estimation problem associated with
a dynamic state variable model.

We recall that the motivation of using gradient-based schemes stems from the compu-
tational complexity of the adjoint problem in the measurement Jacobian-based methods
being significantly less than that for the adjoint problem in costfunction-gradient compu-
tation [27,28]. The gradients of the least squares FPAT problems in a static setting have
been recently derived by us in [27,28]. Here we evaluate the gradient for the regularized
least squares formulation of the dynamic PK-FPAT problem.

Consider the Tikhonov regularized least squares problem

F(�0) = 1
2

∥∥(g(�0)− y)
∥∥2 + τ‖�0 −�c‖2 (32)

= 1
2

(
rT0 r0 + rT1 r1 + . . .+ rTM−1rM−1

)
+ τ‖�0 −�c‖2 (33)

The gradient of this cost function is given by

G = ∂F
∂�0

=
(
∂r0
∂�0

)T
r0 + · · ·

(
∂rM−1

∂�0

)T
rM−1 + 2τ(�0 −�c) (34)

= G0 + · · · + GM−1 + 2τ(�0 −�c) (35)

The derivatives of the measurement residuals at various time instants with respect to�0 is
given as

∂rj
∂�0

= ∂gj
∂�0

= Gj[�j]Fj−1[�j−1] . . . F0[�0] (36)
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Denoting Gj ≡ [G1
j ;G

2
j ; · · · ;GL

j ], where the G
l
j, l = 1 . . . L, are defined in Equation (29),

we can write

Gj = Z ∂hj

∂μ
j
axf

∂μ
j
axf

∂�j
(37)

where Z = [Z1;Z2; · · · ;ZL], where the Z l, l = 1 . . . L, are defined in Equation (20).
The gradient term for time instant j in Equation (35) can thus be written as

(
∂gj
∂�0

)T
rj = (F0[�0])T . . . (Fj−1[�j−1])T(Gj[�j])Trj

= (F0[�0])T . . . (Fj−1[�j−1])T
⎛
⎝∂μj

axf

∂�j

⎞
⎠T ⎛

⎝ ∂hj

∂μ
j
axf

⎞
⎠T

(Z)Trj (38)

In the above equation, for ease of notation, denote the vector (Z)Trj ≡ Rj. Using
Equation (31), the last three terms can be written as

⎛
⎝ ∂hj

∂μ
j
axf

⎞
⎠T

Rj =

T1︷ ︸︸ ︷(
∂�

j
x

∂μaxf

)T

�xRj +diag(�j
x)

TRj +

T2︷ ︸︸ ︷(
∂�

j
m

∂μaxf

)T

�mRj

+ εs

(
diag(�j

m)
)T

Rj (39)

where, the derivatives of�j
x and�

j
m with respect to μaxf (summarized in Appendix 1) are

calculated from the sensitivity relations [39] using the method of adjoints, and are given
by

∂�
j
x

∂μi
axf

= −�T
xxA

μ,i
x �x ≡ −�T

xxa
μ,i
x (40)

∂�
j
m

∂μi
axf

= −�T
xmA

μ,i
x �x −�T

mmA
μ,i
m �m +�T

mmM
μ,i
β �x

≡ −�T
xma

μ,i
x −�T

mma
μ,i
m +�T

mmm
μ,i
β ,x (41)

where �xx, �xm and �mm are the solutions to the adjoint system of equations
(Equation (A1) in Appendix 1).

Denoting Ãμx/m = [aμ,1x/m · · · aμ,Nx/m], we use Equation (40) to write term T1 of
Equation (39) as (

∂�
j
x

∂μaxf

)T

�xRj = −(Ãμx )T �xx�xRj︸ ︷︷ ︸
�̃xx

(42)
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Using Equation (41), term T2 of Equation (39) can be written as(
∂�

j
m

∂μaxf

)T

�mRj = −(Ãμx )T �xm�mRj︸ ︷︷ ︸
�̃xm

−(Ãμm)T �mm�mRj︸ ︷︷ ︸
�̃mm

+(M̃μ
β ,x)

T �mm�mRj︸ ︷︷ ︸
�̃mm

(43)

where M̃μ
β ,x = [mμ,1

β ,x · · ·mμ,N
β ,x ].

Thus, from Equation (A1) of Appendix 1, �̃xx, �̃mm and �̃xm are obtained by solving
the following equations

Ax�̃xx = �T
x Rj; Am�̃mm = �T

mRj; Ax�̃xm = Mβ�̃mm (44)

Thus, to summarize, we first calculate adjoint vectors �̃xx, �̃xm and �̃mm from
Equation (44). Next step is to calculate the terms T1 and T2 as in Equation (39) and sub-
stitute the terms into Equation (38) to calculate the gradient for time instant j, and thus
obtain the cost-function gradient from Equation (35).

The main difference in the gradient calculation from the Jacobian one, is that we don’t
have to solve for adjoint matrices �xx, �xm and �mm as needed for the Jacobian, but only
for the adjoint vectors �̃xx, �̃xm and �̃mm. Hence the memory and computational require-
ments in the implementation of the gradient calculation is much lesser as compared to that
of a Jacobian.

5. Reconstruction algorithms

In this section we outline the specific algorithmic approaches for the GNF and GF used
to solve the dynamic PK-FPAT reconstruction. The GN-filter reconstruction algorithm
solves a succession of linearized least-squares subproblems (24), in a trust region-based
iteratively regularized GN algorithm developed in [11]; we do not repeat the algorithmic
details here for the sake of brevity. In the rest of this section, we present our proposed trust
region-based gradient filter reconstruction algorithm.

5.1. Regularized trust region-based GF

The GF reconstruction algorithm solves the minimization problem (23) using a trust
region-based iteratively regularized BFGS scheme. We use the following quasi-Newton
BFGS update [50]

B(i+1) = B(i) − B(i)s(i)s(i)
TB(i)

T

s(i)TB(i)s(i)
+

y(i)y(i)T

y(i)T s(i)
(45)

with s(i) = p� and y(i) = G(i+1) − G(i). p� is the trust region update calculated by solving
the following equation

(B̃a + λI)p̃� = −G̃ (46)

p� = S · p̃� (47)

where B̃a is the scaled version of the augmented Hessian Ba (= B + τ I); B̃a = ST · Ba ·
S, with S being a scaling matrix defined below. The scaled version of the gradient is
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G̃ = ST · G. S is a diagonal scaling matrix used to keep the solution update more balanced
[50]. The elements in the scaling matrix used in our work are [49]

Sii = 1√|Bii| + τ
(48)

Parameter λ is calculated by solving the following equation using a suitable root finding
technique [50,51]

‖p̃�0‖ = � = ‖(B̃a + λI)−1G̃‖2 (49)

where� is the trust region radius.
We use an iterative regularization scheme in the spirit of our work in [48], here in a trust

region framework (as introduced by us in [11]). τ is the iterative regularization parameter,
whose value is decreased to τ/q (q > 1) in the next iteration if a ‘good step’ is taken as per
the trust region update; ; a trust region step is considered ‘good’ when the reduction ratio
parameter(ratio of actual to predicted reductions in cost functions) is greater than a spec-
ified threshold (in our work, we have used a threshold value of 1.0). In our computational
experience, we have observed that q=3 gives us the adequate balance between responding
to a good trust region step, and not reducing the regularization parameter too fast (that
will potentially affect the global convergence of the algorithm).

The stopping criterion employed is to check whether the magnitude of the gradient
is low enough or the estimates are stable across iterates. We outline the regularized trust
region-based gradient filter in the flow chart shown in ‘Algorithm 1’

The algorithmic parameters η1, η2, �0 = 1 and the trust region updating rule in
Algorithm 1 are based on the practical trust region algorithm suggested in Conn et al.
[52].

6. Numerical studies

6.1. Test cases and reconstructions

A square computational domain of size [−5mm, 5mm] × [−5mm, 5mm] as considered
in [53] is taken for numerical test cases. Four laser pulse sources (1 J/mm2) are placed at the
centre of each side and 40 detectors, separated by 1mm, are placed on the four sides of the
boundary, with four at the corners and the remaining 36 on the sides as shown in Figure 2.
The intrinsic absorption coefficients, μaxi and μami are time invariant and are assumed
known in our work since our objective is to study the behaviour of the reconstructions
of the fluorescence parameter μaxf ; in principle μaxi and μami can be reconstructed using
quantitative photoacoustic tomography [27,54,55] at excitation and emission wavelengths.
Considering the robustness of FPAT reconstructions to perturbations of the assumed back-
ground from the actual value (as demonstrated in [27]), without loss of generality and for
clarity of focus of the present paper, we consider a known homogeneous background in our
present numerical studies.We recall that FPAT comes into the picture when high quantum
efficiency contrast agents ensure the fluorescence-contribution to the photoacoustic heat
source is significant [23].

Assuming the intrinsic coefficients to be homogeneous (the limiting case of low
contrast in intrinsic chromophore properties), the optical properties used for the
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Algorithm 1 Trust region-based iteratively regularized GF
1: Initialization:�0,�c = �0, B = I,�0, η1 = 0.01, η2 = 0.9, τ0 = 0.8, i = 0
2: Calculate G0 using�0

3: while i < imax do
4: calculate λ using (49)
5: solve for p� using (47)
6: �t = �i + p�
7: Evaluate F(�t) and ρ = F(�t)−F(�i)

−(pT�Gi+0.5∗pT�B̃ap�)
8: if ρ > η1 then
9: Accept update. �i+1 = �t ;
10: if ρ > ρth then
11: τi+1 = max(τi/3, τmin);
12: end if
13: else
14: �i+1 = �i;
15: end if
16:

17: if ρ > η2 then
18: �i+1 = max(2.5 · ‖p�‖,�i);
19: else if ρ ≥ η1&ρ < η2 then
20: �i+1 = �i;
21: else if ρ ≥ 0&ρ < η1 then
22: �i+1 = 0.25 · ‖p�‖;
23: else if ρ < 0 then
24: �i+1 = min(0.25 · ‖p�‖,max(0.0625, γbad) ·�i);
25: end if
26:

27: Calculate Gi+1 using�i+1

28: update B using Equation (45)
29: i = i + 1;
30: end while
31: Choose the stopping iterate when |G| < tol, or, the data-residual staying stable or

toggling across iterations.

phantom are [23,41]: μaxi = 0.0031mm−1, μami = 0.00415mm−1, μ′
sx = 1.095mm−1,

μ′
sm = .929mm−1, τ = 0.56 ns, φq = 0.4, Rx,m = 0.431, εx = 13000M−1 mm−1, εm =

1100M−1 mm−1. The homogeneous acoustic properties are [56] β = 4 × 10−4K−1,Cp =
4000 JKg−1 K−1.

The pharmacokinetic rates mentioned for invasive ductal carcinoma (IDC) and adeno-
carcinoma (AC) from [10] are used to generate measurement data. In the data generation,
at first time instant, the concentration of the fluorophore is assumed to be 6.5µM in the
plasma compartment and 0µM in the EES compartment.

Numerical studies are performed for two phantoms in two cancer-types (IDC and AC).
A two-object phantom (denoted by ‘T’ ) contains two adjacently-placed objects with each
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Figure 2. Schematic representation source and detector setting for the numerical study.

Table 1. SNR of the synthetic data.

T Phantom B Phantom

SNR IDC AC IDC AC

40 I-T1 A-T1 I-B1 A-B1
30 I-T2 A-T2 I-B2 A-B2
25 I-T3 A-T3 I-B3 A-B3
20 I-T4 A-T4 I-B4 A-B4

having approximate extent of 1.6mm in each direction and their boundaries separated by
approximately 2.4mm. The bean phantom, (denoted by ‘B’) is a single bean shape object
with lateral and longitudinal extents being approximately 2 and 3.2mm, respectively. Data
is generated for the two phantoms at three SNR levels by adding noise to the discrete time
sequence of the measurements using the awgn command in MATLAB; we have given it in
Table 1.

The data is generated using finite element solutions of the forward model on a finer
mesh discretized with 40,401 nodes containing 80,000 triangular elements. Jacobian and
gradient-based reconstructions are performed with the same data sets on a coarser mesh
discretized with 10,201 nodes containing 20,000 triangular elements.

Considering the close correspondence of our frequency domain finite element method
and the time-domain k-wave toolbox [57] solvers for the photoacoustic equation, the
frequency spacing and the range of frequencies used in solving the frequency domain
photoacoustic equation is determined from time domain data generated using the k-wave
toolbox in the same computational setting. A plot of the discrete Fourier transform mag-
nitude spectrum calculated from the k-wave data showed a significant portion to be within
1MHz.Hence we considered frequency content below 1MHz. LetTs be the size of the time
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step and the Ns be the number of time samples generated using k-wave for the resolution
and the domain size considered, then the frequency spacing, ��s is calculated using the
frequency scaling relation [58]:

ωs = �sTs ⇒ ��s = �ωs

Ts
= 2π

NsTs
(50)

where �ωs comes from the discrete Fourier transform frequency spacing relation [58]:
�ωs = 2π

Ns
.��s turns out to be around 100KHz for the given settings. Hence the pressure

fields are generated by solving the photoacoustic equation using finite element method for
10 equispaced frequencies between 2.5 KHz to 902.5 KHz. A brief discussion of literature
corresponding to photoacoustic tomography systems with respect to similar abnormality-
sizes and corresponding frequency selection aspects can found in our earlier work [28].

Data is collected at a sampling interval of 5sec for 40 time instants in a two object phan-
tom and 80 time instants for the bean phantom. At each time instant, one source is on and
measurements are taken on all detectors. The measurements are amplified by 60 dB as in
[59]. All the computations are performed in the Matlab R© 2019a programming environ-
ment run on the HPC facility at IIT Kanpur.We use our HPC cluster to run the algorithms
simultaneously for different test cases. The data generation and the reconstructions are per-
formed on the HPC. Each node in the HPC cluster has 128GB RAM (or a high memory
node with 768GB RAM) and 20 cores for parallel processing. On each node of the HPC,
we have used the parallel computing toolbox from the MATLAB R© to evaluate Jacobians
and gradients at different time instants simultaneously.We use a 128GB RAMworkstation
only to show the comparision of the execution time of a Jacobian (240 sec per measure-
ment time instant) and the gradient (4 sec per measurement time instant, and about 25 sec
per iteration for 40 time instants evaluated in two lots of 20) computations.

The Jacobian-based algorithm is also run on a high memory node (with 768GB RAM)
of the HPC cluster. The execution time of a 20 time instant Jacobian evaluation on the
high memory node using 20 parallel workers is approximately 890 seconds (approx-
imately 15 minutes). The total time for Jacobian evaluation for one iteration (in the
case of a bean with data from 80 time instants) is approximately 60 minutes; one itera-
tion of the Jacobian-based reconstruction has taken usually between 60–70 minutes. The
Jacobian-based reconstruction algorithm typically converges in 30–50 iterations.

We have found that the time taken for gradient calculation per iteration in the gradient-
based algorithm to be of the order of 25 seconds. The order of time taken for a typical
gradient-based reconstruction is around an hour for 100 iterations; reconstructions con-
verge in about 100–120 iterations in our experience. Further, next level code-optimization
by way of a use of more cores or using CPU-GPU frameworks and speeding up specific
units such as the finite element global assembly and adjoint evaluations, is expected to yield
further significant reductions in the computational time taken per iteration to a fraction
of the existing times, and hence the whole reconstruction too.

In order to get an idea of the relative computation times of our dynamic quantita-
tive FPAT reconstructions with respect to static qualitative QPAT reconstruction, we have
checked the time taken for the heat source reconstruction using the adjoint-based iterative
PAT reconstruction of the k-wave toolbox. We note that for a typical test case parameter
set considered in our work, for one time instant, the time taken by the above mentioned
adjoint-based iterative solver on our 128GB system is of the order of 30 seconds (typically
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needed about five iterations to converge). This in our opinion compares reasonably with
our fully nonlinear gradient filter scheme taking about 25 seconds for a gradient computa-
tion and about 35 seconds per reconstruction-iteration (and about an hour and a quarter
for the about 100–120 iterations typically required), especially with the further avenues of
significant speed-up as discussed above.

Initial fluorophore concentration in plasma compartment is assumed to be the injected
concentration and concentration of the fluorophore in EES compartment is assumed to be
zero as considered in [35,60]. In both the schemes, the starting estimates for pharmacoki-
netic rates are taken in between approximate healthy and tumour values corresponding to
IDC. ve and vp are initialized approximately with healthy tissue values. For the RBF level-
set representation in the Jacobian iterative scheme, we use six and five centres, respectively,
for the two object and bean phantoms. In the gradient-based iterative scheme we used six
RBF centres for the level-set representation in both the phantoms. We have used the least
number of centres that have yielded closed curves in the reconstructions.

The reconstructed pharmacokinetic parameter values from the GN-filter scheme for
IDC and AC cases are given in Tables 2 and 4, respectively. The reconstructed values of
the pharmacokinetic parameters from the gradient filter for IDC and AC cases are given
in Tables 3 and 5, respectively. Figures 3 and 5 contain the GN-filter scheme reconstruc-
tions for IDC and AC cases, respectively. Figures 4 and 6 contain the gradient filter scheme
reconstructions for IDC and AC cases, respectively. In the figures, the shape reconstruc-
tions (with the RBF-centres being marked as stars) are shown in the first column, second
and third columns contain the concentration curves inside and outside the tumour region,
respectively.We restrict the figures to the datasets with SNRs of 30 dB and 20 dB for brevity
without loss of information.

The numerical studies show a good localization in the shape reconstruction results. The
pharmacokinetic transfer rates and volumes fractions show reasonable contrast to differ-
entiate healthy and tumourous tissue. We have observed that the reconstruction results
for a two object phantom using data from 80 time instants are similar to the results from
40 time instants. In the case of a bean phantom, the results are better using data from 80
time instants (compared to 40 time instants).

Table 2. Pharmacokinetic reconstructions for invasive ductal carcinoma (IDC) test cases using GN-filter.

Reconstructed values

Parameter
True
values I-T1 I-T2 I-T3 I-T4 I-B1 I-B2 I-B3 I-B4

Cie 0 0.0044 0.0046 0.0043 0.0044 0.0032 0.0032 0.0031 0.0033
Coe 0 6.7×10−7 6.4×10−7 3.1×10−7 7.1×10−7 3.2×10−6 2.8×10−6 4.7×10−6 2.3×10−6

Cip 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Cop 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
kipe 0.0687 0.0877 0.0874 0.0869 0.0863 0.0693 0.0692 0.0697 0.0688
kope 0.0306 0.0311 0.0310 0.0307 0.0308 0.0322 0.0323 0.0328 0.0315
kiep 0.0496 0.0260 0.0258 0.0258 0.0256 0.0208 0.0207 0.0210 0.0204
koep 0.0166 0.0160 0.0162 0.0165 0.0163 0.0152 0.0150 0.0148 0.0157
kielm 0.00449 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070
koelm 0.00446 0.0047 0.0047 0.0047 0.0049 0.0049 0.0049 0.0050 0.0046
vie 0.3 0.2488 0.2490 0.2498 0.2506 0.1962 0.1964 0.1961 0.1969
voe 0 4×10−4 3.7×10−4 2.4×10−4 4.9×10−4 0.0017 0.0018 0.0019 0.0014
vip 0.0600 0.0597 0.0594 0.0592 0.0586 0.0513 0.0512 0.0509 0.0508
vop 0.0200 0.0200 0.0199 0.0198 0.0197 0.0200 0.0200 0.0200 0.0198



3246 O. GOTTAM ET AL.

Table 3. Pharmacokinetic reconstructions for invasive ductal carcinoma (IDC) test cases using gradient
filter.

Reconstructed values

Parameter
True
values I-T1 I-T2 I-T3 I-T4 I-B1 I-B2 I-B3 I-B4

Cie 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Coe 0 0.01 0 0.0035 0.0099 0.01 3.5×10−5 0.0096 6.7×10−4

Cip 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Cop 6.5 6.48 6.49 6.5 6.45 6.43 6.5 6.5 6.49
kipe 0.0687 0.0859 0.0754 0.0826 0.0847 0.0845 0.0695 0.0743 0.0721
kope 0.0306 0.0316 0.0335 0.0327 0.0304 0.0309 0.0332 0.0316 0.0315
kiep 0.0496 0.0314 0.0281 0.0310 0.0313 0.0258 0.0238 0.0249 0.0246
koep 0.0166 0.0135 0.0117 0.0134 0.0171 0.0112 0.0135 0.0164 0.0156
kielm 0.00449 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070
koelm 0.00446 0.0039 0.0060 0.0056 0.0047 0.0048 0.0054 0.0045 0.0046
vie 0.3 0.2537 0.2567 0.2573 0.2568 0.1862 0.1970 0.1961 0.1981
voe 0 8×10−4 0.0028 0.0020 1.1×10−5 0.0025 0.0026 9.2×10−4 0.0014
vip 0.0600 0.0593 0.0650 0.0593 0.0579 0.0517 0.0501 0.0496 0.0493
vop 0.0200 0.0199 0.0200 0.0198 0.0199 0.0200 0.0200 0.0200 0.0198

Table 4. Pharmacokinetic reconstructions for Adenocarcinoma (AC) test cases using GN-filter.

Reconstructed values

Parameter
True
values A-T1 A-T2 A-T3 A-T4 A-B1 A-B2 A-B3 A-B4

Cie 0 0.0028 0.0026 0.0026 0.0027 0.0019 0.0019 0.0020 0.0018
Coe 0 0 1.2×10−7 0 0 0 0 0 0
Cip 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Cop 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
kipe 0.0292 0.0326 0.0327 0.0329 0.0331 0.0275 0.0277 0.0279 0.0282
kope 0.0114 0.0114 0.0113 0.0112 0.0111 0.0113 0.0113 0.0113 0.0112
kiep 0.0158 0.0096 0.0096 0.0096 0.0096 0.0086 0.0086 0.0086 0.0086
koep 0.0065 0.0065 0.0065 0.0064 0.0064 0.0070 0.0069 0.0068 0.0067
kielm 0.0043 0.0070 0.0070 0.0070 0.0070 0.0061 0.0061 0.0061 0.0062
koelm 0.0035 0.0036 0.0035 0.0036 0.0035 0.0033 0.0033 0.0032 0.0031
vie 0.2000 0.1861 0.1862 0.1863 0.1864 0.1467 0.1467 0.1466 0.1467
voe 0 0 0 9.6×10−5 0 0 0 0 0
vip 0.0400 0.0397 0.0394 0.0390 0.0383 0.0366 0.0364 0.0362 0.0358
vop 0.0200 0.0200 0.0199 0.0199 0.0198 0.0200 0.0200 0.0199 0.0198

In our work we have used the triharmonic basic function as a non-compactly sup-
ported RBF, along with a quadratic polynomial term [48]. We observe that using the
non-compactly supported RBF needsmuch fewer centres and yields a better ability to com-
pletely enclose the shape of concave shaped objects than the compactly supported RBFs
used in [11].

We observe that the reconstruction results of the shapes and pharmacokinetic parame-
ters from the GF are as good as the results from the GNF with the same data and mesh
resolution. The size of the Hessian matrix involved in the BFGS update is quite small
(32 × 32, the unknownvector has 14 components for the pharmacokinetic parameters, and
18 for the six RBF centres (x, y, θ)) owing to the level-set representation. As the Jacobian-
based scheme becomes computationally heavy for large number of nodes in the domain
due to memory and time constraints, the gradient-based scheme is a practically realistic
method for the PK-FPAT problem.
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Table 5. Pharmacokinetic reconstructions for Adenocarcinoma (AC) test cases using gradient filter.

Reconstructed values

Parameter
True
values A-T1 A-T2 A-T3 A-T4 A-B1 A-B2 A-B3 A-B4

Cie 0 0.01 0.01 0.01 0.01 0.01 0.01 0.0045 0.0062
Coe 0 0.0064 0.01 3.5×10−5 0.0035 0 9.5×10−5 0 0
Cip 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Cop 6.5 6.48 6.5 6.48 6.49 6.5 6.49 6.5 6.5
kipe 0.0292 0.0366 0.0361 0.0372 0.0371 0.0305 0.0334 0.0284 0.0313
kope 0.0114 0.0117 0.0122 0.0115 0.0113 0.0117 0.0120 0.0119 0.0114
kiep 0.0158 0.0093 0.0093 0.0104 0.0094 0.0083 0.0085 0.0082 0.0090
koep 0.0065 0.0060 0.0054 0.0060 0.0060 0.0062 0.0050 0.0054 0.0065
kielm 0.0043 0.0070 0.0070 0.0062 0.0070 0.0065 0.0066 0.0064 0.0061
koelm 0.0035 0.0032 0.0024 0.0031 0.0032 0.0037 0.0052 0.0041 0.0033
vie 0.2000 0.1762 0.1782 0.1759 0.1767 0.1423 0.1375 0.1425 0.1328
voe 0 1.2×10−4 1.1×10−5 3.3×10−5 7.4×10−5 0.0013 0.0040 0.0023 1.5×10−4

vip 0.0400 0.0381 0.0380 0.0372 0.0366 0.0352 0.0341 0.0356 0.0335
vop 0.0200 0.0200 0.0199 0.0199 0.0197 0.0200 0.0200 0.0199 0.0198

The Jacobian matrix is computed using a vectorized implementation in the spirit of the
seminal paper of Fedele et al. [39]. The gradient computations could be run for 20 time
instants simultaneously on a single node using parallel computing toolbox, where as the
Jacobian computations could be run for only 4 time instants simultaneously due tomemory
constraints. As the number of nodes increases the GNF becomes much more difficult to
implement as compared to the gradient filter. On the other hand, the GNF generally takes
less iterations (in the range of 30–50 in the test cases considered) compared to gradient
filter (in the range of around 100–120).

6.2. Error quantification

The quality of the shape and parameter reconstructions is quantified by the following four
error measures (as in ref. [11]): normalized error of area-parameter product across time
instants (EAP ), the distance of the centroid of the reconstructed object from the actual
object (Ec), the Dice coefficient for the shape reconstructions (D(U,V)), and normalized
mean square error (NMSE) for the pharmacokinetic rates. These error metrics are defined
in [11]. The definition has been repeated in Appendix 2 to ensure readability. The recon-
structed shape and the pharmacokinetic rates are mapped spatially using (11) to calculate
NMSE (in dB) for pointwise evaluated pharmacokinetic rates and volume fraction images.
This image quality metric is used to compare the results with the existing literature [9,11].

The NMSE defined for a reconstructed quantity Xr with respect to its actual value Xa is
defined as

ENMSE = ‖Xr − Xa‖2
‖Xa‖2 (51)

The metric ENMSE(k), is evaluated for the concatenated vector k (the vector being defined
in Equation (17)) as shown in Equation (17). The errormetrics evaluated for the numerical
test cases at different noise levels are tabulated in tables 6 and 7. The error metrics EC and
D(U,V) demonstrate the localization in the shape results. The metrics EAP and ENMSE
show the reasonable reconstruction in the shape and parameter values. The NMSE (in dB)
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Figure 3. Jacobian-based reconstruction of two object and bean phantoms (labelled (a)), and concen-
tration vs time plot (labelled (b), (c)) in IDC tumour; ( top-to-down: data-sets I-T2, I-T4, I-B2, I-B4) In the
left column (a), blue dotted line denotes the initial level-set, red dashed line denotes the shape of true
object, and solid black line denotes the reconstructed shape. In the 2nd and 3rd columns, red denotes
the decay of concentration in true phantom (with superscript t) and blue denotes the decay in recon-
structed phantom (with superscript r). The 2nd column shows Ce and Cp plots inside the tumour region.
The 3rd column shows Ce and Cp plots outside the tumour region. 1 time-index= 5 seconds.

of the pointwise maps for the pharmacokinetic rates and volume fractions are tabulated in
Tables 8 and 9.

6.3. Comparisonwith PK-FOT results

We now discuss the performance of our PK-FPAT formulations with respect to earlier PK-
FOT formulations with GN-filter [11] and point-wise Kalman filter-based solutions [9].
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Figure 4. Gradient-based reconstruction of two object and bean phantoms (labelled (a)), and concen-
tration vs time plot (labelled (b), (c)) in IDC tumour; ( top-to-down: data-sets I-T2, I-T4, I-B2, I-B4) In the
left column (a), blue dotted line denotes the initial level-set, red dashed line denotes the shape of true
object, and solid black line denotes the reconstructed shape. In the 2nd and 3rd columns, red denotes
the decay of concentration in true phantom (with superscript t) and blue denotes the decay in recon-
structed phantom (with superscript r). The 2nd column shows Ce and Cp plots inside the tumour region.
The 3rd column shows Ce and Cp plots outside the tumour region. 1 time-index= 5 seconds.

We do not compare our reconstructions with DCE-MSOT formulations such as in [17],
since (a) their single-ODE compartmentmodel differs from our coupled-ODE one in their
considering knownfluorophore-concentrations in the plasma compartment, (b) their non-
modelling of fluorescence propagation that is significant in our settings, (c) the scaling
factors of the PK parameters used in [17] cannot be obtained from measured boundary
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Figure 5. Jacobain-based reconstruction of two object and bean phantoms (labelled (a)), and concen-
tration vs time plot (labelled (b), (c)) in AC tumour; ( top-to-down: data-sets A-T2, A-T4, A-B2, A-B4) In the
left column (a), blue dotted line denotes the initial level-set, red dashed line denotes the shape of true
object, and solid black line denotes the reconstructed shape. In the 2nd and 3rd columns, red denotes
the decay of concentration in true phantom (with superscript t) and blue denotes the decay in recon-
structed phantom (with superscript r). The 2nd column shows Ce and Cp plots inside the tumour region.
The 3rd column shows Ce and Cp plots outside the tumour region. 1 time-index= 5 seconds.

pressure data, and, (d) their needing a temporally constant fluence in various compart-
ments in their formulation, assuming the fluence only changing in pixels where the contrast
agent accumulates with the endogeneous fluence staying constant.

The NMSE for kpe range from −38.7 to −27.19 dB in gradient filter compared with
−44.3 to −35.8 dB in GN-filter across all SNRs. The NMSE for kep range from −31.9
to −18.54 in gradient filter compared with −30 to −21.8 dB in GN-filter. Alacam et al.
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Figure 6. Gradient-based reconstruction of two object and bean phantoms (labelled (a)), and concen-
tration vs time plot (labelled (b), (c)) in AC tumour; ( top-to-down: data-sets A-T2, A-T4, A-B2, A-B4) In the
left column (a), blue dotted line denotes the initial level-set, red dashed line denotes the shape of true
object, and solid black line denotes the reconstructed shape. In the 2nd and 3rd columns, red denotes
the decay of concentration in true phantom (with superscript t) and blue denotes the decay in recon-
structed phantom (with superscript r). The 2nd column shows Ce and Cp plots inside the tumour region.
The 3rd column shows Ce and Cp plots outside the tumour region. 1 time-index= 5 seconds.

[9] reconstructs pointwise estimates of pharmacokinetic rates using fluorescence optical
tomography (FOT) in a Kalman filter framework. Alacam et al. [9] reports NMSEs of
−19.77 and −18.49 dB for kpe and kep, respectively, using noiseless data in a synthetic
phantom. In our previous work on fluorescence-based pharmacokinetics [11], for the same
phantoms considered in this work, we reportedNMSEs in the range of−31 to−16.9 dB for
kpe and−31.3 to−20.9 dB for kep. We have observed an improvement in the reconstructed
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Table 6. Errormeasures for the reconstructions usingGN-filter (for
the two object case the centroid error is an ordered pair (a,b)
corresponding to each object).

Phantom EAP% EC (mm) D(U, V) ENMSE(k)

I-T1 0.54 (0.0078, 0.0052) 0.9196 0.109
I-T2 0.54 (0.0078, 0.0040) 0.9201 0.109
I-T3 0.61 (0.0116, 0.0041) 0.9095 0.107
I-T4 0.60 (0.0121, 0.0040) 0.9114 0.106
I-B1 0.76 0.0546 0.6436 0.099
I-B2 0.76 0.0546 0.6436 0.100
I-B3 0.76 0.0563 0.6436 0.099
I-B4 0.76 0.0501 0.6414 0.102
A-T1 0.49 (0.0171,0.0084) 0.9109 0.044
A-T2 0.45 (0.0210,0.0074) 0.9167 0.044
A-T3 0.42 (0.0195,0.0141) 0.9226 0.045
A-T4 0.37 (0.0228,0.0189) 0.9288 0.047
A-B1 0.80 0.0663 0.6150 0.045
A-B2 0.80 0.0663 0.6150 0.044
A-B3 0.80 0.0663 0.6150 0.044
A-B4 0.80 0.0673 0.6140 0.043

Table 7. Error measures for the reconstructions using gradient fil-
ter (for the twoobject case the centroid error is anorderedpair (a,b)
corresponding to each object).

Phantom EAP% EC (mm) D(U, V) ENMSE(k)

I-T1 0.26 (0.0084, 0.0028) 0.9495 0.076
I-T2 0.45 (0.0128, 0.0136) 0.9182 0.065
I-T3 0.40 (0.0090, 0.0117) 0.9251 0.066
I-T4 0.36 (0.0167, 0.0146) 0.9330 0.071
I-B1 0.78 0.0503 0.6417 0.101
I-B2 0.77 0.0595 0.6505 0.082
I-B3 0.78 0.0588 0.6433 0.077
I-B4 0.78 0.0515 0.6427 0.077
A-T1 0.25 (0.0122,0.0116) 0.9484 0.081
A-T2 0.37 (0.0246,0.0253) 0.9284 0.076
A-T3 0.43 (0.0110,0.0193) 0.9206 0.074
A-T4 0.37 (0.0143,0.0124) 0.9256 0.086
A-B1 0.80 0.0766 0.6160 0.048
A-B2 0.80 0.0713 0.6206 0.063
A-B3 0.79 0.0683 0.6328 0.049
A-B4 0.80 0.0541 0.6635 0.041

values of volume fractions, ve and vp compared to our work in [11]. The NMSEs obtained
here in gradient filter are in the range of −58.83 to −40.86 dB for ve and −125.4 to −86.8
dB for vp, whereas the NMSEs in [11] are ranging from−38.5 to−9.3 dB for ve and−86.1
to −51 dB for vp.

In addition, we observe the variation in the NMSEs between differing data-noise levels
to be significantly lesser in our PK-FPAT results than in the earlier PK-FOT results of [11].

Thus, with respect to PK-FOT results reported in literature, our PK-FPAT results yield
better reconstructions reflected in reduced values of reconstructed NMSEs across data-
noise levels as well as more stable reconstructions as seen by lesser variation in the NMSEs
between differing data-noise levels. Also, our computational experience showed a better
stability of the iterates(lack of divergence) after reaching convergence with the PK-FPAT
iterates than what we had seen with the PK-FOT reconstructions in [11].



INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 3253

Table 8. Values of 20 log (NMSE) dB for the spatial pharmacokinetic parameter
and volume fraction values from GN-filter.

Phantom E (kpe) dB E(kep) dB E(ve) dB E( vp) dB E(kelm) dB

I-T1 –35.85 –23.78 –55.71 –107.95 –36.36
I-T2 –36.15 –23.69 –55.93 –108.26 –36.02
I-T3 –36.84 –23.74 –56.25 –108.82 –36.26
I-T4 –37.35 –23.54 –56.37 –108.05 –33.36
I-B1 –37.18 –22.09 –42.41 –87.60 –31.34
I-B2 –37.31 –21.92 –42.43 –87.68 –31.12
I-B3 –36.11 –21.82 –42.44 –87.94 –30.10
I-B4 –38.44 –22.24 –42.29 –87.38 –34.09
A-T1 –44.35 –29.93 –64.30 –132.49 –32.49
A-T2 –43.55 –29.92 –63.07 –130.66 –32.49
A-T3 –42.65 –29.83 –61.62 –128.21 –32.39
A-T4 –40.99 –29.79 –59.63 –123.95 –32.51
A-B1 –38.82 –29.34 –42.05 –110.35 –33.33
A-B2 –38.56 –29.78 –42.03 –110.34 –33.04
A-B3 –38.17 –30.01 –42.01 –110.46 –32.26
A-B4 –37.52 –30.25 –42.05 –110.45 –30.69

Table 9. Values of 20 log (NMSE) dB for the spatial pharmacokinetic parameter
and volume fraction values from gradient filter.

Phantom E (kpe) dB E(kep) dB E(ve) dB E( vp) dB E(kelm) dB

I-T1 –36.49 –23.69 –57.37 –106.93 –30.42
I-T2 –38.70 –18.54 –56.70 –99.02 –17.90
I-T3 –37.45 –23.36 –58.62 –108.53 –21.82
I-T4 –37.372 –27.68 –54.54 –101.45 –35.99
I-B1 –27.19 –17.98 –40.86 –86.87 –31.94
I-B2 –35.10 –21.67 –42.54 –88.23 –23.76
I-B3 –33.89 –26.23 –42.27 –88.67 –34.49
I-B4 –35.72 –25.33 –42.55 –88.42 –33.94
A-T1 –33.89 –28.03 –57.57 –125.44 –29.67
A-T2 –33.48 –24.89 –57.98 –124.61 –18.40
A-T3 –33.94 –30.47 –58.83 –123.31 –33.22
A-T4 –33.44 –27.91 –56.43 –117.60 –30.83
A-B1 –33.94 –28.62 –42.70 –112.59 –30.65
A-B2 –28.73 –22.11 –41.83 –112.58 –12.11
A-B3 –36.82 –24.34 –42.96 –111.63 –25.49
A-B4 –30.73 –31.90 –42.30 –111.59 –32.79

To draw an explanation for the improved results, we recall that it has been mentioned
[24,61], that FPAT/QPAT reconstruction schemes are stabler than their corresponding
FOT/DOT counterparts due to the presence of intermediate absorbed optical energy
density information, acting as the source of information in the entire domain.

In PK-FOT, we reconstruct the PK-parameters from the boundary fluence, where as
in PK-FPAT, the PK parameter reconstruction involves implicitly recovering the absorbed
optical energy density as an intermediate variable from the boundary pressure data, which
improves the conditioning of the sensitivity matrices in PK-FPAT (compared to PK-FOT)
and aids in the superior reconstructions and stability in PK parameters. In our work, we
have observed that the log-plot of singular values for the PK-FOT Jacobians at the true-
solution corresponding to test cases have a steeper rate of decay and a larger number of
very small singular values in our previous work [11], as compared to the present PK-FPAT
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test cases which have a much flatter log-singular-value spectrum and very few really small
singular values.

In summary, for the test cases considered, we observe that the reconstructions using the
GF are as good as those from the GNF, and, PK-FPAT has improved the overall stability
and quality of reconstructions as compared to PK-FOT.

Our work demonstrates the validation of fluorescence photoacoustic pharmacokinetic
tomographic reconstruction framework on numerical testcases assuming ideal detec-
tion settings such as point detector and flat (unit) detector response in the frequency
band. However, spatial and electrical impulse responses (corresponding to finite detector
size/shape and frequency response, respectively) of a detector [62] can be simply incor-
porated into the photoacoustic forward model using convolution (in time domain) or
multiplication (in frequency domain) [63]. In addition, laser repetition rates also need to
be ensured to be rapid enough for the dynamic problem’s instrumentation. The frequency
band employed in our study is similar to those employed by the group of Dr. Huabei Jiang.
In [55,64,65], they utilized 50 frequencies between 50 to 540 kHz to performQPAT recon-
structions. In [66,67], multispectral QPAT was demonstrated using the transducers with 1
MHz central frequency (0.65–1.18MHz bandwidth). The circular transducer grid (radius:
1.5 cm) employed in [67] consisted of 120 detectors with the detector separation of 0.8
mm, which is similar to what we considered in our testcases. The data acquisition cards
corresponding to such frequencies have been mentioned in literature such as in [68,69]
and can be employed for experimental realization of the proposed tomographic modality.

7. Summary and conclusions

Pharmacokinetic rates of contrast agents provide quantitative physiological information
for analysing the vascular permeability characteristics of blood vessels in the tissue, in
early cancer detection and drug metabolism studies. Non-ionizing alternatives to nuclear
medicine and radiological imaging modalities such as DCE-PET/MRI/CT, include DCE-
MSOT, and the optical fluorescence-based FOT and FPAT.

The present work introduces for the first time in literature, a fully-nonlinear recon-
struction framework for PK parameters and fluorophore-concentrations using the recent
modality of fluorescence photoacoustic tomography(FPAT). We model the tomographic
process by an optical-fluorescence modelled frequency domain photoacoustic equation
along with a 2-compartment model for the pharmacokinetics.

We further introduce a trust region-based gradient-filter approach to solving
the dynamic PK-FPAT reconstruction problem. We present both, Jacobian-based
Gauss–Newton filter and gradient-based GF reconstruction schemes to retrieve the shape,
optical and pharmacokinetic parameters of abnormalities directly from boundary pressure
measurements. In a coupled-compartment modelled framework, we solve the dynamic
FPAT state(compartment-concentration) and parameter(PK) estimation problem in a
shape-based RBF level-set reconstruction scheme. The reconstruction algorithms are val-
idated with numerical test studies on synthetic cancer mimicking phantoms. The much
lower computation complexity for calculating the gradients as compared to the Jacobians
[27,28] makes the GF the computationally less heavy (and more feasible) method for
practical implementations compared to the GNF.
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The use of the FPAT-based schemes for PK-tomography leads to more stable and supe-
rior reconstructions than those obtained by PK-FOT for similar test cases, while, with
respect to current DCE-MSOT schemes, incorporating more complete forward models
including optical fluorescence and coupled-ODEcompartmentmodelswith no simplifying
assumptions (within the accuracy of the models considered) on the fluence, and recon-
structing actual (rather than scaled) PK-parameters, in a fully-nonlinear model-based
reconstruction framework. With respect to PK-FOT results reported in literature, our
PK-FPAT results yield better reconstructions reflected in reduced values of reconstructed
normalized mean square error (NMSE) across data-noise levels as well as more stable
reconstructions as seen by lesser variation in the NMSEs between differing data-noise
levels. Also, our computational experience showed a better stability of the iterates(lack of
divergence) after reaching convergence with the PK-FPAT iterates than what we had seen
with our earlier reported PK-FOT reconstructions.

The detailed benchmarking studies carried out in the present work pave the way for
application to system level studies including specific source-detector geometries, detector
sensitivities, bandwidth and resolution issues, which are the subject of ongoing work.

In summary, we observe that for the test cases considered, the reconstructions using the
GF are as good as those from theGNF, and, PK-FPAThas improved the overall stability and
quality of reconstructions as compared to PK-FOT. The PK-tomographic reconstructions
obtained demonstrate the capability of the proposed method to differentiate pathological
conditions and quantify the changes in vascular permeability around the cancerous tissue
thus establishing its potential as a non-ionizing alternative for PK-imaging.
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Appendices

Appendix 1

In this appendix, we summarize the requisite expressions corresponding to adjoint variables with
respect to the coupled diffusion equation model for optical fluorescence propagation, that we
require to evaluate the gradients in the GF. Using finite element discretization, the adjoint sys-
tem of equations are given by [39] for the adjoint matrices �xx, �xm and �mm(these matrices are
columnwise-stacked adjoint fields corresponding to each column of the RHS source-matrix), as:

Ax�xx = �N ; Am�mm = �N ; Ax�xm = Mβ�mm (A1)

where �N is the identity matrix, Ax, Am and Mβ are the assembled matrices of Ax, Am and Mβ ,
respectively, for all elements [39], with Ax = A(Dx, kx, bx), Am = A(Dm, km, bm), Mβ = M(β),
with

A(D, k, b) = KD + Kk + Kb; M(β) = Kkβ . (A2)
where

KD =
⎡
⎣ 3∑

j=1

∫
�e

Nt
j Dj(∇[N])T∇[N]

⎤
⎦ ,

Kk =
⎡
⎣ 3∑

j=1

∫
�e

Nt
j kj[N]

T[N]

⎤
⎦ ,

Kb =
⎡
⎣ 2∑

j=1

∫
∂�e

Nt
j bj[N]

T[N]

⎤
⎦

HereNt
j represents the linear basis functions for the triangular elements and [N] = [Nt

1 Nt
2 Nt

3].
Using finite element discretization, denoting by A as the assembled matrix corresponding to

A, the sensitivity of the excitation and emission fluences with respect to nodal values μi
axf for

i = 1 . . .N, are given by

∂�x

∂μi
axf

= −�T
xxA

(
∂Dx

∂μi
axf

,
∂kx
∂μi

axf
,
∂bx
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x �x (A3)
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�x −�T

mmA
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∂km
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∂bm
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mmM
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x �x −�T

mmA
μ,i
m �m +�T

mmM
μ,i
β �x (A4)
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Appendix 2

The area-parameter product error measure[11,31,47], defined across all the measurement time
instants is given by:

EAP =
([∑M

j=1
∣∣μi

rec(j)Arec − μi
ac(j)Aac

∣∣∑M
j=1

∣∣μi
ac(j)Aac

∣∣
]
/M

)
× 100%; (A5)

where Aac, Arec represents the area of actual and reconstructed object, respectively, μi
rec(j) (respec-

tively, μi
ac(j)) represents reconstructed (respectively, actual) fluorophore absorption coefficient (14)

inside tumor region at time instant j. Area of an object is given by

Aobject = aelement
∑
i,j
χobject(xi, yj) (A6)

where aelement is the area of an element (a constant in our studies), χobject(·) is the characteristic
function with respect to object support, (i, j) represents the indices of centroid coordinates x and y
of the discretized domain.

The centroid coordinates of an object are given by

x̄object =
∑

i,j xiχobject(xi, yj)

Aobject
; ȳobject =

∑
i,j yjχobject(xi, yj)

Aobject
(A7)

The Euclidean distance between the centroids of reconstructed object and actual object is a useful
error metric [11,31,47], and is given as:

Ec =
√
(x̄rec − x̄ac)2 + (ȳrec − ȳac)2 (A8)

The Dice coefficient [70] quantifies the localization and similarity of the shape reconstruction with
the original shape. If U denotes the set of nodes inside the reconstructed object and V denotes the
set of nodes inside the true object, the Dice coefficient is given by

D(U,V) = 2|U ∩ V|
|U| + |V| (A9)

|U ∩ V| denotes the number of nodes present inU and also belongs toV. The Dice coefficient varies
from 0 (indicating complete mismatch) to 1 (indicating accurate shape reconstruction).

Appendix 3

PK:Pharmacokinetic, FOT:Fluorescence optical tomography, DCE-dynamic contrast enhancement,
MSOT:Multispectral optoacoustic tomography, PET:Positron emission tomography,
CT:Computerized tomography, MRI: Magnetic resonance imaging, FPAT: Fluorescence photoa-
coustic tomography, GNF: Gauss–Newton filter, GF:Gradient filter, RBF: Radial basis function,
ODE: Ordinary differential equation,IV:intravenous, IDC: Invasive ductal carcinoma, AC: Adeno
carcinoma, EES: Extracellular extravascular space, GN: Gauss–Newton, BFGS:Broyden-Fletcher-
Goldfarb-Shanno, SNR: Signal-to-noise ratio, NMSE:Normalized mean square error
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