Indian Institute of Technology Kanpur Department of Mathematics and Statistics
 Abstract Algebra (MTH 204A/B)
 Exercise Set 4

(1) Let D be a square free integer. Show that, $a+b \sqrt{D} \in \mathbb{Z}[\sqrt{D}]$ is a unit if and only if $\left|a^{2}-D b^{2}\right|=1$. Find all units in each of the following rings:
(a) $\mathbb{Z}[\sqrt{2}]$.
(b) $\mathbb{Z}[\sqrt{5}]$.
(c) $\mathbb{Z}[\sqrt{7}]$.
(d) $\mathbb{Z}[\sqrt{-D}]$, where D is a positive square free integer.
(e) $\mathbb{Q}[\sqrt{D}]$, where D is a square free integer.
(2) Let A be a commutative ring. An element $x \in A$ is said to be nilpotent if $x^{n}=0$, for some $n \in \mathbb{N}$. Show the following:
(a) $\{x \in A: x$ is nilpotent $\}$ is an ideal (this is called the nilradical of A), and the quotient ring does not have a nonzero nilpotent element.
(b) $\{1+x: x$ is nilpotent $\}$ is a subgroup of the multiplicative group of all units in A.
(3)* Let A be as above in (2). Show that the nilradical is the intersection of all the prime ideals of A. (Hint: Suppose that $a \in A$ is not nilpotent. Consider the collection of all ideals I with the property that $a^{n} \notin I$, for all $n \in \mathbb{N}$. By Zorn's lemma, pick a maximal such ideal, say \mathfrak{p}. Now show that this \mathfrak{p} is a prime ideal.)
(4) Let A be as above in (2). The Jacobson radical \Re of A is defined to be the intersection of all the maximal ideals of A. Show that, $x \in \Re \Longleftrightarrow 1-x y$ is a unit, $\forall y \in A$.
(5) Let A be any commutative ring and I, J be two ideals of A. Show that $(I+J)(I \cap J) \subseteq I J$. Give a sufficient condition so that equality occurs.
(6) (a)* Suppose that $I_{1}, I_{2}, \ldots, I_{n}$ are prime ideals in a commutative ring A. Show that, if an ideal J of A is contained in $\bigcup_{i=1}^{n} I_{i}$ then $J \subseteq I_{i}$, for some i.
(b) Assume A is commutative ring and $I_{1}, I_{2}, \ldots, I_{n}$ are ideals of A. Show that, if P be a prime ideal in A such that $\bigcap_{i=1}^{n} I_{i} \subseteq P$ then $I_{i} \subseteq P$, for some i. Consequently, if $P=\bigcap_{i=1}^{n} I_{i}$ then $P=I_{i}$, for some i.
(7) Suppose A is a commutative ring and $I \subseteq A$ is an ideal. Show that
(a) $r(I):=\left\{x \in A: x^{n} \in I\right.$, for some $\left.n \in \mathbb{N}\right\}$ is an ideal of A.
(b) $r(I)$ is the intersection of all prime ideals of A containing I.
(c) $r(I J)=r(I \cap J)=r(I) \cap r(J)$, for any two ideals I, J of A.
(d) $r\left(P^{n}\right)=P$ for any prime ideal P of A and $n \in \mathbb{N}$.
(8) Let A, B be commutative rings and $f: A \longrightarrow B$ be a ring homomorphism. For any ideal J of B, the ideal $f^{-1}(J)$ of A is called the contraction of J, and denoted by J^{c}. The extension of an ideal I of A, denoted by I^{e}, is defined to be the ideal of B generated by $f(I)$.
(a) J is a prime ideal of $B \Longrightarrow J^{c}$ is a prime ideal of A.
(b) Prove or disprove: I^{c} is always a prime ideal of B for any prime ideal I of A.
(c) Show that there is a bijective correspondence between the set of all contracted ideals in A and the set of all extended ideals in B. scr
(d) Prove or disprove:
(i) $\left(I_{1} I_{2}\right)^{e}=I_{1}^{e} I_{2}^{e}$, for any two ideals I_{1}, I_{2} of A, and
(ii) $\left(J_{1} J_{2}\right)^{c}=J_{1}^{c} J_{2}^{c}$, for any two ideals J_{1}, J_{2} of B.
(9) Let A be a commutative ring and $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in A[x]$. Show the following:
(a) $f(x)$ is a unit in $A[x] \Longleftrightarrow a_{0}$ is an unit in A and a_{1}, \ldots, a_{n} are nilpotent. (Hint: If $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ is the inverse of $f(x)$, then by induction show that $a_{n}^{r+1} b_{m-r}=0$. This yields that a_{n} is nilpotent and then use (2b).)
(b) f is nilpotent if and only if all of its coefficients are nilpotent.
(c) f is a zero divisor $\Longleftrightarrow \exists a \in A \backslash\{0\}$ such that $a f=0$. (Hint: Choose a polynomial g with least degree such that $f g-0$. If a is the leading coefficient of g then one has $a a_{n}=0$. It follows that $a_{n} g=0$. Proceeding by induction show that $a_{i} g=0$ holds for each i.)
(d) f is said to be primitive if $\left(a_{0}, a_{1}, \ldots, a_{n}\right)=(1)$. For any $f(x), g(x) \in A[x]$, show that $f(x) g(x)$ is primitive if and only if $f(x)$ and $g(x)$ are primitive.
(10)* Generalize the results of (9) to $A\left[x_{1}, \ldots, x_{n}\right]$.
(11) Show that in $A[x]$, the Jacobson radical and nilradical coincide. (Hint: Use (4).)
(12) Let A be as in (9) and $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in A[[x]]$. Show the following:
(a) $f(x)$ is nilpotent \Longrightarrow each a_{n} is nilpotent.
(b) $f(x)$ is in the Jacobson radical of $A[[x]]$ if and only if a_{0} lies in the Jacobson radical of A.
(c) If I is a maximal ideal of $A[[x]]$ then I^{c} is a maximal ideal of A and $I=I^{c}+(x)$.
(d) Every prime ideal of A is the contraction of a proime ideal of $A[[x]]$.
(13) Let A be a commutative ring and \mathfrak{R} be its nilradical. Show that the following are equivalent:
(a) A has exactly one prime ideal,
(b) every element of A is either a unit or nilpotent;
(c) A / \mathfrak{R} is a field.
(14) Suppose that A is a commutative ring and \mathfrak{S} is the set of all ideals I of A such that every $a \in I$ is a zero divisor. Show that \mathfrak{S} has maximal elements and every maximal element of \mathfrak{S} is a prime ideal. Deduce that the set of zero divisors in A is a union of prime ideals.

