Indian Institute of Technology Kanpur Department of Mathematics and Statistics

A First Course in Linear Algebra (MTH 201A) Exercise Set #6

Notation: In what follows, we let $\mathbb F$ be $\mathbb Q, \mathbb R$ or $\mathbb C$.

- (1) Let $n \in \mathbb{N}$ and $A \in M_n(\mathbb{F})$. The minimal polynomial of A is defined to the minimal polynomial of the linear operator $\mathbf{x} \mapsto A\mathbf{x}$, for all $\mathbf{x} \in \mathbb{F}^n$, on \mathbb{F}^n . Show that, the minimal polynomial of a square matrix over F remains the same if it is regarded as a complex matrix as well.
- (2) Let $n \in \mathbb{N}$ and $A \in M_n(\mathbb{F})$. Assume that the minimal polynomial of A splits over F. Show that A and A^t are similar.
- (3) Let $m, n \in \mathbb{N}$. Suppose that $A \in M_m(\mathbb{F})$, $D \in M_n(\mathbb{F})$, $B \in M_{m \times n}(\mathbb{F})$ and $C \in M_{n \times m}(\mathbb{F})$. If A is invertible then show the following:

$$
\det\left(\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]\right) = \det(A)\det(D - CA^{-1}B).
$$

Deduce from this that, if $n = m$ and A commutes with C then one has det $\left(\left[\begin{array}{cc} A & B \\ C & D \end{array} \right] \right) =$ $\det(AD - BC)$.

(4) Let $n \in \mathbb{N}$. For $\mathbf{x} = (x_1, \ldots, x_n) \in \mathbb{C}^n$, we define $||\mathbf{x}||_1 := |x_1| + \cdots + |x_n|$. Prove that, for any *n* vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ in \mathbb{C}^n , one always has the following:

$$
\det([\mathbf{v}_1 \cdots \mathbf{v}_n]) \le \prod_{i=1}^n ||\mathbf{v}_i||_1.
$$
 (*)

Find necessary and sufficient condition(s) so that equality occurs in $(* 1)$ $(* 1)$.

- (5) Let V be an n dimensional vector space over $\mathbb F$ and $T: V \longrightarrow V$ be linear. We say that T stabilizes a maximal flag $\{V_i\}_{i=0}^n$ in V if $T(V_i) \subseteq V_i$, for all $i = 1, \ldots, n$. Show that, T stabilizes a maximal flag in V if and only if V can be expressed as the direct sum of its generalised eigenspaces.
- (6) Let V be a finite dimensional vector space over $\mathbb F$ and $T: V \longrightarrow V$ be nilpotent. Assume that k is the smallest positive integer that $T^k = 0$. Show that any linearly independent $S \subseteq V$ with the property that $L(S) \cap \ker T^{k-1} = \{0\}$ can be extended to a Jordon basis for T.
- (7) Let V be a finite dimensional vector space over $\mathbb F$ and $T: V \longrightarrow V$ be linear. Assume that m_T splits over F. Show the following for any eigenvalue λ of A:
	- (a) The number of Jordon blocks corresponding to λ in the Jordon canonical form of A is $\dim V_{\lambda}$.
	- (b) The size of the largest Jordon block corresponding to λ in the Jordon canonical form of A is the multiplicity of the root λ in m_T .
	- (c) The sum of the sizes of the Jordon blocks corresponding to λ in the Jordon canonical form of A is the multiplicity of the root λ in the characteristic polynomial of T.