Indian Institute of Technology Kanpur Department of Mathematics and Statistics

A First Course in Linear Algebra (MTH 201A) Exercise Set #7

<u>Notation</u>: In what follows, we let \mathbb{F} be \mathbb{Q}, \mathbb{R} or \mathbb{C} .

(1) A Quadric is a generalization of conics, i.e., it is defined as the locus of a quadratic equation with real coefficients in n variables as follows:

$$\left\{\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{1 \le i, j \le n} a_{ij} x_i x_j + \sum_{r=1}^n b_r x_r + c = \mathbf{x}^t A \mathbf{x} + B \mathbf{x} + c = 0\right\}, \qquad (* 1)$$

where $A = [a_{ij}]_{1 \le i,j \le n} \in M_n(\mathbb{R})$ is symmetric and $B = (b_1, \ldots, b_n)$.

(a) Show that, by an orthogonal change in variables, the above equation can be brought to the following form:

$$\lambda_1 y_1^2 + \dots + \lambda_n y_n^2 + b_1 y_1 + \dots + b_n y_n + c = 0$$
 (* 2)

for some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

(b) Show that, by a translation and permutation of variables if necessary, (* 2) can be brought to

$$\lambda_1 z_1^2 + \dots + \lambda_r z_r^2 + b_{r+1} z_{r+1} + \dots + b_n z_n + c' = 0, \qquad (* 3)$$

for some $r \leq n$ and $c' \in \mathbb{R}$.

(c) Suppose that some $b_i \neq 0$ in (* 3). Then show that, by an appropriate translation, (* 3) can be brought to

$$\lambda_1 \eta_1^2 + \dots + \lambda_r \eta_r^2 + b_{r+1} \eta_{r+1} + \dots + b_n \eta_n = 0.$$
 (* 4)

(d) Now show that (* 4) can be further reduced to the following by an orthogonal change in variables:

$$\lambda_1 \xi_1^2 + \dots + \lambda_r \xi_r^2 + d\xi_{r+1} = 0,$$

for some $d \in \mathbb{R}$.

- (2) Let V be a finite dimensional real vector space and f is a bilinear form on V, i.e., $f: V \times V \longrightarrow \mathbb{R}$ which is linear in both the variables. For any ordered basis $\mathcal{B} = \{e_1, \ldots, e_n\}$, the matrix of f in the ordered basis \mathcal{B} , denoted by $[f]_{\mathcal{B}}$ is $[f(e_i, e_j)]_{1 \leq i,j \leq n}$.
 - (a) Show that, for any $v, w \in V$, $f(v, w) = [v]_{\mathcal{B}}^t [f]_{\mathcal{B}} [w]_{\mathcal{B}}$.
 - (b) If \mathcal{B} and \mathcal{B}' are two ordered bases of V then show that there exists an invertible $n \times n$ real matrix P such that $[f]_{\mathcal{B}'} = P^t[f]_{\mathcal{B}}P$.
 - (c) Show that the rank of $[f]_{\mathcal{B}}$ does not depend on the choice of \mathcal{B} . We define this as the rank of the bilinear form f.
- (3) Let V be a finite dimensional real vector space and f is a bilinear form on V. We say that f is symmetric if f(v, w) = f(w, v) holds for all $v, w \in V$.
 - (a) Show that f is symmetric if and only if $[f]_{\mathcal{B}}$ is symmetric for any ordered basis \mathcal{B} of V.
 - (b) Show that if f is symmetric then there exists an ordered basis $\mathcal{B} = \{e_1, \ldots, e_n\}$ of V such that $[f]_{\mathcal{B}}$ is the following diagonal matrix:

$$\begin{bmatrix} I_k & & \\ & -I_\ell & \\ & & \mathbf{0} \end{bmatrix}, \qquad (* 5)$$

where k and ℓ are nonnegative integers.

(c) Let $V^+ := L(\{e_1, \ldots, e_k\}), V^- := L(\{e_{k+1}, \ldots, e_{k+\ell}\})$ and $V^{\perp} := L(\{e_{k+\ell+1}, \ldots, e_n\})$. Suppose that $W \leq V$ is such that f(w, w) > 0, for all $0 \neq w \in W$. Then the sum of W, V^{-1} and V^{\perp} is direct and consequently, dim $W \leq \dim V^+$. (d) Show that in (* 5), k and ℓ are unique. The number $k - \ell$ is called the *signature* of the bilinear form f.

(4)* Let $A = [a_{ij}]_{1 \le i,j \le n} \in M_n(\mathbb{C})$ and M > 0 be such that $|a_{ij}| \le M$, for all i, j = 1, ..., n. For any $m \in \mathbb{N}$ and i, j = 1, ..., n, we denote the (i, j)-th entry of A^m by $a_{ij}^{(m)}$.

- (a) Show that, for any $m \in \mathbb{N}$ and i, j = 1, ..., n, one has $|a_{ij}^{(m)}| \leq (nM)^m$.
- (b) Show that the following series is convergent

$$I + A + \frac{A^2}{2!} + \dots + \frac{A^m}{m!} + \dots;$$
 (* 6)

and the convergence is uniform on every $B_R := \{C \in [c_{ij}]_{1 \leq i,j \leq n} \in M_n(\mathbb{C}) : |c_{ij}| \leq R\}$, where R > 0. The limit of (* 6) is called the *exponential* of A and denoted by e^A .

- (c) Let $A \in M_n(\mathbb{C})$. Show that, for any $P \in GL_n(\mathbb{C})$, $e^{PAP^{-1}} = Pe^AP^{-1}$.
- (d) Show that, if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A (counting multiplicities) then the eigenvalues of e^A are $e^{\lambda_1}, \ldots, e^{\lambda_n}$. Deduce that $\det(e^A) = e^{tr(A)}$.
- (e) Show that, $e^{A^t} = (e^A)^t$ and $e^{\overline{A}} = \overline{e^A}$.
- $(5)^*$ Let $A, B \in M_n(\mathbb{C})$ be two commuting matrices. Observe that, for any $m \in \mathbb{N}$,

$$\sum_{i=0}^{2m} \frac{(A+B)^i}{i!} = \left(\sum_{i=0}^m \frac{A^i}{i!}\right) \left(\sum_{i=0}^m \frac{B^i}{i!}\right) + R_m, \qquad (*7)$$

where

$$R_m := \sum_{\substack{(k,\ell), \max(k,\ell) > m \\ k+\ell \le 2m}} \frac{A^k}{k!} \frac{B^\ell}{\ell!}$$

- (a) From (* 7), show that $R_m \xrightarrow[m \to \infty]{} 0$. Deduce that $e^{A+B} = e^A e^B$.
- (b) Show that, $e^{-A} = (e^A)^{-1}$.
- (6)* Let $A \in M_n(\mathbb{C})$. Show the following:
 - (a) A is hermitian \implies so is e^A .
 - (b) A is positive definite hermitian \implies so is e^A .
 - (c) For every positive definite hermitian matrix $B \in M_n(\mathbb{C})$, there exists a unique hermitian matrix $A \in M_n(\mathbb{C})$ such that $e^A = B$.
- (7)**Let $\{A_n\}_{n\geq 1}$ be a sequence of $d \times d$ complex matrices, where $d \in \mathbb{N}$, and $A \in M_d(\mathbb{C})$. Assume that $A_n \xrightarrow[n\to\infty]{} A$. Denote the eigenvalues of A by $\lambda_1, \ldots, \lambda_d$. We aim to prove that for each $n \in \mathbb{N}$, there exists an ordering $\lambda_{n,1}, \ldots, \lambda_{n,d}$ of the eigenvalues of A_n such that $\lambda_{n,j} \xrightarrow[n\to\infty]{} \lambda_j$, for all $j = 1, \ldots, d$. This follows as an immediate consequence of the following theorem:

Theorem 1. Fix $d \in \mathbb{N}$. For every $n \in \mathbb{N}$, let $P_n(z)$ denote the complex polynomial

$$a_{n,d}z^d + a_{n,d-1}z^{d-1} + \dots + a_{n,1}z + a_{n,0}$$

of degree d. Suppose that $P(z) = a_d z^d + a_{d-1} z^{d-1} + \ldots a_1 z + a_0 \in \mathbb{C}[z]$ is such that deg P(z) = dand P_n converges to P coefficientwise as $n \to \infty$, i.e., for every $j = 0, \ldots, d$, $a_{n,j} \xrightarrow[n \to \infty]{} a_j$. Denote the roots of P by $\lambda_1, \ldots, \lambda_d$. Then for each $n \in \mathbb{N}$, there exists an ordering $\lambda_{n,1}, \ldots, \lambda_{n,d}$ of the roots of $P_n(z)$ such that $\lambda_{n,j} \xrightarrow[n \to \infty]{} \lambda_j$, for all $j = 1, \ldots, d$.

Without any loss in generality, we assume from now that all $P_n(z)$'s and P(z) are monic. The above theorem will be proved by induction and using the two lemmas: **Lemma 1.** Let the set up be as above in the Theorem 1 and λ be a root of P(z). Suppose that, for each $n \in \mathbb{N}$, λ_n is a root of $P_n(z)$ and $\lambda_n \xrightarrow[n \to \infty]{} \lambda$. Define $Q_n(z) \in \mathbb{C}[z]$, for each $n \in \mathbb{N}$, and $Q(z) \in \mathbb{C}[z]$ by the following:

$$P_n(z) = (z - \lambda_n)Q_n(z)$$
 and $P(z) = (z - \lambda)Q(z)$

Then $Q_n \xrightarrow[n \to \infty]{} Q$ coefficientwise.

Proof. Left as an exercise.

Lemma 2. Let the set up be as above. Then for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $\forall n \geq N$, one has $|\lambda_n - \lambda| < \varepsilon$ for some root λ_n of $P_n(z)$.

Proof. Left as an exercise.

We now give a brief sketch of the Proof of the Theorem 1, the task of working out the details is left as an exercise:

The statement if obvious when d = 1. So assume d > 1 and the conclusion of the theorem holds for d-1. Put $\lambda = \lambda_1$ and now by Lemma 2, one can find a strictly increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of positive integers such that, for all $k \in \mathbb{N}$ and all $j \ge n_k$, there is a root λ_{j,n_k} of $P_j(z)$ satisfying $|\lambda_{j,n_k} - \lambda| < \frac{1}{k}$. Pick a root λ_i of $P_i(z)$ for all $i = 1, \ldots, n_1 - 1$.

Next show that, the following sequence of roots converges to λ :

 $\lambda_1, \ldots, \lambda_{n_1-1}, \lambda_{n_1,n_1}, \lambda_{n_1+1,n_1}, \ldots, \lambda_{n_2-1,n_1}, \lambda_{n_2,n_2}, \lambda_{n_2+1,n_2}, \ldots, \lambda_{n_3-1,n_2}, \lambda_{n_3,n_3}, \ldots$ Finish the proof using Lemma 1 and induction hypothesis.