Indian Institute of Technology Kanpur Department of Mathematics and Statistics

A First Course in Linear Algebra (MTH 201A) Exercise Set #2

<u>Notation</u>: In what follows, we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} . For any $n \in \mathbb{N}$, we denote the set of all invertible $n \times n$ matrices over \mathbb{F} by $\mathrm{GL}_n(\mathbb{F})$.

- (1) Let S be the set of all prime numbers. Which of the following statements is/are true (justify your answer):
 - (a) S can be made a vector space over \mathbb{Q} ,
 - (b) S can be made a vector space over \mathbb{R} , and
 - (c) S can be made a vector space over \mathbb{C} .
- (2) Let X be a set and $\mathscr{C}(X, \mathbb{F})$ denote the space of all functions on X. For $x_0 \in X$, denote $\{f \in \mathscr{C}(X, \mathbb{F}) : f(x_0) = 0\}$ by W_{x_0} .
 - (a) Show that W_{x_0} is a proper subspace of $\mathscr{C}(X, \mathbb{F})$.
 - (b) Show that, for all $x_0 \in X$, W_{x_0} is a maximal subspace of $\mathscr{C}(X, \mathbb{F})$, i.e., there is no proper subspace of $\mathscr{C}(X, \mathbb{F})$ containing W_{x_0} properly.
 - (c) Is the converse true, i.e., is every maximal subspace of $\mathscr{C}(X, \mathbb{F})$ of the form W_{x_0} for some $x_0 \in X$?
 - (d) Let V be a vector space over \mathbb{F} and for $x_0 \in X$, let $W_{x_0} := \{f \in \mathscr{C}(X, V) : f(x_0) = 0\}$. Are these subspaces maximal?
- (3) Let V be a vector space over \mathbb{F} . Show that, for any $k \in \mathbb{N}$ and proper subspaces W_1, \ldots, W_k of V, one always has $\bigcup_{i=1}^k W_i \subsetneqq V$.
- (4) Consider the vector space \mathbb{R} over \mathbb{Q} . Prove or disprove the following: there exists a countable $S \subseteq \mathbb{R}$ such that $L(S) = \mathbb{R}$.
- (5) Let $n \in \mathbb{N}$. A subspace W of \mathbb{F}^n is said to be *invariant* under $\operatorname{GL}_n(\mathbb{F})$ if $\forall \mathbf{x} \in W$ and $A \in \operatorname{GL}_n(\mathbb{F})$, one has $A\mathbf{x} \in W$. Find all subspaces of \mathbb{F}^n which are invariant under $\operatorname{GL}_n(\mathbb{F})$.
- (6) Let $m, n \in \mathbb{N}$. Let $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ be bases of \mathbb{F}^n and \mathbb{F}^m respectively. Does $\{w_i v_j^t : i = 1, \ldots, m; j = 1, \ldots, n\}$ form a basis of $M_{m \times n}(\mathbb{F})$?
- (7) For a vector space V, a finite collection of subspaces $\{V_i\}_{i=0}^n$ is said to be a *flag* if it satisfies the following:

$$\{0\} = V_0 \lneq V_1 \lneq \cdots \lneq V_n = V.$$

The number *n* in the above, i.e., the number of nontrivial subspaces in the flag $\{V_i\}_{i=0}^n$ is called the *length* of the flag. We say a flag $\{W_i\}_{i=0}^m$ in *V* is a *refinement* of the flag $\{V_i\}_{i=0}^n$ if $\{V_i\}_{i=0}^n \subsetneq \{W_i\}_{i=0}^m$. A flag in *V* is said to be *maximal* if it does not have a refinement. For *V* finite dimensional, show the following:

- (a) The length of any flag in V cannot exceed dim V.
- (b) For every nonnegative integer n not exceeding dim V, V has a flag of length n.
- (c) The length of a flag in V is equal to dim V if and only if the flag is maximal.
- (d) For every flag $\{V_i\}_{i=0}^n$ in V, there exists a maximal flag $\{W_i\}_{i=0}^m$ in V such that $\{V_i\}_{i=0}^n \subseteq \{W_i\}_{i=0}^m$.
- (8) Let $n \in \mathbb{N}$. A matrix $A \in M_n(\mathbb{F})$ is said to *stabilize* a flag $\{V_i\}_{i=0}^k$ in \mathbb{F}^n if one has the following:

$$A\mathbf{x} \in V_i, \forall i = 1, \dots, k \text{ and } \mathbf{x} \in V_i.$$

- (a) Find all $n \times n$ matrices which stabilize the flag $\{W_i\}_{i=0}^n$, where $W_0 = \{0\}, W_i :=$ $L(\{e_1, \ldots, e_i\}), \forall i = 1, \ldots, k.$ (b) Let $\{V_i\}_{i=0}^n$ be a maximal flag in \mathbb{F}^n . Describe all the matrices that stabilize this flag.
- (c) Can you generalize (8b) to any flag in \mathbb{F}^n ?