Indian Institute of Technology Kanpur Department of Mathematics and Statistics

A First Course in Linear Algebra (MTH 201A) Exercise Set #4

<u>Notation</u>: In what follows, we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

- (1) Let $X \neq \emptyset$ be a set. Show the following:
 - (a) There exists a vector space V over \mathbb{F} and a map $\iota: X \longrightarrow V$ with the following property:

Property 1. whenever one has a vector space W over \mathbb{F} and $\varphi : X \longrightarrow W$, then there exists a unique linear map $\tilde{\varphi} : V \longrightarrow W$ such that $\tilde{\varphi} \circ \iota = \varphi$, i.e., making the following $X \xrightarrow{\iota} V$ diagram commutative: $\bigvee_{\varphi} \downarrow_{\tilde{\varphi}} .$

(b) Show that, for any pair (V', ι') , where V' is a vector space over \mathbb{R} and $\iota' : X \longrightarrow V'$, satisfying the Property 1 in (1a), there exists a unique isomorphism $\psi : V \longrightarrow V'$ such $X \xrightarrow{\iota} V$

 $\downarrow \psi$

that $\psi \circ \iota = \iota'$, i.e., making the following diagram commutative:

- (2) Let V and W be two finite dimensional vector spaces over \mathbb{F} and $T: V \longrightarrow W$ be a linear map. Is it possible to have $[T]^{\mathfrak{B}}_{\mathfrak{B}'}$ a row echelon matrix by choosing appropriate ordered bases \mathfrak{B} and \mathfrak{B}' of V and W respectively?
- (3) Let $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in M_2(\mathbb{R})$ and consider the following linear map $\mathbb{R}^2 \longrightarrow \mathbb{R}^2, \mathbf{x} \mapsto A\mathbf{x}, \, \forall \mathbf{x} \in \mathbb{R}^2.$ (* 1)

Recall that \mathbb{C} can be identified with \mathbb{R}^2 in view of the correspondence $x + iy \longleftrightarrow (x, y)$. Find a necessary and sufficient condition on a, b, c and d so that the map given by (* 1) becomes a linear operator on the complex vector space \mathbb{C} .

(4) Let $n \in \mathbb{N}$ and $\emptyset \neq U \subseteq \mathbb{R}^n$ be open. Recall that, for any $p \in U$, one has the following isomorphism:

$$T_p(U) \longrightarrow \mathbb{R}^n, \ [\gamma] \mapsto \gamma'(0), \forall [\gamma] \in T_p(U).$$

We denote preimages of the standard basis vectors e_1, \ldots, e_n of \mathbb{R}^n under this isomorphism by $\frac{\partial}{\partial x_1}|_p, \ldots, \frac{\partial}{\partial x_n}|_p$ respectively. Suppose that $m \in \mathbb{N}$ and $V \subseteq \mathbb{R}^m$ is open and $\mathbf{f} : U \longrightarrow V$. We denote the *i*-th coordinate of the function \mathbf{f} by f_i , for all $i = 1, \ldots, m$. Assume that $\frac{\partial f_i}{\partial x_j}$ is continuous for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$.

(a) Show that, $\forall p \in U$ the following is a linear map:

$$d\mathbf{f}_p: T_p(U) \longrightarrow T_{\mathbf{f}(p)}(V), \ [\gamma] \mapsto [\mathbf{f} \circ \gamma], \ \forall [\gamma] \in T_p(U).$$
(* 2)

- (b) For any $p \in U$, find the matrix of $d\mathbf{f}_p$ (defined above in (* 2)) relative to the ordered bases $\left\{\frac{\partial}{\partial x_1} \mid_p, \ldots, \frac{\partial}{\partial x_n} \mid_p\right\}$ and $\left\{\frac{\partial}{\partial x_1} \mid_{\mathbf{f}(p)}, \ldots, \frac{\partial}{\partial x_m} \mid_{\mathbf{f}(p)}\right\}$.
- (5) Let V be a finite dimensional vector space over \mathbb{F} and T be a linear operator on V such that $T^2 = T$. Show the following:
 - (a) $V = \ker T \oplus \ker(T I)$; and

(b) By choosing an appropriate ordered basis, the matrix of T can be brought to the following form:

$$\begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}, \text{ where } r \ge 0.$$

- (6) Suppose that V is an n dimensional vector space over \mathbb{F} , where $n \in \mathbb{N}$, and T is a linear operator on V such that $T^n = 0$ but $T^{n-1} \neq 0$.
 - (a) Show that there exists an ordered basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ such that

$$Tv_1 = v_2, \cdots, Tv_{n-1} = v_n, Tv_n = 0.$$

- (b) Let \mathcal{B} be as in (6a). Find $[T]_{\mathcal{B}}$.
- (c) Deduce that, if $A, B \in M_n(\mathbb{F})$ such that $A^n = B^n = 0$ and $A^{n-1} \neq 0 \neq B^{n-1}$, then A and B are similar.
- (7) Let V be a finite dimensional vector space over \mathbb{F} and $A, B : V \longrightarrow V$ be linear. Show that the following are equivalent:
 - (a) There exists ordered bases \mathcal{B} and \mathcal{B}' of V such that $[A]_{\mathcal{B}} = [B]_{\mathcal{B}'}$; and
 - (b) There exists an invertible linear operator P on V such that $A = PBP^{-1}$.