Indian Institute of Technology Kanpur
Department of Mathematics and StatisticsDate:
October
17, 2020Mid Som Exam : 2020 21 J

Mid-Sem-Exam.: 2020-21-I

Time: 2 hours A First Course in Linear Algebra (MTH 201A) Total marks: 35

Throughout we let $\mathbb{F} = \mathbb{Q}, \mathbb{R}$ or \mathbb{C} .

1. Fix $m \in \mathbb{N}$. For each $n \in \mathbb{N}$, let A_n be an $m \times m$ matrix and we denote the (i, j)-th entry of A_n by $a_{ij}^{(n)}$, for all $i = 1, \ldots, m$ and $j = 1, \ldots, n$. We say that the sequence of matrices $\{A_n\}_{n=1}^{\infty}$ converges to a matrix $A = [a_{ij}]_{1 \leq i \leq m; 1 \leq j \leq m} \in M_m(\mathbb{R})$ if, for all $(i, j) \in \{1, \ldots, m\} \times \{1, \ldots, m\}$, one has $a_{ij}^{(n)} \xrightarrow[n \to \infty]{} a_{ij}$. For example,

$$\left[\begin{array}{cc} \frac{1}{n} & 2+\frac{3}{n} \\ 5 & \frac{1}{2^n} \end{array}\right] \xrightarrow[n \to \infty]{} \left[\begin{array}{cc} 0 & 2 \\ 5 & 0 \end{array}\right].$$

Show that, for any $A \in M_m(\mathbb{R})$, there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of <u>invertible</u> $m \times m$ real matrices such that $A_n \xrightarrow[n \to \infty]{n \to \infty} A$.

- 2. Let $n \in \mathbb{N}$ and $1 \leq r \leq n$. Denote the collection of all r dimensional subspaces of \mathbb{F}^n by \mathfrak{S}_r . Show that, for every $W \in \mathfrak{S}_r$, there exists $\mathscr{U} \subseteq \mathfrak{S}_r$ containing W such that \mathscr{U} can be made a vector space over \mathbb{F} (in a natural way) of dimension r(n-r).
- 3. Recall that, a line in a vector space V over \mathbb{F} is a subset of the following form:

$$\ell(p; d) := \{ p + td : t \in \mathbb{F} \}, \text{ where } p \in V \text{ and } d \in V \setminus \{ 0 \}.$$

Show that, if V is a finite dimensional real or complex vector space with $\dim V > 1$, then V cannot be written as the union of countably many lines.

4. Let $m, n \in \mathbb{F}$ and $A = [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n} \in M_{m \times n}(\mathbb{F})$. Assume that rank A = k. Let $r_1 < \cdots < r_k$ and $c_1 < \cdots < c_k$ be such that r_1, \ldots, r_k rows of A and c_1, \ldots, c_k columns of A are linear linearly independent in \mathbb{F}^n and \mathbb{F}^m respectively. Show that the following submatrix of A is invertible:

$$\begin{bmatrix} a_{r_1c_1} & \dots & a_{r_1c_k} \\ \vdots & \ddots & \vdots \\ a_{r_kc_1} & \dots & a_{r_kc_k} \end{bmatrix}.$$

5. Let V and W be finite dimensional vector spaces over \mathbb{F} and $T: V \longrightarrow W$ be linear. Show that, there exists a unique nonnegative integer r such that, by choosing appropriate ordered bases \mathcal{B} and \mathcal{B}' of V and W respectively, $[T]_{\mathcal{B}'}^{\mathcal{B}}$ can be brought to the form $\begin{bmatrix} I_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$.

[5]

[4]

[6]

[5]

[4]

MTH 201A

$$V \xrightarrow{T} W \xrightarrow{S} U$$

$$A \downarrow \qquad B \downarrow \qquad C \downarrow \quad , \text{ i.e.,}$$

$$V' \xrightarrow{T'} W' \xrightarrow{S'} U'$$

one has $B \circ T = T' \circ A$ and $C \circ S = S' \circ B$. Show the following:

- (a) A and C are injective $\implies B$ is injective; and
- (b) A and C are surjective $\implies B$ is surjective.

[3+3=6]

- 7. Let V and W be finite dimensional vector spaces over \mathbb{F} and $T: V \longrightarrow W$ be a linear map. Show that, there exists a linear operator $P: V \longrightarrow V$ with the following three properties:
 - (a) $P^2 = P$,
 - (b) the restriction of T to Im P, denoted by T', is an isomorphism from Im P to Im T; and
 - (c) $T = T' \circ P$.

Is the above P unique?