Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Abstract Algebra (MTH 204A/B)
 Exercise Set 3

(1) Let G be a finite group and p be a prime such that $p|n:=|G|$. Consider the natural action of $\langle(12 \cdots p)\rangle$ on the following set:

$$
\mathscr{S}:=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in G^{p}: g_{1} g_{2} \ldots g_{p}=1 \text { and }\left(g_{1}, g_{2}, \cdots, g_{p}\right) \neq(1,1, \cdots, 1)\right\}
$$

i.e., by
$\tau \cdot\left(g_{1}, g_{2}, \cdots, g_{p}\right):=\left(g_{\tau^{-1}(1)}, g_{\tau^{-1}(2)}, \cdots, g_{\tau^{-1}(p)}\right), \forall \tau \in\langle(12 \cdots p)\rangle,\left(g_{1}, g_{2}, \cdots, g_{p}\right) \in G^{p}$.
Show that this action has a fixed point. Deduce the Cauchy's theorem that says G has an element of order p.
(2) Let $M \subseteq \mathbb{C} \backslash\{0\} \times \mathbb{C} \backslash\{0\}$ consisting of all pairs $\left(\omega_{1}, \omega_{2}\right)$ such that $\operatorname{Im}\left(\frac{\omega_{1}}{\omega_{2}}\right)>0$. For each $\left(\omega_{1}, \omega_{2}\right) \in M$, we associate a lattice $\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}$ and denote that by $\Gamma\left(\omega_{1}, \omega_{2}\right)$. The set of all latices in \mathbb{C} (viewed as a vector space over \mathbb{R}) is denoted by \mathscr{R}.
(a) Show that the map $M \longrightarrow \mathscr{R},\left(\omega_{1}, \omega_{2}\right) \mapsto \Gamma\left(\omega_{1}, \omega_{2}\right)$, for all $\left(\omega_{1}, \omega_{2}\right) \in M$, is surjective.
(b) Show that $S L_{2}(\mathbb{Z})$ acts on M in the following way:
$g \cdot\left(\omega_{1}, \omega_{2}\right):=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{\omega_{1}}{\omega_{2}}$, for all $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ and $\left(\omega_{1}, \omega_{2}\right) \in M$.
(c) Show that two pairs $\left(\omega_{1}, \omega_{2}\right)$ and $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ in M are in the same $S L_{2}(\mathbb{Z})$ orbit of the action defined in (2b) if and only if $\Gamma\left(\omega_{1}, \omega_{2}\right)=\Gamma\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$. Conclude that \mathscr{R} can be identified to the orbit space $S L_{2}(\mathbb{Z}) \backslash M$.
(d) Show that the multiplicative group $\mathbb{C} \backslash\{0\}$ acts on \mathscr{R} in the following way:

$$
(\lambda, \Gamma) \mapsto \lambda \Gamma, \text { for all } \lambda \in \mathbb{C} \backslash\{0\} \text { and } \Gamma \in \mathscr{R} .
$$

(e) Show that there is a bijective map between the following orbit spaces: $(\mathbb{C} \backslash\{0\}) \backslash \mathscr{R}$ and $P S L_{2}(\mathbb{Z}) \backslash \mathbb{H}$, where $P S L_{2}(\mathbb{Z})$ is the quotient group $S L_{2}(\mathbb{Z}) /\left\{ \pm I_{2}\right\}$.
(3) Let G be a finite and nontrivial group. Show the following:
(a) The natural action of $\operatorname{Aut}(G)$ on $G \backslash\{1\}$ is transitive if and only if $G \cong(\mathbb{Z} / p \mathbb{Z})^{n}$ for some prime p and $n \in \mathbb{N}$.
(b) The natural action of $\operatorname{Aut}(G)$ on $G \backslash\{1\}$ is 2-transitive if and only if $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$, for some $n \in \mathbb{N}$, or $G \cong \mathbb{Z} / 3 \mathbb{Z}$.
(c) The natural action of $\operatorname{Aut}(G)$ on $G \backslash\{1\}$ is 3-transitive if and only if $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$.
(4) (a)* For any field \mathbb{F} and $n \in \mathbb{N}$, let U stand for the multiplicative group of all upper triangular $n \times n$ matrices over \mathbb{F} with all diagnoal entries 1 . Find the normalizer of U in $G L_{n}(\mathbb{F})$.
(b) Find the number of Sylow p-subgroups of $G L_{n}(\mathbb{Z} / p \mathbb{Z})$, where p is a prime.
(5) (a) For any field \mathbb{F} and $n \in \mathbb{N}$, find $Z\left(G L_{n}(\mathbb{F})\right)$ and $Z\left(S L_{n}(\mathbb{F})\right)$.
(b) Identify the quotient group $S L_{2}(\mathbb{Z} / 3 \mathbb{Z}) / Z\left(S L_{2}(\mathbb{Z} / 3 \mathbb{Z})\right)$.
(6) Show that every group of order 108 has a normal subgroup of order 9 or 27.
(7) (a) Construct an isomorphism from $\operatorname{Aut}\left(S_{4}\right)$ to S_{4}.
(b) Show that all automorphisms of S_{4} are inner.
(8)* (a) Construct an injective group homomorphism $\varphi: S_{5} \longrightarrow S_{6}$ such that the natural action of $\varphi\left(S_{5}\right)$ on $\{1,2,3,4,5,6\}$ is transitive.
(b) Construct an automorphism of S_{6} which sends the subgroup $\varphi\left(S_{5}\right)$ to a conjugate of S_{5} in S_{6}.
(c) Show that there exists an automorphism of S_{6} which is not inner.
(9) Find the values of $n \in \mathbb{N}$ for which $D_{2 n}$ is nilpotent.
(10) Let G be a nontrivial nilpotent group. Prove the following:
(a) $\{1\} \neq N \unlhd G \Longrightarrow N \cap Z(G) \neq\{1\}$. In particular, every minimal normal subgroup lies in the center and has prime order. (Hint: Look at the least n such that $N \cap Z_{n}(G) \neq\{1\}$.)
(b) Every maximal subgroup is normal with prime index and contains G^{\prime}.
(c) If $|G|<\infty$ then for any prime $p \| G \mid$, there is a minimal normal subgroup of G of order p and a maximal normal subgroup of G of index p.
(d) $*$ If $H \leq G$ and $[G: H]=n \in \mathbb{N}$ then $g^{n} \in H$, for all $g \in G$. (Hint: $H \unlhd N_{G}(H) \unlhd$ $N_{G}\left(N_{G}(H)\right) \unlhd \ldots$ must stabilize with G.)
(11) Suppose that G be a finite solvable group.
(a) Show that if $\{1\} \neq N$ is a minimal normal subgroup of G, i.e., it contains no normal subgroup of G apart from $\{1\}$ and N, then N must be an abelian p-group for some prime p.
(b)* Show that if H is a maximal proper subgroup of G, i.e., there is no proper $K \leq G$ with $K \supsetneqq H$, then the index of H in G must be a power of some prime number. (Hint: Prove by induction on $|G|$. You can pick a minimal normal subgroup N of G, if necessary so that $\left|\frac{G}{N}\right|<|G|$. Now consider the two cases $N \leq H$ and $N \nless H$ separately.)
(12) (a) Fix a prime p and let $\left\{H_{1}, \ldots, H_{n}\right\}$ and $\left\{K_{1}, \ldots, K_{m}\right\}$ be two collections of cyclic p groups. Assume that $m>n$. Prove of disprove the following:
There exists an onto homomorphism from $H_{1} \times \cdots \times H_{n}$ to $K_{1} \times \cdots \times K_{m}$.
(b)** Show that, if G is a finite abelian group and $H \leq G$ then, G contains a subgroup isomorphic to G / H.

