Indian Institute of Technology Kanpur Department of Mathematics and Statistics

A First Course in Linear Algebra (MTH 201A) Exercise Set #3

<u>Notation</u>: In what follows, we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

- (1) Let $m, n \in \mathbb{N}$. Consider the system of linear equations $A\mathbf{x} = B$, where $A \in M_{m \times n}(\mathbb{F})$ and $B \in M_{m \times 1}(\mathbb{F})$. Show that the above system has a solution if and only if the ranks of the matrices A and [A|B] are same.
- (2) Let $n \in \mathbb{N}$. We say Γ is a discrete subgroup of \mathbb{R}^n if there exists a linearly independent $\{v_1, \ldots, v_k\} \subseteq \mathbb{R}^n$ such that $\Gamma = \{n_1v_1 + \cdots + n_kv_k : n_1, \ldots, n_k \in \mathbb{Z}\}$. In this case, we say that $\{v_1, \ldots, v_k\}$ is a basis of Γ .
 - (a) Let $1 \leq k \leq n$ and $\Gamma_k := \{(n_1, \ldots, n_k, 0, \ldots, 0) : n_1, \ldots, n_k \in \mathbb{Z}\}$. Find all bases of Γ_k .
 - (b) Show that, for any discrete subgroup Γ of \mathbb{R}^n , any two bases of Γ always have same number of elements. We call this number the *rank* of Γ .
 - (c) Show that, if $A \in \operatorname{GL}_n(\mathbb{R})$ and Γ is a discrete subgroup of \mathbb{R}^n then $A(\Gamma) := \{A\mathbf{x} : \mathbf{x} \in \Gamma\}$ is also a discrete subgroup of \mathbb{R}^n having the same rank with Γ .
 - (d) If Γ and Γ' are discrete subgroups of \mathbb{R}^n having the same rank then show that $\Gamma' = A(\Gamma)$, for some $A \in \operatorname{GL}_n(\mathbb{R})$.
- (3) Let $n \in \mathbb{N}$ and $W \leq \mathbb{F}^n$. Show that there is a homogeneous system of linear equations whose solution space is W.
- (4) Let $n \in \mathbb{N}$ and $1 \leq r \leq n$. Denote the collection of all r dimensional subspaces of \mathbb{F}^n by \mathfrak{S}_r . Show that, for every $W \in \mathfrak{S}_r$, there exists $\mathfrak{U} \subseteq \mathfrak{S}_r$ containing W such that \mathfrak{U} can be made a vector space over \mathbb{F} (in a natural way) of dimension r(n-r).

(5) Let $n \in \mathbb{N}$ and $A \in M_{m \times n}(\mathbb{F})$. For nonzero $f(t) = \sum_{i=0}^{n} a_i t^i \in \mathbb{F}[t]$, where $n \in \mathbb{N} \cup \{0\}$, we define $f(A) := a_n A^n + \dots + a_1 A + a_0 I$.

- (a) Show that, there exists a nonzero polynomial $p(t) \in \mathbb{F}[t]$ such that p(A) = 0.
- (b) Show that there exists a unique monic polynomial $p_A(t) \in \mathbb{F}[t]$ such that $p_A(A) = 0$ and $p_A(t)$ divides every nonzero $p(t) \in \mathbb{F}[t]$ such that p(A) = 0.
- (c) Let $p_A(t)$ be as above in (5b). If $f(t) \in \mathbb{F}[t]$ and $gcd(f(t), p_A(t)) = 1$ then show that f(A) is invertible.