Indian Institute of Technology Kanpur **Department of Mathematics and Statistics**

A First Course in Linear Algebra (MTH 201A) Exercise Set #5

Notation: In what follows, we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

(1) Let $n \in \mathbb{N}$ and $\emptyset \neq U \subseteq \mathbb{R}^n$ be open. For any $p \in U$, by $\{dx_1|_p, \ldots, dx_n|_p\}$ denote the basis of $T_p(U)^*$ dual to $\{\frac{\partial}{\partial x_1}|_p, \ldots, \frac{\partial}{\partial x_n}|_p\}$. Suppose $f: U \longrightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial x_i}$ is continuos for all $i = 1, \ldots, n$. Show the following for any $p \in U$:

$$df_p = \frac{\partial f}{\partial x_1}(p) \, dx_1|_p + \dots + \frac{\partial f}{\partial x_n}(p) \, dx_n|_p$$

(2) Let $n \in \mathbb{N}$.

(a) Find all linear functionals $f: M_n(\mathbb{F}) \longrightarrow \mathbb{F}$ with the following property:

 $AB - BA \in \ker f$ for all $A, B \in M_n(\mathbb{F})$. (*1)

- (b) Let f be a nonzero linear functional on $M_n(\mathbb{F})$ with property (*1). Show that ker f is spanned by the matrices of the form AB - BA, where $A, B \in M_n(\mathbb{F})$.
- (3) Let $n \in \mathbb{F}$ and $B \in M_n(\mathbb{F})$. Define $f_B : M_n(\mathbb{F}) \longrightarrow \mathbb{F}$ by $f_B(A) = tr(B^t A), \forall A \in M_n(\mathbb{F})$.
 - (a) Show that $f_B \in M_n(\mathbb{F})^*$.
 - (b) Show that every linear functional on $M_n(\mathbb{F})$ is of the form f_B for some $B \in M_n(\mathbb{F})$.
 - (c) Conclude that $B \mapsto f_B$, for all $B \in M_n(\mathbb{F})$, is an isomorphism from $M_n(\mathbb{F})$ to $M_n(\mathbb{F})^*$.
- (4) Let V and W be two finite dimensional vector spaces over \mathbb{F} and $T: V \longrightarrow W$ be a linear map. We define a map $T^*: W^* \longrightarrow V^*$ by $f \mapsto f \circ T, \forall f \in W^*$.
 - (a) Show that T^* defined above is linear.
 - (b) Assume that $\mathcal{B} := \{v_1, \ldots, v_n\}$ and $\mathcal{B}_1 := \{w_1, \ldots, w_m\}$, where $m, n \in \mathbb{N}$, are ordered bases of V and W. Denote the bases dual to \mathcal{B} and \mathcal{B}_1 by \mathcal{B}^* and \mathcal{B}_1^* respectively. Find the relation between $[T]^{\mathcal{B}}_{\mathcal{B}_1}$ and $[T^*]^{\mathcal{B}^*}_{\mathcal{B}^*}$. (c) Show that Im $T^* = (\ker T)^0$.
- (5) Let V be a finite dimensional vector space over \mathbb{F} . Show that the following is an isomorphism:

$$L(V,V) \longrightarrow L(V^*,V^*), T \mapsto T^*, \forall T \in L(V,V).$$

(6) Let V be a finite dimensional vector space over \mathbb{F} . Show that, for any $\lambda \in \mathbb{F}$, one always has the following:

$$\ker(T - \lambda I) \neq \{0\} \iff \ker(T^* - \lambda I) \neq \{0\}.$$