Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Abstract Algebra (MTH 204A/B)

Exercise Set 5

- (1) Show that the following is a subring of $\mathbb{R}[[x]]$: $\left\{\sum_{k=0}^{\infty} a_k x^k : a_k \in \mathbb{R}, \forall k \ge 0 \text{ and } \sum_{k=0}^{\infty} |a_k| < \infty\right\}$.
- (2) Find all intermediate rings between \mathbb{R} and \mathbb{C} .
- (3) Let R stand for the ring of all Cauchy sequences in \mathbb{Q} . Show that the following is a maximal ideal of R:

$$\left\{ \{a_n\}_{n=1}^\infty \in R : \lim_{n \to \infty} a_n = 0 \right\}.$$

- (4) (a) Show that, given any commutative ring R with unity, there is a unique ring homomorphism from \mathbb{Z} to R. The unique nonegative generator of its kernel is called the *characteristic* of R.
 - (b) Let R be as above in (4a). If R is a field in addition then show that R is an extension of either \mathbb{Q} or $\mathbb{Z}/p\mathbb{Z}$, for some prime p.
 - (c) Let R be a commutative ring with unity whose characteristic is p, where p is a prime. Show that $R \longrightarrow R$, $a \mapsto a^p, \forall a \in R$, is an endomorphism. This homomorphism is called *Frobenius endomorphism* of R.
- (5) (a) Find all endomorphisms of \mathbb{R} .
 - (b) Find all endomorphism φ of \mathbb{C} such that $\varphi(x) = x$, for all $x \in \mathbb{R}$.

The following exercises (6)-(9) aim to show the irreducibility of the *cyclotomic* polynomials $\Phi_n(x)$ (defined in (8)), where $n \in \mathbb{N}$.

- (6) Let $\mathbb{F} \subseteq \mathbb{K}$ be an extension of fields and $f, g \in \mathbb{F}[x]$ with $f \neq 0$. Show that the division with remainder of g by f gives the same answer, whether carried out in $\mathbb{F}[x]$ or in $\mathbb{K}[x]$. Deduce that f(x)|g(x) in $\mathbb{K}[x] \iff f(x)|g(x)$ in $\mathbb{F}[x]$.
- (7) Let \mathbb{F} be a field and $f(x) := a_0 + a_1 x + \dots + a_k x^k \in \mathbb{F}[x]$, where $k \in \mathbb{N}$. We define the *derivative* of f formally as

$$a_1 + 2a_2x + \dots + ka_kx^{k-1},$$

and denote by f'(x). Show that f(x) has no repeated root in \mathbb{F} if and only if gcd(f(x), f'(x)) = 1.

(8) Let $n \in \mathbb{N}$ and $\mu_n := \{z \in \mathbb{C} : z^n = 1\}$. We say $\omega \in \mu_n$ a primitive n-th root of unity if $\langle \omega \rangle = \mu_n$. Define

$$\Phi_n(x) := \prod_{\langle \omega \rangle = \mu_n} (x - \omega).$$

Note that $x^n - 1 = \prod_{d|n} \Phi_d(x)$. Show that $\Phi_n(x)$ is a monic polynomial of degree $\varphi(n)$ with

integral coefficients. (Hint: Use induction and then Gauss lemma.)

- (9)* Show that, for any $n \in \mathbb{N}$, $\Phi_n(x) \in \mathbb{Z}[x]$ is irreducible following the steps given below:
 - (a) Assume the contrary. Show that there exist monic polynomials f(x) and $g(x) \in \mathbb{Z}[x]$ such that $\Phi_n(x) = f(x)g(x)$ and f(x) is irreducible.
 - (b) Let ω be a root of f(x) and p be a prime not dividing n. Show that $f(\omega^p) = 0$. (Hint: Otherwise $g(\omega^p) = 0$. This means ω is a root of the polynomial $g(x^p)$. This implies that $g(x^p) = f(x)h(x)$, for some $h(x) \in \mathbb{Z}[x]$. Reducing both sides modulo p, one obtains that \bar{f} and \bar{g} have a common factor in $\mathbb{Z}/p\mathbb{Z}[x]$. It follows now that $\bar{\Phi}_n(x)$ has a repeated root over $\mathbb{Z}/p\mathbb{Z}$. Now show that this is not possible.)

- (10) Find all automorphisms of $\mathbb{Q}[\omega]$ and $\mathbb{Z}[\omega]$, where ω is an *n*-th root of unity.
- (11) Let \mathbb{F} be a field. Find the field of fractions of $\mathbb{F}[[t]]$.
- (12) Consider the natural inclusion $\mathbb{C} \hookrightarrow \mathbb{C}[t]$ and let φ be its unique extension to $\mathbb{C}[x, y]$ with $x \mapsto t+1$ and $y \mapsto t^3-1$. Find ker φ and show that every ideal of $\mathbb{C}[x, y]$ that contains ker φ can be generated by two elements.
- (13) Let G be a finite group having a finite dimensional irreducible representation ρ of degree n and character χ .
 - (a) Show that $\forall g \in Z(G) \exists \lambda_q \in \mathbb{C} \setminus \{0\}$ such that $\rho(g) = \lambda_q I$. Find $|\chi(g)|$ when $g \in Z(G)$.
 - (b) Show that n can not exceed the square root of the number of inner automorphisms of G.
 - (c) If ρ is *faithful*, i.e., ρ is injective, then show that Z(G) is cyclic.
- (14) Let G be a finite abelian group. Recall the irreducible character of G can be identified with homomorphisms from G to \mathbb{S}^1 and, the set of all irreducible characters of G forms an abelian group of order |G| with respect to pointwise multiplication. We call this group as the *dual group* of G and denote by \hat{G} . For each $g \in G$, consider the following map:

$$\xi_g : \hat{G} \longrightarrow \mathbb{C} \setminus \{0\}, \, \xi_g(\chi) = \chi(g), \text{ for all } \chi \in \hat{G}.$$
(* 1)

- (a) Show that each ξ_g defined above in (* 1) is an irreducible character of \hat{G} .
- (b) Prove the version of the *Pontryagin duality* for finite abelian groups which is as follows:

 $G \longrightarrow \hat{G}, g \mapsto \xi_g$ is an isomorphism.