Indian Institute of Technology Kanpur
Department of Mathematics and Statistics
End-Sem-Exam.: 2020-21-I, Part IIDate:
December
17, 2020Time: 2.5 hoursA First Course in Linear Algebra (MTH 201A)Total marks: 40Throughout we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

- 1. Let V be a finite dimensional vector space over \mathbb{F} . Show that, given any finite $\emptyset \neq S \subseteq V \setminus \{0\}$, there exist nonzero functionals f and g on V such that, $\forall x \in S, f(x) \neq g(x)$. [4]
- 2. Let V be a finite dimensional vector space over \mathbb{F} . Show that, for every linear operator $T: V \longrightarrow V$, there exists $r \in \mathbb{N}$ such that $V = \ker T^r \oplus \operatorname{Im} T^r$.
- 3. Let the set up be as in Question 2 and $T: V \longrightarrow V$ be linear. Suppose that K and L are T invariant subspaces of V such that the following hold:
 - (a) $V = K \oplus L$, and
 - (b) the restriction of T to K and L are nilpotent and invertible respectively.

Then show that, for some $m \in \mathbb{N}$, one has $K = \ker T^m$ and $L = \operatorname{Im} T^m$.

- 4. Prove or disprove the following: Every real square matrix is similar to its transpose, i.e., $\forall n \in \mathbb{N}$ and $A \in M_n(\mathbb{R})$, $P^{-1}AP = A^t$, for some $P \in GL_n(\mathbb{R})$.
- 5. Let $n \in \mathbb{N}$. Find all $n \times n$ matrices over \mathbb{R} which are row equivalent to some orthogonal matrix.
- 6. Let $n \in \mathbb{N}$ and $B \in M_n(\mathbb{R})$ has determinant 1. Show that there exist $n \times n$ matrices K, A and N with the following four properties:
 - (a) B = KAN,
 - (b) K is an orthogonal matrix with det(K) = 1,
 - (c) N is an upper triangular matrix with all diagonal entries 1; and
 - (d) A is a diagonal matrix whose all diagonal entries are positive and det(A) = 1.
- [3]

[5]

- 7. Show that, in Question 6, the matrices K, A and N with the properties (a)-(d) are unique.
- 8. Recall that, a *Quadratic form* Q on \mathbb{R}^n , where $n \in \mathbb{N}$, is a function of the following form:

$$Q(\mathbf{x}) = \mathbf{x}^t A \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^n,$$

where A is an $n \times n$ real symmetric matrix.

[4]

[5]

[5]

[4]

We say a quadratic form Q on \mathbb{R}^n is *nondegenrate* if $Q(\mathbf{y}) \neq 0$ for all $\mathbf{y} \neq \mathbf{0}$. Two quadratic forms Q_1 and Q_2 are said to be *equivalent* if there exists $P \in GL_n(\mathbb{R})$ such that one has the following:

$$Q_1(\mathbf{x}) = Q_2(P\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^n.$$

Note that, this defines an equivalence relation on the set of all quadratic forms on \mathbb{R}^n and furthermore, Q_1 is nondegenrate if and only if Q_2 is nondegenerate whenever Q_1 and Q_2 are equivalent. Show that, for n = 3, every nondegenrate quadratic form is equivalent to exactly one of the following:

- (a) $Q_0(x_1, x_2, x_3) := x_1^2 + x_2^2 + x_3^2$
- (b) $Q_1 := -Q_0$. where Q_0 is defined above in (a),
- (c) $Q_3(x_1, x_2, x_3) := 2x_1x_3 x_2^2$, and
- (d) $Q_4 := -Q_3$, where Q_3 is defined above in (c).
- 9. Let V be a finite dimensional inner product space over \mathbb{C} . Show that, for any linear operator $A: V \longrightarrow V$, one has the following:

A is normal if and only if $\exists f(x) \in \mathbb{C}[x]$ such that $A^* = f(A)$.

You may use the following if necessary:

where $n \geq 2$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$.

[5]

[5]