Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Abstract Algebra (MTH 204A/B)

Exercise Set 2

(1) Let $\mathbb{F} = \mathbb{Q}$, \mathbb{R} or \mathbb{C} . $A \in M_n(\mathbb{F})$, where $n \in \mathbb{N}$ is said to be *unipotent* if its all eigenvalues are 1. Consider the following collection consisting of all 2×2 unipotent upper and lower triangular matrices:

$$\left\{A \in SL_2(\mathbb{F}) : A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \text{ for some } b \in \mathbb{F}\right\}.$$
 (* 1)

(a) Let $a \in \mathbb{F} \setminus \{1\}$. Show that the matrix diag (a, a^{-1}) can be written in the following form: $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ d & 1 \end{pmatrix},$

for some x, b, c and $d \in \mathbb{F}$. (Hint: It is straightforward to select some $x \neq 0$ and then solve for b, c and d successively.)

(b) Show that the subset given above in (* 1) generates $SL_2(\mathbb{F})$. (Hint: Observe that every $A \in SL_2(\mathbb{F})$ can be brought to the form $\operatorname{diag}(a, a^{-1})$ by row and column operations).

(2) Let the set up be as in (1). For $a \in \mathbb{F} \setminus \{0\}$ and $b \in \mathbb{F}$, denote $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ and $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ by a(a) and u(b)

- s(a) and u(b).
- (a) $\forall a \in \mathbb{F} \setminus \{0\}$ and $b \in \mathbb{F}$, compute $s(a)u(b)s(a)^{-1}u(b)^{-1}$.
- (b) Let $U := \{u(b) : b \in \mathbb{F}\}$. Show that B' = U, where B is the standard Borel subgroup of $SL_2(\mathbb{F})$, i.e., the subgroup that consists of all upper triangular 2×2 matrices having determinant 1.
- (c) Let $w := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Find wUw^{-1} and wBw^{-1} . (d) Show that $SL_2(\mathbb{F})' = SL_2(\mathbb{F})$.
- (3) Consider the action of $SO_3(\mathbb{R})$ on itself by conjugation. Show that the intersection of every orbit with the following set is singleton:

$$\left(\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{array} \right) : 0 \le \theta \le \pi \right\}.$$

(4) Let $\mathbb{R}[x_1, x_2, x_3, x_4]$ denote the set of all polynomials in x_1, \dots, x_4 with real coefficients. Show that the following defines an action of S_4 on $\mathbb{R}[x_1, x_2, x_3, x_4]$:

$$\sigma \cdot f(x_1, x_2, x_3, x_4) := f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}),$$

for all $\sigma \in S_4$ and polynomial $f(x_1, x_2, x_3, x_4) \in \mathbb{R}[x_1, x_2, x_3, x_4]$.

- (a) Describe the polynomials which are fixed by every permutation in S_4 .
- (b) Identify the stabilizers of the polynomials $x_1x_2 + x_3x_4$ and $(x_1 + x_2)(x_3 + x_4)$.
- (c) Find the orbits of the polynomials mentioned in (4b).
- (5) Let $G \curvearrowright X$. For $k \in \mathbb{N}$, the action is said to be *k*-transitive if for any two k tuples of <u>distinct</u> elements (x_1, x_2, \dots, x_k) and (y_1, y_2, \dots, y_k) , there is $g \in G$ such that $gx_i = y_i$, for all $i = 1, 2, \dots, k$.
 - (a) Show that, for $n \ge 3$ the action of A_n on $\{1, 2, \dots, n\}$ is (n-2) transitive.
 - (b) Show that, for $n \ge 4$, the action of the Dihedral group of order 2n on the vertices of a regular *n*-gon is not doubly transitive.
 - (c) Find the largest $k \in \mathbb{N}$ such that the action of $GL_n(\mathbb{R})$ on $\mathbb{R}^n \setminus \{\mathbf{0}\}$ is k-transitive.
 - (d) Suppose $G \curvearrowright X$ doubly transitively. Then show that any normal subgroup $N \trianglelefteq G$ will act on X either trivially or transitively.

(6) Let X be a set with at least 2 elements and $G \curvearrowright X$. Define an action of G on $X \times X$ by the following:

$$g \cdot (x, y) := (gx, gy), \text{ for all } g \in G \text{ and } x, y \in X.$$
(* 2)

Show that $G \curvearrowright X$ is 2-transitive if and only if it is transitive and the action defined above in (* 2) has exactly two orbits.

- (7) Let X be a transitive G-space and H is the stabilizer of a point $y \in X$ in G. An equivalence relation \sim on X is said to be a G-equivalence relation if it satisfies the following property: whenever $x, x' \in X$ are such that $x \sim x'$, one has $gx \sim gx'$ for all $g \in G$.
 - (a) Show that if \sim is a *G*-equivalence relation on *X* then $K := \{g \in G : gy \sim y\}$ is a subgroup of *G* containing *H*.
 - (b) Show that, in that situation mentioned in (7a), every equivalence class in \sim has the cardinality [K:H].
 - (c) Suppose that K is a subgroup of G containing H. Show that there is a G-equivalence relation \sim on X such that $K := \{g \in G : gy \sim y\}.$
 - (d) Hence conclude that the G-equivalence relations on X are in a bijective correspondence with the subgroups K of G such that $H \subseteq K \subseteq G$. Find the G-equivalence relations corresponding to the subgroups G and H.
- (8) (a) Construct $\sigma \in Aut(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z})$ such that $\sigma^2 = -I$, where I stands for the identity automorphism of $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.
 - (b) Let σ be as in (8a). Fix a generator, say x, of $\mathbb{Z}/4\mathbb{Z}$ and consider the homomorphism $\varphi : \mathbb{Z}/4\mathbb{Z} \longrightarrow Aut(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z})$ that sends x to σ . Denote the semidirect product $(\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}) \rtimes_{\varphi} \mathbb{Z}/4\mathbb{Z}$ by G and the copy of $\mathbb{Z}/4\mathbb{Z}$ in G by L. Show that the number of elements of order 2 in G can not exceed the number of conjugates of L.
 - (c) Show that the conjugacy class of x^2 in G contains precisely all elements of order 2 of G.
 - (d) Show that G does not have an element of order 6.
- (9) Let \mathbb{F} be as in (1) and $n \in \mathbb{N}$. Denote by *B* the standard Borel subgroup *B* of $GL_n(\mathbb{F})$, i.e., the subgroup consisting of all invertible upper triangular matrices.
 - (a) Show that $B \simeq U \rtimes_{\varphi} A$, for some homomorphism φ , where U is the subgroup of all unipotent upper triangular matrices and A is the subgroup of all invertible diagonal matrices.
 - (b)* Can the above observation be generalized to any parabolic subgroup of $GL_n(\mathbb{F})$?
 - (c) If now *B* denotes the standard Borel subgroup in $SL_n(\mathbb{F})$, i.e., the subgroup consisting of all invertible upper triangular matrices with determinant 1, *U* and *A* are the subgroups of *B* of all unipotent matrices in *B* and all diagonal matrices in *B* respectively, then is it still true in this case that $B \simeq U \rtimes_{\varphi} A$, for some homomorphism φ ?