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Notation: In what follows, we let F be Q,R or C.

(1) A Quadric is a generalization of conics, i.e., it is defined as the locus of a quadratic equation
with real coefficients in n variables as follows:{

x = (x1, . . . , xn) ∈ Rn :
∑

1≤i,j≤n

aijxixj +
n∑
r=1

brxr + c = xtAx +Bx + c = 0

}
, (∗ 1)

where A = [aij]1≤i,j≤n ∈Mn(R) is symmetric and B = (b1, . . . , bn).

(a) Show that, by an orthogonal change in variables, the above equation can be brought to
the following form:

λ1y
2
1 + · · ·+ λny

2
n + b1y1 + · · ·+ bnyn + c = 0 (∗ 2)

for some λ1, . . . , λn ∈ R.
(b) Show that, by a translation and permutation of variables if necessary, (∗ 2) can be brought

to
λ1z

2
1 + · · ·+ λrz

2
r + br+1zr+1 + · · ·+ bnzn + c′ = 0 , (∗ 3)

for some r ≤ n and c′ ∈ R.
(c) Suppose that some bi 6= 0 in (∗ 3). Then show that, by an appropriate translation, (∗ 3)

can be brought to

λ1η
2
1 + · · ·+ λrη

2
r + br+1ηr+1 + · · ·+ bnηn = 0 . (∗ 4)

(d) Now show that (∗ 4) can be further reduced to the following by an orthogonal change in
variables:

λ1ξ
2
1 + · · ·+ λrξ

2
r + dξr+1 = 0 ,

for some d ∈ R.

(2) Let V be a finite dimensional real vector space and f is a bilinear form on V , i.e., f : V ×V −→
R which is linear in both the variables. For any ordered basis B = {e1, . . . , en}, the matrix of
f in the ordered basis B, denoted by [f ]B is [f(ei, ej)]1≤i,j≤n.

(a) Show that, for any v, w ∈ V , f(v, w) = [v]tB[f ]B[w]B.
(b) If B and B′ are two ordered bases of V then show that there exists an invertible n × n

real matrix P such that [f ]B′ = P t[f ]BP .
(c) Show that the rank of [f ]B does not depend on the choice of B. We define this as the

rank of the bilinear form f .

(3) Let V be a finite dimensional real vector space and f is a bilinear form on V . We say that f
is symmetric if f(v, w) = f(w, v) holds for all v, w ∈ V .

(a) Show that f is symmetric if and only if [f ]B is symmetric for any ordered basis B of V .
(b) Show that if f is symmetric then there exists an ordered basis B = {e1, . . . , en} of V such

that [f ]B is is the following diagonal matrix: Ik
−I`

0

 , (∗ 5)

where k and ` are nonnegative integers.
(c) Let V + := L({e1, . . . , ek}), V − := L({ek+1, . . . , ek+`}) and V ⊥ := L({ek+`+1, . . . , en}).

Suppose that W ≤ V is such that f(w,w) > 0, for all 0 6= w ∈ W . Then the sum of W ,
V −1 and V ⊥ is direct and consequently, dimW ≤ dimV +.
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(d) Show that in (∗ 5), k and ` are unique. The number k − ` is called the signature of the
bilinear form f .

(4)* Let A = [aij]1≤i,j≤n ∈ Mn(C) and M > 0 be such that |aij| ≤ M , for all i, j = 1, . . . , n. For

any m ∈ N and i, j = 1, . . . , n, we denote the (i, j)-th entry of Am by a
(m)
ij .

(a) Show that, for any m ∈ N and i, j = 1, . . . , n, one has |a(m)
ij | ≤ (nM)m.

(b) Show that the following series is convergent

I + A+
A2

2!
+ · · ·+ Am

m!
+ · · · ; (∗ 6)

and the convergence is uniform on every BR := {C ∈ [cij]1≤i,j≤n ∈ Mn(C) : |cij| ≤ R},
where R > 0. The limit of (∗ 6) is called the exponential of A and denoted by eA.

(c) Let A ∈Mn(C). Show that, for any P ∈ GLn(C), ePAP
−1

= PeAP−1.
(d) Show that, if λ1, . . . , λn are the eigenvalues of A (counting multiplicities) then the eigen-

values of eA are eλ1 , . . . , eλn . Deduce that det(eA) = etr(A).

(e) Show that, eA
t

= (eA)t and eA = eA.

(5)* Let A,B ∈Mn(C) be two commuting matrices. Observe that, for any m ∈ N,

2m∑
i=0

(A+B)i

i!
=

(
m∑
i=0

Ai

i!

)(
m∑
i=0

Bi

i!

)
+Rm , (∗ 7)

where

Rm :=
∑

(k, `),max(k, `) > m
k + ` ≤ 2m

Ak

k!

B`

`!

(a) From (∗ 7), show that Rm −−−→
m→∞

0. Deduce that eA+B = eAeB.

(b) Show that, e−A = (eA)−1.

(6)* Let A ∈Mn(C). Show the following:

(a) A is hermitian =⇒ so is eA.
(b) A is positive definite hermitian =⇒ so is eA.
(c) For every positive definite hermitian matrix B ∈Mn(C), there exists a unique hermitian

matrix A ∈Mn(C) such that eA = B.

(7)**Let {An}n≥1 be a sequence of d×d complex matrices, where d ∈ N, and A ∈Md(C). Assume
that An −−−→

n→∞
A. Denote the eigenvalues of A by λ1, . . . , λd. We aim to prove that for each

n ∈ N, there exists an ordering λn,1, . . . , λn,d of the eigenvalues of An such that λn,j −−−→
n→∞

λj,

for all j = 1, . . . , d. This follows as an immediate consequence of the following theorem:

Theorem 1. Fix d ∈ N. For every n ∈ N, let Pn(z) denote the complex polynomial

an,dz
d + an,d−1z

d−1 + . . . an,1z + an,0

of degree d. Suppose that P (z) = adz
d+ad−1z

d−1+. . . a1z+a0 ∈ C[z] is such that degP (z) = d
and Pn converges to P coefficientwise as n → ∞, i.e., for every j = 0, . . . , d, an,j −−−→

n→∞
aj.

Denote the roots of P by λ1, . . . , λd. Then for each n ∈ N, there exists an ordering λn,1, . . . , λn,d
of the roots of Pn(z) such that λn,j −−−→

n→∞
λj, for all j = 1, . . . , d.

Without any loss in generality, we assume from now that all Pn(z)’s and P (z) are monic.
The above theorem will be proved by induction and using the two lemmas:
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Lemma 1. Let the set up be as above in the Theorem 1 and λ be a root of P (z). Suppose
that, for each n ∈ N, λn is a root of Pn(z) and λn −−−→

n→∞
λ. Define Qn(z) ∈ C[z], for each

n ∈ N, and Q(z) ∈ C[z] by the following:

Pn(z) = (z − λn)Qn(z) and P (z) = (z − λ)Q(z).

Then Qn −−−→
n→∞

Q coefficientwise.

Proof. Left as an exercise. �

Lemma 2. Let the set up be as above. Then for every ε > 0, there exists N ∈ N such that
∀n ≥ N , one has |λn − λ| < ε for some root λn of Pn(z).

Proof. Left as an exercise. �

We now give a brief sketch of the Proof of the Theorem 1, the task of working out the
details is left as an exercise:

The statement if obvious when d = 1. So assume d > 1 and the conclusion of the theorem
holds for d− 1. Put λ = λ1 and now by Lemma 2, one can find a strictly increasing sequence
{nk}k∈N of positive integers such that, for all k ∈ N and all j ≥ nk, there is a root λj,nk

of
Pj(z) satisfying |λj,nk

− λ| < 1
k
. Pick a root λi of Pi(z) for all i = 1, . . . , n1 − 1.

Next show that, the following sequence of roots converges to λ:

λ1, . . . , λn1−1, λn1,n1 , λn1+1,n1 , . . . , λn2−1,n1 , λn2,n2 , λn2+1,n2 , . . . , λn3−1,n2 , λn3,n3 , . . .

Finish the proof using Lemma 1 and induction hypothesis.


