Indian Institute of Technology Kanpur Department of Mathematics and Statistics

 Abstract Algebra (MTH 204A/B)

 Abstract Algebra (MTH 204A/B)

 Exercise Set 5

 Exercise Set 5}
(1) Show that the following is a subring of $\mathbb{R}[[x]]:\left\{\sum_{k=0}^{\infty} a_{k} x^{k}: a_{k} \in \mathbb{R}, \forall k \geq 0\right.$ and $\left.\sum_{k=0}^{\infty}\left|a_{k}\right|<\infty\right\}$.
(2) Find all intermediate rings between \mathbb{R} and \mathbb{C}.
(3) Let R stand for the ring of all Cauchy sequences in \mathbb{Q}. Show that the following is a maximal ideal of R :

$$
\left\{\left\{a_{n}\right\}_{n=1}^{\infty} \in R: \lim _{n \rightarrow \infty} a_{n}=0\right\} .
$$

(4) (a) Show that, given any commutative ring R with unity, there is a unique ring homomorphism from \mathbb{Z} to R. The unique nonegative generator of iits kernel is called the characteristic of R.
(b) Let R be as above in (4a). If R is a field in addition then show that R is an extension of either \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$, for some prime p.
(c) Let R be a commutative ring with unity whose charactreristic is p, where p is a prime. Show that $R \longrightarrow R, a \mapsto a^{p}, \forall a \in R$, is an endomorphism. This homomorphism is called Frobenius endomorphism of R.
(5) (a) Find all endomorphisms of \mathbb{R}.
(b) Find all endomorphism φ of \mathbb{C} such that $\varphi(x)=x$, for all $x \in \mathbb{R}$.

The following exercises (6)-(9) aim to show the irreducibility of the cyclotomic polynomials $\Phi_{n}(x)$ (defined in (8)), where $n \in \mathbb{N}$.
(6) Let $\mathbb{F} \subseteq \mathbb{K}$ be an extension of fields and $f, g \in \mathbb{F}[x]$ with $f \neq 0$. Show that the division with remainder of g by f gives the same answer, whether carried out in $\mathbb{F}[x]$ or in $\mathbb{K}[x]$. Deduce that $f(x) \mid g(x)$ in $\mathbb{K}[x] \Longleftrightarrow f(x) \mid g(x)$ in $\mathbb{F}[x]$.
(7) Let \mathbb{F} be a field and $f(x):=a_{0}+a_{1} x+\cdots+a_{k} x^{k} \in \mathbb{F}[x]$, where $k \in \mathbb{N}$. We define the derivative of f formally as

$$
a_{1}+2 a_{2} x+\cdots+k a_{k} x^{k-1}
$$

and denote by $f^{\prime}(x)$. Show that $f(x)$ has no repeated root in \mathbb{F} if and only if $\operatorname{gcd}\left(f(x), f^{\prime}(x)\right)=$ 1.
(8) Let $n \in \mathbb{N}$ and $\mu_{n}:=\left\{z \in \mathbb{C}: z^{n}=1\right\}$. We say $\omega \in \mu_{n}$ a primitive n-th root of unity if $\langle\omega\rangle=\mu_{n}$. Define

$$
\Phi_{n}(x):=\prod_{\langle\omega\rangle=\mu_{n}}(x-\omega) .
$$

Note that $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$. Show that $\Phi_{n}(x)$ is a monic polynomial of degree $\varphi(n)$ with integral coefficients. (Hint: Use induction and then Gauss lemma.)
(9)* Show that, for any $n \in \mathbb{N}, \Phi_{n}(x) \in \mathbb{Z}[x]$ is irreducible following the steps given below:
(a) Assume the contrary. Show that there exist monic polynomials $f(x)$ and $g(x) \in \mathbb{Z}[x]$ such that $\Phi_{n}(x)=f(x) g(x)$ and $f(x)$ is irreducible.
(b) Let ω be a root of $f(x)$ and p be a prime not dividing n. Show that $f\left(\omega^{p}\right)=0$. (Hint: Otherwise $g\left(\omega^{p}\right)=0$. This means ω is a root of the polynomial $g\left(x^{p}\right)$. This implies that $g\left(x^{p}\right)=f(x) h(x)$, for some $h(x) \in \mathbb{Z}[x]$. Reducing both sides modulo p, one obtains that \bar{f} and \bar{g} have a common factor in $\mathbb{Z} / p \mathbb{Z}[x]$. It follows now that $\bar{\Phi}_{n}(x)$ has a repeated root over $\mathbb{Z} / p \mathbb{Z}$. Now show that this is not possible.)
(c) Every primitive n-th root of unity is a root of $f(x)$. Conclude now that $f(x)$ has to be $\Phi_{n}(x)$.
(10) Find all automorphisms of $\mathbb{Q}[\omega]$ and $\mathbb{Z}[\omega]$, where ω is an n-th root of unity.
(11) Let \mathbb{F} be a field. Find the field of fractions of $\mathbb{F}[[t]]$.
(12) Consider the natural inclusion $\mathbb{C} \hookrightarrow \mathbb{C}[t]$ and let φ be its unique extension to $\mathbb{C}[x, y]$ with $x \mapsto t+1$ and $y \mapsto t^{3}-1$. Find $\operatorname{ker} \varphi$ and show that every ideal of $\mathbb{C}[x, y]$ that contains $\operatorname{ker} \varphi$ can be generated by two elements.
(13) Let G be a finite group having a finite dimensional irreducible representation ρ of degree n and character χ.
(a) Show that $\forall g \in Z(G) \exists \lambda_{g} \in \mathbb{C} \backslash\{0\}$ such that $\rho(g)=\lambda_{g} I$. Find $|\chi(g)|$ when $g \in Z(G)$.
(b) Show that n can not exceed the square root of the number of inner automorphisms of G.
(c) If ρ is faithful, i.e., ρ is injective, then show that $Z(G)$ is cyclic.
(14) Let G be a finite abelian group. Recall the irreducible character of G can be identified with homomorphisms from G to \mathbb{S}^{1} and, the set of all irreducible characters of G forms an abelian group of order $|G|$ with respect to pointwise multiplication. We call this group as the dual group of G and denote by \hat{G}. For each $g \in G$, consider the following map:

$$
\begin{equation*}
\xi_{g}: \hat{G} \longrightarrow \mathbb{C} \backslash\{0\}, \xi_{g}(\chi)=\chi(g), \text { for all } \chi \in \hat{G} \tag{*1}
\end{equation*}
$$

(a) Show that each ξ_{g} defined above in $(* 1)$ is an irreducible character of \hat{G}.
(b) Prove the version of the Pontryagin duality for finite abelian groups which is as follows:

$$
G \longrightarrow \hat{\hat{G}}, g \mapsto \xi_{g} \text { is an isomorphism. }
$$

