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Notation: In what follows, we let IF be Q,R or C.

(1) A Quadric is a generalization of conics, i.e., it is defined as the locus of a quadratic equation
with real coefficients in n variables as follows:

{x:(xl,...,xn) eR": Z aijxixj+ZbrxT+C=XtAX+BX+C=0} ; (1)

1<ij<n r=1
where A = [a;j]1<ij<n € M, (R) is symmetric and B = (by,...,b,).

(a) Show that, by an orthogonal change in variables, the above equation can be brought to
the following form:

for some Aq,..., A\, € R.
(b) Show that, by a translation and permutation of variables if necessary, (* 2) can be brought
to
Alzf+---+)\Tzf+br+1zT+1+---+bnzn—i—c’:0, (x 3)

for some r < n and ¢ € R.
(c) Suppose that some b; # 0 in (* 3). Then show that, by an appropriate translation, (x 3)
can be brought to

)‘177%—1_+)‘7’7]3+br+1777'+1++bn7]n:0 (* 4)

(d) Now show that (* 4) can be further reduced to the following by an orthogonal change in
variables:
ME 4+ NE +dE 1 =0,
for some d € R.

(2) Let V be a finite dimensional real vector space and f is a bilinear formon V' ie., f : VXV —
R which is linear in both the variables. For any ordered basis B = {ey,...,e,}, the matriz of
[ in the ordered basis B, denoted by [f]s is [f(e:, €;)]1<i j<n-
(a) Show that, for any v,w € V| f(v,w) = [v]5[f]s[w]s.
(b) If B and B’ are two ordered bases of V' then show that there exists an invertible n x n
real matrix P such that [f]g = P'[f]sP.
(c) Show that the rank of [f]s does not depend on the choice of B. We define this as the
rank of the bilinear form f.

(3) Let V be a finite dimensional real vector space and f is a bilinear form on V. We say that f
is symmetric if f(v,w) = f(w,v) holds for all v,w € V.
(a) Show that f is symmetric if and only if [f]3 is symmetric for any ordered basis B of V.
(b) Show that if f is symmetric then there exists an ordered basis B = {ey,...,e,} of V such
that [f]s is is the following diagonal matrix:

I
_[e 9 (* 5)
0

where k£ and ¢ are nonnegative integers.
(c) Let V™ := L({e1,...,er}), V™ := L({exs1,---,erre}) and VE := L{{exioi1,-. - €n}).
Suppose that W <V is such that f(w,w) > 0, for all 0 # w € W. Then the sum of W,

V=1 and V+ is direct and consequently, dim W < dim V+.
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(d) Show that in (x 5), k and ¢ are unique. The number k — £ is called the signature of the
bilinear form f.

(4)* Let A = [aij]lgingn € Mn(C> and M > 0 be such that ]aij| < M, for all Z,j = 1, o, . For
any m € N and i,7 = 1,...,n, we denote the (4, 7)-th entry of A™ by al(;n).
(a) Show that, for any m € N and i,5 = 1,...,n, one has |a§;n)| < (nM)™.
(b) Show that the following series is convergent
AQ m
THA+Srde bt (x 6)

and the convergence is uniform on every By := {C € [¢;]i<ij<n € Mn(C) : |c;| < R},
where R > 0. The limit of (x 6) is called the exponential of A and denoted by e.

(c) Let A € M,(C). Show that, for any P € GL,(C), eP4F™" = peAp—1,

(d) Show that, if \;,..., A\, are the eigenvalues of A (counting multiplicities) then the eigen-
values of e are e, ..., eM. Deduce that det(e?) = efm(4),

(e) Show that, e?" = (e?)" and e = eA.

(5)* Let A, B € M, (C) be two commuting matrices. Observe that, for any m € N,

2m : m : m :
(A+ B)! A Bt
S A) (B g, 7
i=0 i=0 =
where
Ak Bt
o += 2 W
(k,0), max(k,?) >m
E+0<2m

(a) From (x 7), show that R,, — 0. Deduce that eA+? = e4eb.
m—0o0
(b) Show that, e=4 = (e/)~L.

(6)* Let A € M, (C). Show the following:

(a) A is hermitian = so is e’
A

(b) A is positive definite hermitian = so is e”.

(c) For every positive definite hermitian matrix B € M, (C), there exists a unique hermitian
matrix A € M,(C) such that e? = B.

(7)**Let {A,}n>1 be a sequence of d x d complex matrices, where d € N, and A € My(C). Assume
that A, —— A. Denote the eigenvalues of A by A{,...,A\q. We aim to prove that for each

n—oo
n € N, there exists an ordering A, 1,..., A, 4 of the eigenvalues of A,, such that A\, ; —— A;,
n—oo
for all j =1,...,d. This follows as an immediate consequence of the following theorem:

Theorem 1. Fiz d € N. For every n € N, let P,(z) denote the complex polynomial
an,dzd + an,d_lzd_l + .. 0p12 + Gnp

of degree d. Suppose that P(2) = agz®+aq_12¢" 1 +. .. ayz+ag € Cl2] is such that deg P(z) = d

and P, converges to P coefficientwise as n — oo, w.e., for every j = 0,...,d, a,; — a;.
n—oo

Denote the roots of P by A1, ..., A\q. Then for eachn € N, there exists an ordering Ap 1, ..., A\n.a
of the roots of P,(z) such that A\, ; —— A, for allj=1,...,d.
n—oo

Without any loss in generality, we assume from now that all P,(z)’s and P(z) are monic.
The above theorem will be proved by induction and using the two lemmas:



Lemma 1. Let the set up be as above in the Theorem 1 and X\ be a root of P(z). Suppose
that, for each n € N, A, is a root of P,(z) and N\, —— \. Define Q,(z) € C[z], for each
n—oo

n €N, and Q(z) € C|z]| by the following:
Po(2) = (2 = A)Qn(2) and P(z) = (z = X)Q(2).

Then Q, —— @ coefficientwise.
n—oo

Proof. Left as an exercise. ([l

Lemma 2. Let the set up be as above. Then for every e > 0, there exists N € N such that
Vn > N, one has |\, — A| < € for some root A\, of P,(z).

Proof. Left as an exercise. O

We now give a brief sketch of the Proof of the Theorem 1, the task of working out the
details is left as an exercise:

The statement if obvious when d = 1. So assume d > 1 and the conclusion of the theorem
holds for d — 1. Put A = A; and now by Lemma 2, one can find a strictly increasing sequence
{nk }ren of positive integers such that, for all £ € N and all j > ny, there is a root A;,, of

P;(z) satisfying |Aj,, — A| < 1. Pick aroot A; of Pi(z) foralli=1,...,n; — 1.

Next show that, the following sequence of roots converges to \:

>\17 ey >\n1717 )‘nl,nly )\n1+1,n17 ey )\’ngfl,n17 >\n2,n27 )\n2+1,n27 ey )\ngfl,nga )\ng,ng,; o

Finish the proof using Lemma 1 and induction hypothesis.



