Indian Institute of Technology Kanpur **Department of Mathematics and Statistics**

Abstract Algebra (MTH 204A/B)

Exercise Set 1

- (1) Show that the collection all continuous endomorphisms of the group $(\mathbb{C}, +)$ forms a vector space over \mathbb{R} naturally. Find the dimension of this vector space.
- (2) Find all continuous homomorphisms from \mathbb{R} to $\mathbb{R} \setminus \{0\}$.
- (3) Suppose that $\varphi : \mathbb{R} \longrightarrow \mathbb{S}^1$ is a continuous homomorphism. Show the following:
 - (a) $\exists \varepsilon > 0$ such that Re(z) > 0 for every $z \in \varphi([-\varepsilon, \varepsilon])$,
 - (b) $\exists y \in [-\frac{1}{4\varepsilon}, \frac{1}{4\varepsilon}]$ such that $\varphi(\varepsilon) = e^{2\pi i y \varepsilon}$,
 - (c) $\forall r \in \mathbb{Z}[\frac{1}{2}] := \{ \frac{p}{2^n} : p, n \in \mathbb{Z} \text{ and } n \ge 0 \}$, one has $\varphi(r\varepsilon) = e^{2\pi i y r\varepsilon}$. (d) $\forall x \in \mathbb{R}, \varphi(x) = e^{2\pi i y x}$.

Hence, find all continuous homomorphisms from \mathbb{R} to \mathbb{S}^1 .

- (4) Using the previous exercise or otherwise, find all continuous homomorphisms from \mathbb{S}^1 to \mathbb{S}^1 .
- (5) Find all continuous homomorphisms from \mathbb{R} to $\mathbb{C} \setminus \{0\}$.
- (6) For $n \in \mathbb{N}$, let S_n denote the symmetric group of $\{1, 2, \cdots, n\}$.
 - (a) Show that S_n is generated by the following subsets:

 $\{(12), (13), \cdots, (1n)\}$ and $\{(i \ i+1) : 1 \le i \le n-1\}.$

- (b) Let H be a subgroup of S_n such that the action of H (by permutation) on $\{1, 2, \dots, n\}$ is transitive, i.e., for any $i, j \in \{1, \ldots, n\}, \exists \sigma \in H$ such that $\sigma(i) = j$. If H is generated by transpositions then show that $H = S_n$.
- (7) Show that, for $n, m \ge 3$, there is an injective homomorphism from D_{2n} to D_{2m} if and only if n|m.
- (8) Classify all finite subgroups of $O_2(\mathbb{R})$.
- (9) Let H be a group with the following two properties:
 - (a) all automorphisms of H are inner, and

(b) $Z(H) = \{1\}.$

Then show that there exists a group G such that G' = H if and only if H' = H. (Hint: For $H \leq G$, the subgroup $\{g \in G : ghg^{-1} = h, \forall h \in H\}$ might be useful).

- (10) Let G be a group. Show the following:
 - (a) $G' \leq H \Longrightarrow H \lhd G$.
 - (b) If G is solvable and $\{1\} \neq H \trianglelefteq G$ then there exists a nontrivial abelian $A \leq H$ such $A \trianglelefteq G.$
- (11) Show that every subgroup and homomorphic image of a nilpotent group must be nilpotent.
- (12) (a) Let G be a group and $H \leq G$ have finite index in G. Show that there exists $N \leq G$ such that $N \leq H$ and [G:N] is finite.
 - (b) Let G be a group and $H_1, H_2 \leq G$ have finite index. Then show that $[G: H_1 \cap H_2]$ is finite.