Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Abstract Algebra (MTH 204A/B)
 Exercise Set 2

(1) Let $\mathbb{F}=\mathbb{Q}, \mathbb{R}$ or $\mathbb{C} . A \in M_{n}(\mathbb{F})$, where $n \in \mathbb{N}$ is said to be unipotent if its all eigenvalues are 1 . Consider the following collection consisting of all 2×2 unipotent upper and lower triangular matrices:

$$
\left\{A \in S L_{2}(\mathbb{F}): A=\left(\begin{array}{ll}
1 & b \tag{*1}\\
0 & 1
\end{array}\right) \text { or }\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) \text { for some } b \in \mathbb{F}\right\} .
$$

(a) Let $a \in \mathbb{F} \backslash\{1\}$. Show that the matrix $\operatorname{diag}\left(a, a^{-1}\right)$ can be written in the following form:

$$
\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
d & 1
\end{array}\right)
$$

for some x, b, c and $d \in \mathbb{F}$. (Hint: It is straightforward to select some $x \neq 0$ and then solve for b, c and d successively.)
(b) Show that the subset given above in $(* 1)$ generates $S L_{2}(\mathbb{F})$. (Hint: Observe that every $A \in S L_{2}(\mathbb{F})$ can be brought to the form $\operatorname{diag}\left(a, a^{-1}\right)$ by row and column operations).
(2) Let the set up be as in (1). For $a \in \mathbb{F} \backslash\{0\}$ and $b \in \mathbb{F}$, denote $\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right)$ and $\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$ by $s(a)$ and $u(b)$.
(a) $\forall a \in \mathbb{F} \backslash\{0\}$ and $b \in \mathbb{F}$, compute $s(a) u(b) s(a)^{-1} u(b)^{-1}$.
(b) Let $U:=\{u(b): b \in \mathbb{F}\}$. Show that $B^{\prime}=U$, where B is the standard Borel subgroup of $S L_{2}(\mathbb{F})$, i.e., the subgroup that consists of all upper triangular 2×2 matrices having determinant 1 .
(c) Let $w:=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$. Find $w U w^{-1}$ and $w B w^{-1}$.
(d) Show that $S L_{2}(\mathbb{F})^{\prime}=S L_{2}(\mathbb{F})$.
(3) Consider the action of $\mathrm{SO}_{3}(\mathbb{R})$ on itself by conjugation. Show that the intersection of every orbit with the following set is singleton:

$$
\left\{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right): 0 \leq \theta \leq \pi\right\}
$$

(4) Let $\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ denote the set of all polynomials in x_{1}, \cdots, x_{4} with real coefficients. Show that the following defines an action of S_{4} on $\mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$:

$$
\sigma \cdot f\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=f\left(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}\right),
$$

for all $\sigma \in S_{4}$ and polynomial $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$.
(a) Describe the polynomials which are fixed by every permutation in S_{4}.
(b) Identify the stabilizers of the polynomials $x_{1} x_{2}+x_{3} x_{4}$ and $\left(x_{1}+x_{2}\right)\left(x_{3}+x_{4}\right)$.
(c) Find the orbits of the polynomials mentioned in (4b).
(5) Let $G \curvearrowright X$. For $k \in \mathbb{N}$, the action is said to be k-transitive if for any two k tuples of distinct elements $\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ and $\left(y_{1}, y_{2}, \cdots, y_{k}\right)$, there is $g \in G$ such that $g x_{i}=y_{i}$, for all $i=1,2, \cdots, k$.
(a) Show that, for $n \geq 3$ the action of A_{n} on $\{1,2, \cdots, n\}$ is $(n-2)$ transitive.
(b) Show that, for $n \geq 4$, the action of the Dihedral group of order $2 n$ on the vertices of a regular n-gon is not doubly transitive.
(c) Find the largest $k \in \mathbb{N}$ such that the action of $G L_{n}(\mathbb{R})$ on $\mathbb{R}^{n} \backslash\{0\}$ is k-transitive.
(d) Suppose $G \curvearrowright X$ doubly transitively. Then show that any normal subgroup $N \unlhd G$ will act on X either trivially or transitively.
(6) Let X be a set with at least 2 elements and $G \curvearrowright X$. Define an action of G on $X \times X$ by the following:

$$
\begin{equation*}
g \cdot(x, y):=(g x, g y), \text { for all } g \in G \text { and } x, y \in X \tag{*2}
\end{equation*}
$$

Show that $G \curvearrowright X$ is 2-transitive if and only if it is transitive and the action defined above in $(* 2)$ has exactly two orbits.
(7) Let X be a transitive G-space and H is the stabilizer of a point $y \in X$ in G. An equivalence relation \sim on X is said to be a G-equivalence relation if it satisfies the following property: whenever $x, x^{\prime} \in X$ are such that $x \sim x^{\prime}$, one has $g x \sim g x^{\prime}$ for all $g \in G$.
(a) Show that if \sim is a G-equivalence relation on X then $K:=\{g \in G: g y \sim y\}$ is a subgroup of G containing H.
(b) Show that, in that situation mentioned in (7a), every equivalence class in \sim has the cardinality $[K: H]$.
(c) Suppose that K is a subgroup of G containing H. Show that there is a G-equivalence relation \sim on X such that $K:=\{g \in G: g y \sim y\}$.
(d) Hence conclude that the G-equivalence relations on X are in a bijective correspondence with the subgroups K of G such that $H \subseteq K \subseteq G$. Find the G-equivalence relations corresponding to the subgroups G and H.
(8) (a) Construct $\sigma \in \operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z})$ such that $\sigma^{2}=-I$, where I stands for the identity automorphism of $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.
(b) Let σ be as in (8a). Fix a generator, say x, of $\mathbb{Z} / 4 \mathbb{Z}$ and consider the homomorphism $\varphi: \mathbb{Z} / 4 \mathbb{Z} \longrightarrow \operatorname{Aut}(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z})$ that sends x to σ. Denote the semidirect product $(\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}) \rtimes_{\varphi} \mathbb{Z} / 4 \mathbb{Z}$ by G and the copy of $\mathbb{Z} / 4 \mathbb{Z}$ in G by L. Show that the number of elements of order 2 in G can not exceed the number of conjugates of L.
(c) Show that the conjugacy class of x^{2} in G contains precisely all elements of order 2 of G.
(d) Show that G does not have an element of order 6 .
(9) Let \mathbb{F} be as in (1) and $n \in \mathbb{N}$. Denote by B the standard Borel subgroup B of $G L_{n}(\mathbb{F})$, i.e., the subgroup consisting of all invertible upper triangular matrices.
(a) Show that $B \simeq U \rtimes_{\varphi} A$, for some homomorphism φ, where U is the subgroup of all unipotent upper triangular matrices and A is the subgroup of all invertible diagonal matrices.
(b)* Can the above observation be generalized to any parabolic subgroup of $G L_{n}(\mathbb{F})$?
(c) If now B denotes the standard Borel subgroup in $S L_{n}(\mathbb{F})$, i.e., the subgroup consisting of all invertible upper triangular matrices with determinant $1, U$ and A are the subgroups of B of all unipotent matrices in B and all diagonal matrices in B respectively, then is it still true in this case that $B \simeq U \rtimes_{\varphi} A$, for some homomorphism φ ?

