Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Abstract Algebra (MTH 204A/B)

Exercise Set 3

(1) Let G be a finite group and p be a prime such that p|n := |G|. Consider the natural action of $\langle (12 \cdots p) \rangle$ on the following set:

$$\mathscr{S} := \{ (g_1, g_2, \dots, g_p) \in G^p : g_1 g_2 \dots g_p = 1 \text{ and } (g_1, g_2, \dots, g_p) \neq (1, 1, \dots, 1) \},\$$

i.e., by

$$\tau \cdot (g_1, g_2, \cdots, g_p) := (g_{\tau^{-1}(1)}, g_{\tau^{-1}(2)}, \cdots, g_{\tau^{-1}(p)}), \forall \tau \in \langle (1 \, 2 \, \cdots \, p) \rangle, (g_1, g_2, \cdots, g_p) \in G^p.$$

Show that this action has a fixed point. Deduce the Cauchy's theorem that says G has an element of order p.

- (2) Let $M \subseteq \mathbb{C} \setminus \{0\} \times \mathbb{C} \setminus \{0\}$ consisting of all pairs (ω_1, ω_2) such that $Im\left(\frac{\omega_1}{\omega_2}\right) > 0$. For each $(\omega_1, \omega_2) \in M$, we associate a lattice $\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$ and denote that by $\Gamma(\omega_1, \omega_2)$. The set of all latices in \mathbb{C} (viewed as a vector space over \mathbb{R}) is denoted by \mathscr{R} .
 - (a) Show that the map $M \longrightarrow \mathscr{R}$, $(\omega_1, \omega_2) \mapsto \Gamma(\omega_1, \omega_2)$, for all $(\omega_1, \omega_2) \in M$, is surjective.
 - (b) Show that $SL_2(\mathbb{Z})$ acts on M in the following way:

$$g \cdot (\omega_1, \omega_2) := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$$
, for all $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and $(\omega_1, \omega_2) \in M$.

- (c) Show that two pairs (ω_1, ω_2) and (ω'_1, ω'_2) in M are in the same $SL_2(\mathbb{Z})$ orbit of the action defined in (2b) if and only if $\Gamma(\omega_1, \omega_2) = \Gamma(\omega'_1, \omega'_2)$. Conclude that \mathscr{R} can be identified to the orbit space $SL_2(\mathbb{Z}) \setminus M$.
- (d) Show that the multiplicative group $\mathbb{C} \setminus \{0\}$ acts on \mathscr{R} in the following way:

 $(\lambda, \Gamma) \mapsto \lambda \Gamma$, for all $\lambda \in \mathbb{C} \setminus \{0\}$ and $\Gamma \in \mathscr{R}$.

- (e) Show that there is a bijective map between the following orbit spaces: $(\mathbb{C} \setminus \{0\}) \setminus \mathscr{R}$ and $PSL_2(\mathbb{Z}) \setminus \mathbb{H}$, where $PSL_2(\mathbb{Z})$ is the quotient group $SL_2(\mathbb{Z})/\{\pm I_2\}$.
- (3) Let G be a finite and nontrivial group. Show the following:
 - (a) The natural action of Aut(G) on $G \setminus \{1\}$ is transitive if and only if $G \cong (\mathbb{Z}/p\mathbb{Z})^n$ for some prime p and $n \in \mathbb{N}$.
 - (b) The natural action of Aut(G) on $G \setminus \{1\}$ is 2-transitive if and only if $G \cong (\mathbb{Z}/2\mathbb{Z})^n$, for some $n \in \mathbb{N}$, or $G \cong \mathbb{Z}/3\mathbb{Z}$.
 - (c) The natural action of Aut(G) on $G \setminus \{1\}$ is 3-transitive if and only if $G \cong (\mathbb{Z}/2\mathbb{Z})^2$.
- (4) (a)* For any field \mathbb{F} and $n \in \mathbb{N}$, let U stand for the multiplicative group of all upper triangular $n \times n$ matrices over \mathbb{F} with all diagnoal entries 1. Find the normalizer of U in $GL_n(\mathbb{F})$.
 - (b) Find the number of Sylow *p*-subgroups of $GL_n(\mathbb{Z}/p\mathbb{Z})$, where *p* is a prime.
- (5) (a) For any field \mathbb{F} and $n \in \mathbb{N}$, find $Z(GL_n(\mathbb{F}))$ and $Z(SL_n(\mathbb{F}))$.
 - (b) Identify the quotient group $SL_2(\mathbb{Z}/3\mathbb{Z})/Z(SL_2(\mathbb{Z}/3\mathbb{Z}))$.
- (6) Show that every group of order 108 has a normal subgroup of order 9 or 27.
- (7) (a) Construct an isomorphism from $Aut(S_4)$ to S_4 .
 - (b) Show that all automorphisms of S_4 are inner.
- (8)* (a) Construct an injective group homomorphism $\varphi : S_5 \longrightarrow S_6$ such that the natural action of $\varphi(S_5)$ on $\{1, 2, 3, 4, 5, 6\}$ is transitive.
 - (b) Construct an automorphism of S_6 which sends the subgroup $\varphi(S_5)$ to a conjugate of S_5 in S_6 .
 - (c) Show that there exists an automorphism of S_6 which is not inner.
- (9) Find the values of $n \in \mathbb{N}$ for which D_{2n} is nilpotent.

- (a) {1} ≠ N ≤ G ⇒ N ∩ Z(G) ≠ {1}. In particular, every minimal normal subgroup lies in the center and has prime order. (Hint: Look at the least n such that N ∩ Z_n(G) ≠ {1}.)
 (b) For a single basis of the least n such that N ∩ Z_n(G) ≠ {1}.)
- (b) Every maximal subgroup is normal with prime index and contains G'.
- (c) If $|G| < \infty$ then for any prime p||G|, there is a minimal normal subgroup of G of order p and a maximal normal subgroup of G of index p.
- (d)* If $H \leq G$ and $[G : H] = n \in \mathbb{N}$ then $g^n \in H$, for all $g \in G$. (Hint: $H \leq N_G(H) \leq N_G(N_G(H)) \leq \ldots$ must stabilize with G.)
- (11) Suppose that G be a finite solvable group.
 - (a) Show that if $\{1\} \neq N$ is a *minimal* normal subgroup of G, i.e., it contains no normal subgroup of G apart from $\{1\}$ and N, then N must be an abelian p-group for some prime p.
 - (b)* Show that if H is a maximal proper subgroup of G, i.e., there is no proper $K \leq G$ with $K \supseteq H$, then the index of H in G must be a power of some prime number. (Hint: Prove by induction on |G|. You can pick a minimal normal subgroup N of G, if necessary so that $|\frac{G}{N}| < |G|$. Now consider the two cases $N \leq H$ and $N \notin H$ separately.)
- (12) (a) Fix a prime p and let $\{H_1, \ldots, H_n\}$ and $\{K_1, \ldots, K_m\}$ be two collections of cyclic p-groups. Assume that m > n. Prove of disprove the following:

There exists an onto homomorphism from $H_1 \times \cdots \times H_n$ to $K_1 \times \cdots \times K_m$.

(b)** Show that, if G is a finite abelian group and $H \leq G$ then, G contains a subgroup isomorphic to G/H.