FAMILIES OVER THE INTEGRAL BERNSTEIN CENTER AND TATE
COHOMOLOGY OF LOCAL BASE CHANGE LIFTS FOR GL,(F)

SABYASACHI DHAR AND SANTOSH NADIMPALLI

ABSTRACT. Let p and [l be distinct odd primes, and let F' be a p-adic field. Let 7 be a generic
smooth integral representation of GLy (F) over an Q;-vector space. Let E be a finite Galois
extension of F' with [E : F] = [. Let II be the base change lift of 7 to the group GL,(E). Let
WO(II, ) be the lattice of Z;-valued functions in the Whittaker model of II, with respect to

a standard Gal(E/F)-equivaraint additive character ¢y : E — @ZX We show that the unique
generic sub-quotient of the zero-th Tate cohomology group of WO(II, ) is isomorphic to the
Frobenius twist of the unique generic sub-quotient of the mod-I reduction of 7. We first prove a
version of this result for a family of smooth generic representations of GLy, (E) over the integral
Bernstein center of GL,(F). Our methods use the theory of Rankin-selberg convolutions and
simple identities of local y-factors. The results of this article remove the hypothesis that [ does
not divide the pro-order of GL,_1(F) in our previous work [DN22].

1. INTRODUCTION

Let G be a reductive group defined over a number field K. Let o be an order ! automorphism
of G defined over K, and let G° be the connected component of the fixed points of o. In the
seminal paper [TV16], D.Treumann and A. Venkatesh established the functoriality lifting of a
mod-/ automorphic form on G? to a mod-/ automorphic form on G; here mod-I automorphic form
is defined as a Hecke eigenclass in the cohomology of congruence subgroup with k-coefficients. At
the same time, they also made some conjectures for representation theory of p-adic groups, and
these conjectures predict that local (Langlands) functoriality is compatible with Tate cohomology
for the action of (o) (see [TV16, Section 6.3]). After initial evidence in the context of local cyclic
base change for depth-zero cuspidal representations due to Ronchetti ([Ronl6]), Feng ([Fen24],
[Fen23]) made remarkable progress towards these conjectures—using the recent advances due to
the works of V. Lafforgue and Fargues-Scholze. In this article, using completely different line of
arguments, we approach the conjectures in [TV16, Section 6.3] in the setting of the local Base
change lifting. We use local Rankin-Selberg zeta functions and their functional equations to study
the Tate cohomology and linkage principle. Our approach is in the spirit of local converse theorems.
In our earlier work [DN22], we assumed that the prime [ is large. In this article, exploiting the
theory of smooth representations in families, we remove this hypothesis.

Let (I, W) be an irreducible smooth F;-representation of G(F), where G is a connected reduc-
tive group over a p-adic field F. Say o € Aut(G) is of order [ and that II is isomorphic to II.
The Tate cohomology group H (0, V) is a representation of G?(F). Any irreducible sub-quotient
7 of H(0,W) is defined to be linked with IL. In the article [TV16], the authors discovered that
linkage is compatible with local functoriality. In this paper, we prove the Linkage conjectures in
the local Base change setting of GL,, for all odd I. In our previous work [DN22], we proved the
main theorem under the restriction that ! does not divide the pro-order of GL,_1(F'). By using
the theory of Co-Whittaker modules and integral Bernstein center, developed by Emerton and
Helm ([EH14], [Hel20]) in an essential way, we remove this hypothesis on .

To state the main results of this article, some notations are in order. Let F' be a finite exten-
sion of Q, and let E/F be a finite Galois extension of prime degree I. Let K be the algebraic
closure of the fraction field of W (F;) with ring of integers O. Let (m, V) be an irreducible smooth
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representation of GL,,(F), where V is a vector space over K. We assume that (7, V) is an integral
representation, i.e., V' admits a GL,, (F')-invariant O-lattice. Let (II, W) be the base change lifting
of  to GL,,(E). The representation II is isomorphic to II7, where v is any generator of Gal(E/F).
Let us fix an isomorphism 7" : IT — II7 such that 7% = id. Note that II is an integral representation
of GL,,(E).

If 7 is generic, then II is also a generic representation. Let us fix an additive character g of
F and let g be the composition g o Tr, where Tr is the trace map of the extension E/F. Let
W(m, ¢r) (resp. W(II,¢5)) be the Whittaker model of 7 (resp. II). Vigneras showed that the O-
module WO(IT, ¢g) is a GL,, (E)-stable lattice and by multiplicity one results, WO(IL, 1) is stable
under the Galois action of Gal(E/F) induced by its natural action on GL,(FE). Note that there
exists a unique generic sub-quotient of the mod-I reduction of a generic integral representation 7
of GL,(K), where K is a p-adic field and this is denoted by J;(). It is easy to show that the Tate
cohomology of H O(WO(IT,+x)) has a unique generic sub-quotient as a representation of GL,,(F)
([DN22, Proposition 6.3]). Let V be a vector space over F;, and let V() be the vector space
V ®@p; F; where Fr be the Frobenius automorphism of F;. Ronchetti ([Ron16, Theorem 6]) proved
that the Tate cohomology group H'(L) is zero for any GL,(E) and Gal(E/F) stable lattice £ in a
cuspidal representation. When [ does not divide the pro-order of GL,,(F'), the authors showed the
same vanishing result for generic representations ([DN22, Corollary 8.2]). We prove the following
theorem on the zeroth Tate cohomology:

Theorem 1.1. Let ! and p be two distinct odd primes. Let F be a p-adic field and let E/F be a
Galois extension of degree l. Let w be an integral smooth generic representation of GL,(F) over a
Q;-vector space. Let 11 be a base change lifting of ™ to GL,(E). The unique generic sub-quotient
of the Tate cohomology group ﬁO(WO(H, Yg)) is isomorphic to Jy(m)®.

In our previous work ([DN22]), we proved the above theorem when ! does not divide the pro-
order of GL,_1(F). We use the theory of Rankin-Selberg zeta integrals and their functional
equations. The hypothesis on the prime [ in [DN22] is needed for the completeness of mod-I Whit-
taker models. In order to remove this hypothesis on [, we use the theory of smooth representations
in families due to Emerton and Helm. This approach deals with the nilpotents which arise in the
mod-l Zeta integrals. So, we first prove a version of the above theorem over families and use it
to prove the above theorem. In order to define the correct family, we needed the work of Helm
on local converse theorem, where he defines a map between the integral Bernstein center and a
certain deformation ring. This gave us the notation of Base change lifting map between Bernstein
centers.

We will begin with the description of our result on Tate cohomology of a family of smooth
representations of GL,(E). Let M, (K) be the category of smooth W (F;)[GL, (K)]-modules,
where K is a p-adic field, and the center of the category M., (K) is denoted by Z,(K). The
primitive idempotents of Z,,(K’) corresponds to an inertial class [L, o], where ¢ is a supercuspidal
F; representation of the Levi-subgroup L of GL, (K) ([Hell6a, Section 12]). Let es be a primitive
idempotent of Z,(F). Using mod-/ semisimple Langlands correspondence of Vigneras ([Vig01,
Theorem 1.6]), we get a smooth representation

p: WF — GLn(Fl)

associated with (L, o). Let e, be the primitive idempotent in Z,,(E) associated with resyy,, p. Using
Helm’s construction of a homomorphism between irreducible component of Bernstein centre to a
deformation ring, we obtain a map

2p/F ¢ e Zn(E) = es Z,(F)

which interpolates the cuspidal support of Base change lifting ([AC89, Chapter 1]).

To interpolate those generic representations of GL,(F) which arise as a base change lift of
representations with a given cuspidal support, we define

V= (e, indgizg);) vpt) ®zpp €sZn(F).
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The module V is a co-Whittaker egZ, (F)[GL,(F)]-module. The theory of Rankin-selberg ~-
factors in families show that the representation V is isomorphic to V7, for all v € Gal(E/F).
Thus, the space of Whittaker functions (containing functions on GL,(E)/N,(E) with values in
€sZy) is invariant under the action of Gal(E/F). We then prove that the Tate cohomology group

HO(W(V, ¢)) realises
GL,
le (mdNL(}(«“})?) Ui Ow (F,) F)®

as a sub-quotient. The proof of this result is similar to our previous result in [DN22, Theorem
6.7], where we use Rankin-Selberg local zeta integrals and their liftings from homogeneous spaces
over F' to the corresponding spaces over E.

Theorem 1.1 is proved by a specialization argument. The proofs of this theorem and the
previous version in families are inspired from the proofs of local converse theorems, as in [JPSS79,
Proposition 7.5.2] and [Hen93, Theorem 1.1]. Note that the above arguments in families and our
specialization arguments essentially use Kirillov models and completeness of Whittaker models.
The following is the essential content. Let X be the space GL,,—1(F)/N,_1(F), and let H €
Co(Xp,F;). Typically, for some fixed integer k and a suitably chosen Whittaker function W in
the Kirrilov model of II, the function H is equal to

[H(np) (w) — 7 (w >]W((3 (D)

when det(g) = k and zero otherwise. Essentially we need to show that H is zero. If not, there
exists a primitive idempotent e; € Z,(F) and a esZ, (F)-valued Whittaker function

W' € W(esindy "~ : F> Gt vt

such that

. H(g) @ W'(g) du # 0.

When the ring es 2, (F) ® F; is reduced, we can simply use Rankin-Selberg theory of mod-I repre-
sentations to prove the vanishing of H and deduce our main theorem. This has been the main point
of our work [DN22, Theorem 6.7]. In this article, to overcome the problems with the reducibility
of the ring €52, (F) ® F;, we use our result on families.

2. INTEGRAL BERNSTEIN CENTER AND BASE CHANGE

In this section, we recall the theory of integral Bernstein centers and define a base change map
between Bernstein centers—which is compatible with the local base change lifting of irreducible
smooth representations of GL,,. We essentially follow the works of Emerton-Helm ([EH14]) and
Helm ([Hel20]).

2.1. For any finite extension K of Q,, we denote by o its ring of integers and the maximal ideal
of 0k is denoted by px. Let gk be the cardinality of the residue field o /px. The Weil group of
K is denoted by Wgk and its inertia subgroup is denoted by Ix. The prime to [-subgroup of Ix
is denoted by Iﬁp. We denote by G,,(K) the group GL, (K) and it is equipped with the natural
topology induced from that of K. Let F' be a finite extension of @, and let E' be a finite Galois
extension of prime degree [, where p and [ are distinct odd primes. The Galois group Gal(E/F) is
denoted by T'. Let F be the algebraic closure of the finite field of I elements and let W (F) be the
ring of Witt vectors; we use the notation A for W (FF). Let K be the algebraic closure of the field
of fraction of A with ring of integers O. Let ¢p : FF — A* be a non-trivial additive character and
let 1 be the character r o Trg/p, where Trg,p denotes the trace map of the extension E/F.
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2.2. Let R be a commutative ring with unity and let G be the K-rational points of a reductive
algebraic group defined over K. We denote by M g(G) the category of smooth R[G]-modules (the
stabilizer of every element under the action of G is open), and the Bernstein center of Mg(G) is
denoted by Zr(G). We assume that G is the group G,,(K). We use the notation ZX for the ring
ZA(Gr(K)). Let P be a parabolic subgroup of G. Let M be a Levi-subgroup of P and let U be
the unipotent radical of P. Let (o,W) be a supercuspidal representation of M, where W is an
F-vector space. Let s = [M, o] be the inertial equivalence class containing the pair (M, o). Let
M (G) be the full subcategory of My (G) consisting of all smooth A[G] modules such that any
irreducible subquotient has mod-I (see [Hell6a, Definition 4.12]) inertial supercuspidal support
equal to 5. Given any primitive idempotent e of ZX  there exists a unique inertial equivalence
class 5 such that the Bernstein center of M,(G) is equal to eZX. The primitive idempotents of
ZK correspond to the inertial classes of the form [M, o], where o is a supercuspidal representation
of M over an F-vector space.

2.3. Helm in his foundational work [Hel20] described integral Bernstein center in terms of local
Galois deformation rings. He constructed a map between connected component of the integral
Bernstein center and a local Galois deformation ring which interpolates the local Langlands corre-
spondence. Helm’s constructions naturally defines a map between Bernstein centers ZZ and Z[,
which interpolates the compatibility of cuspidal support maps of base change lifting. For the cyclic
extension F/F, the base change lifting of smooth irreducible representations of G over complex
vector spaces is characterized via certain character identities (see [AC89, Chapter 3]). There is
a relation between the local base change lifting of irreducible smooth K-representations of G' and
the local Langlands correspondence over K. Here, we use the local Langlands correspondence by
fixing the normalizations as in [EH14, Section 4.2].

2.3.1. An l-inertial type is a representation v : I}? — GL,(A) that extends to a representation
of Wg. Let s be the inertial equivalence class [M, o]. where M is a Levi subgroup of G and o is
a supercuspidal representation of M over an F-vector space. Vigneras’ construction ([Vig01, The-
orem 1.6]) of mod-I local Langlands correspondence attaches a unique semisimple representation
p: Wk — GL,(F) with the pair (M, o)

(M, o) &~ p (mod — I LLC)

Let 7 be an irreducible representation of g) over an F-vector space, and let 7 be the (unique) lift
of 7 over A. Given any A-algebra A and a representation p : Wx — GL,,(A4), we have

pPA @(HomA(T, pPA) ®T).
7]

The direct sum is over the Wx-conjugacy classes of I%)—representations, denoted as [7]. The
space Hom 4 (7, p) is a free A-module and a pseudoframing of p4 is a choice of a basis for each
Homyu (7, pa). In the article [Hel20, Section 8], the author constructed a A-algebra R, corre-
sponding to an [-inertial type r—which is universal for the pseudoframed deformation pa : Wx —
GL,(A), i.e., for any choice of basis of Homlg) (1, pa) which lifts a basis of Homlg) (7, p) for each

Wg-conjugacy classes of I%)—representations, denoted by [7], there exists a map RX — A such
that the pseudoframed deformation p4 is obtained as a base change of the universal pseudoframed
deformation pX. The affine scheme corresponding to the deformation ring RX is equipped with
an action of a group GX| defined in [Hel20, Section 8], which acts by change of framing; we recall
the precise definition of GX in the proof of Lemma 2.1. This action gives a space of invariance
(RE)mv which is infact a subalgebra of REX. The space (RE)™ is useful to construct the base

change map between the integral Bernstein centers, as we will see in the next subsections.

2.3.2. In [HMIS, Section 7], the authors constructed a map

LE . ezK - RE
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which is compatible with the local Langlands correspondance, i.e., for any morphism
z:RE LK,

the morphism

zollK ezl oK
gives the action of eZX on the representation 7m,-associated with p, via the local Langlands
correspondence. The map LE identifies the algebra eZX with the G,-fixed points of REX. This
morphism plays a fundamental role in proving the local Langlands in families by Emerton and
Helm ([EH14, Conjecture 1.3.1]). Let F be a finite extension of Q, and let E be a finite extension
of F of degree [ with [ # p. Let v : Ig) — GL,(A) be an l-inertial type. As the group Ig) is
equal to I SEl), any pseudo-framed deformation p4 : Wr — GL,(A) also determines a pseudoframed
deformation p4 : Wg — GL,(A) by restriction and hence we get a map

Bpyr: RY — RL. (2.1)

Lemma 2.1. The map Bg/p induces a map between (RF)™ and (RE)™ .

Proof. Let X, be the affine A-scheme parametrizing the pairs (g, h), where g, h are the invertible
m by m matrices with ghg~" = h9. Let Ry m be the ring of functions of the connected compotent
of X4,m containing the pair (Id,,Id,). Note that the A-algebra R[ is isomorphic to Q7 Bgrnrs
where n+ is the dimension of the space Hom o (7,7). The group GL,,. acts on R,._ . by change

of frame. Let Sg = {71, 72,..., 7} (resp. Sr C Sg) be a set of representatives for the equivalence

)

classes of II(,Z representations for the action of W (resp. Wr). The group

IT GL..

TESE

P isomorphic to
— . GL,,_ is contained in GF. Thus, the image of the restriction of By, to (RF)™ is contained
TESE T v / v

in the space of invariance (RL)nv. O

denoted by GZ, acts on RZ via its action on R,_,_. Similarly the group G

v

2.3.3. Let es be a primitive idempotent of ZI" corresponding to the inertial equivalence class
s. Fix a pair (L, o) in the class s, where L is a Levi subgroup of G, (F) and o is an irreducible
supercuspidal F-representation of L. Let pp be the n-dimensional semisimple representation of
W associated with o via the mod-I semisimple local Langlands correspondence ([Vig01, Theorem
1.6]). Let v : Ig) — GL,,(A) be the l-inertial type such that its mod-/ reduction is isomorphic to
res () (pr). Note that the restriction resy, (pr) via mod-I local Langlands correspondence defines
a pair (L',0") such that its inertial equivalence class, denoted by t, is independent of the choice
of (L,o). Let e, be the primitive idempotent of ZF associated with r. The map Bpg,r induces a
map 2g/F : e ZE — esZF such that the following diagram commutes.
]LE

v

e ZF

RE

ZE/F Bg/r

]LF
6525 E— Rf

Let pr, : Wr — GL,(K) be the representation corresponding to zr : R — K and let m,,
be a smooth irreducible representation of GL,(F) associated to p,, via, the local Langlands
correspondence. Let zx be the map xp o Bg/p : RZ — K, and the representation 7, is the base
change lifting of 7,,. The action of ZF on the representation ., factorises through e,ZZ and
it is given by the homomorphism zp o LY o 25/ p.
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3. RANKIN-SELBERG CONVOLUTION IN FAMILIES

In this section, we review the theory of Rankin-Selberg convolution over arbitrary Noetherian
A-algebras. We start by recalling the notion of co-Whittaker modules. For a precise reference, see
[HM18], [Mos16a].

3.1. Co-Whittaker modules. Fix a non-trivial additive character ¢y : K — A*. For any
Noetherian A-algebra R, we denote by 1k r the composition

K Y5 A% 5 RX,

Let N,,(K) be the group of all unipotent upper triangular matrices in G, (K). The character
Vi r: K — R* induces a character of N,,(K), defined as

(‘rij)?,jzl — Y r(T12 + T3+ Tno1n),

which is denoted by ¥y r. Let (m,V) be a smooth R[G,(K)]-module. We denote by V(™
the space of W g-coinvariants, which is defined as the quotient of V modulo the R-submodule
generated by the set {71’(1})’[) — (Urr)(z)v:a e Np(K),ve V}. The R-module V(™ is the n-th

Bernstein-Zelevinski derivative of V.

3.1.1. A smooth admissible R[G,,(K)]-module (7, V) is called co-Whittaker if

(1) the n-th derivative V(™ is a free R-module of rank one,
(2) for any quotient W of V' with W) = 0, we have W = 0.

A co-Whittaker module (7, V) admits a central character denoted by w, : F* — R*. By
definition, the representation (7, V") admits an R-module isomorphism V(") ~ R. By Frobenius
reciprocity, this isomorphism induces a G, (K)-equivariant homomorphism

Gn(K
V — IndNnEK;(\I,K’R)'

The image of V under the above map is called the Whittaker space of w. It is denoted by

W(n, . r) and is independent of the choice of isomorphism V(") ~ R. The identification V(") ~

R, also induces a P, (K)-equivariant map

P.(K
V — IndNn((K))(\I,K’R)’

the image of the above map is called Kirillov space of m, and it is denoted by K(m, 4 x r). The

map W — resp, () (W) gives an isomorphism W(m, ¥k r) — K(m, ¥k r) ((MM22, Section 4]).

Moreover, the space K(m, ¥k r) contains indI;;;((II?)(\I! k,r) as R[P,(K)]-submodule.

3.1.2. For a co-Whittaker R[G,(K)]-module (7, V), the endomorphism ring Endgq, (k) (V) is
equal to R, and the action of the integral Bernstein center ZX on V induces a map f, : ZK — R.
The map f, is called the supercuspidal support of w. The supercuspidal supports of two co-
Whittaker R[G,,(K)]-modules are the same if and only if they have the same Whittaker spaces
(see [LM20, Lemma 2.4]). Moreover, if we have two co-Whittaker R[G,,(K)]-modules (71, V;) and
(g, Vo) with a G, (K)-equivariant surjection Vi — Vo, then fr, = fr,-

3.1.3. Let WX be the smooth A[G,,(K)]-module mdﬁigg(\ﬂl}l) For a primitive idempotent e

in the integral Bernstein center ZX the space eW X is a co-Whittaker eZX[G,,(K)]-module. The
following result is due to [Hel16b, Theorem 6.3], which specify the universal property of eWX.

Theorem 3.1. Let R be a Noetherian A-algebra, equipped with a eZX -algebra structure. Then
GWT{(@ezng is a co- Whittaker R[Gy,(K)]-module. Conversely, if (m, V) is a co- Whittaker R|G,,(K)]-
module in the category Mo(Gn(K)), then there exists a surjection B : eWX Qezx R =V such
that the induced map B™ - (eWkK QezK R)(") — V") s an isomorphism.



FAMILIES OVER THE INTEGRAL BERNSTEIN CENTER AND TATE COHOMOLOGY 7

We end this subsection with a version of key vanishing result, usually known as completeness
of Whittaker models, provided by G.Moss ([Mos21, Corollary 4.3]). This vanishing result will be
crucially used in proving the main results of this article.

Theorem 3.2. Let R be a A-algebra, and let ¢ be an element of indG”(K)(\I/K)R). If

N, (K)
/ P(g9) @ W(g)dg =0,
N, (K)\Gr(K)

for all W € W(eWkK, ¢;(1) and for all primitive idempotents e of ZX  then ¢ = 0.

3.2. Rankin-Selberg formal series. In this subsection, we recall the Rankin-Selberg gamma
factors over families, which provide the classical Rankin-Selberg gamma factors as a specialization
on K-points. For a reference, see [Mosl6a, Section 3.

3.2.1. We now introduce some notations. Let w,, be the matrix of G, (K) of the form:
0 1
Wy, =
1 . 0
For r € Z, set Gn—1(K), = {g € Gn-1(K) : vk(det(g)) = r}, where vk denote the normalised

discrete valuation of K. Let Xx be the coset space N,,_1(K) \ Gp—1(K). For an integer r, we
denote by X[ the set of the form {N,_1(K)g:g € Gn_1(K),}.

3.2.2. Let A and B be two Noetherian A-algebras. Let m (resp. 7') be the co-Whittaker A[G,,(K)]
(resp. B[Gp—1(K)])-module. For any W € W(r, ¢k 4) and W' € W(W/,l/JI;}B)7 the integral

(W, W) = /

W (g 2) © W'(g)dg
XK

is well-defined for all integers r and it is zero for r << 0 (see [Mosl6a, Section 3]). The formal
Laurent series

> KWW,

reZ
is an element of S~!((A®a B)[X, X 1), where S is the multiplicative set consisting of polynomials
Zf_: . @ X" with a; and a, being units in A ®, B. Now, let us consider the functions W and W ,
defined as

W(g) =W (wn(g") ™)
and
W(g) == W (w1 (")),

for all g € G, (K) and = € G,,—1(K). Making change of variables, we have the identity:

KW, wr) = B (m(wy) W, 7 (w1 )W). (3.1)

3.2.3. Functional Equation. Given w and 7’ as above, there is a unique element v(X, 7, 7', ¢k ) in
the ring of fraction S™!((4A ®4 B)[X, X ']) such that

Z EW WX = (1) (X, 7, 7 k) Z KW, whHxr,
reZ r€Z
for all W € W(r,x,4) and W' € W(n', ¢!y
Let e (resp. €’) be the primitive idempotent in ZX (resp. ZX |) such that the supercuspidal
support map f, (resp. fr) factors through the center eZX (resp. ¢’ZX |). The gamma factor
Y(X,eWE WK | 1x) corresponding to the pair (eW,X /WX |) admits the following universal
property ([Mos16b, Theorem 5.4]) in the families of co-Whittaker modules.
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Theorem 3.3. Let A and B be two Noetherian A-algebras. Let w and ' be two co- Whittaker
A[Gn(K)] and B[Gp—1(K)]-modules respectively. Let e (resp. €') be the primitive idempotent
of ZK (resp. ZK |) such that supercuspidal support fr (resp. fn) factors through eZX (resp.
e/ZK ). Then

’Y(Xaﬂaﬂ/7’(/}K) = (fﬂ' ®fﬂ/)(’Y(X’eWT{(7e/W7{il7wK))'

3.3. Frobenius twist. Let R be a Noetherian F-algebra. Let (7, V') be a co-Whittaker R[G,,(K)]-
module. Let Fr : R — R be the map = — z!. We denote by V) the R module V ®p, R. The
module (7, V1) is called the Frobenius twist of (7, V). Let s be the inertial equivalence class
such that 7 € M4(G,(K)), and let e be the primitive idempotent of ZX associated with 5. The
composition
ezk I g 22N, g

denoted by f,.w), is the supercuspidal support of the Frobenius twist 7. Let R’ be a Noether-
ian F-algebra, and let (7/,V’) be the co-Whittaker R'[G,,—1(K)]-module. Let s’ be the inertial
equivalence class such that 7' € Mg (G,_1(K)), and let €’ be the primitive idempotent in ZX
associated with s’. Using Theorem 3.3 and the properties of supercuspidal supports f,.a) and
fe, we get the following identity of gamma factors

(X, 77 )t = (X 7D, 'O gl (3.2)

In the next subsection, we set up an idenitity of the integrals on the homeogeneous space of F’
with those on the homogeneous space of E. This is crucial for the main results.

3.4. Integrals on homogeneous space. As before, let E be a finite Galois extension of a p-adic
field F with degree of extension [, where [ is coprime to p. We denote by I' the Galois group
Gal(E/F). Let R be an F-algebra with p being invertible R. There is a natural action of I" on the
coset space X g and hence on the space C2°(Xg, R), consisting of smooth and compactly supported
R-valued functions on Xp, given by (7.90)(g) := p(y tg), for all y € T, f € C°(Xg, R) and for
all g € Xg. We denote by C°(Xg, R)!' the space of I'-fixed elements in C°(Xg, R). With these,
we now deduce:

Proposition 3.4. Let dup and dup be the Haar measures on Xg and Xp respectively. Then,
there exists a non-zero scalar o € F such that for all p € C°(Xg, R)'', we have

/soduE=a/ pdup.
XE XF

Proof. The proof is immediate by following the arguments of [DN22, Proposition 5.2] mutatis-
mutandis. 0

Remark 3.5. The Haar measures dug and dup on Xg and Xp, respectively, are now choosen
in a way that ensures o« = 1. Moreover, if e is the ramification index of the extension E over F,
then for all k ¢ {re:r € Z}, we have

dup =0
/(XE)FSO 12 )

and for all k € {re:r € Z}, we have

/ pdup =/1 pdur.
(XE)r X

4. TATE COHOMOLOGY OF CO-WHITTAKER MODULES

In this section, we study the compatibility of Tate cohomology with local base change for
universal co-Whittaker modules.
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4.1. Let E be a finite Galois extension of a p-adic field F' with [E : F| = [, where [ and p are
distinct primes. We fix a generator « of the cyclic group Gal(E/F). For any A-algebra R and
any smooth R[G g]-module V| we denote by V7 the smooth R[Gg]-module, where the underlying
set is V but the Gg-action on V7 is twisted by . Note that the functor V' — V7 is exact and
covariant.

4.2. Galois invariance. Let e, be a primitive idempotent of ZX", and let v be the Il-inertial type
corresponding to es. Then there exists a primitive idempotent e, of ZF, which corresponds to the
same [-inertial type v. We have the base change maps 2,/ r : e ZE — e, ZF and Bg/r: RE — RE
as defined in the subsection (2.3.3), with the following identity

LfozE/F:BE/FoLf. (4.1)

We denote by Ap and Ar the Noetherian A-algebras e, ZF and es ZZ respectively. Note that the
ring Af is considered as an Ag-module via the map zg/p.

Lemma 4.1. Let V be the co-Whittaker Ap[G.,,(E)]-module e.WF @4, Ar. Then we have
W(Vu 77[JE,AF) - W(V’Y7 ’(/}E,Ap)'

Proof. We use the local converse therorem ([LM20, Theorem 1.1]) for co-Whittaker modules. Tt
is enough to show that

7(X7 Va T, wE) = 7(X7 V’Y7 T, ¢E)7
for T varying over all irreducible generic integral K-representation of G¢(E), for 1 <t < [5]. For
a specialization z : Ap — K, the G,,(E) representation (e.W,F ®4, Ar) ®, K, denoted by IL,,
is the base change lift of a smooth representation 7, of G, (F). In particular, II} ~ II,, for all
~v € T'. Since

x(’Y(X»Vaﬂ ¢E)) = V(Xa HmvTv wE)a

and
z(V( X,V 1 ¢E)) = (X 10, 7, ¥E),
we have
e(V(X,V,7,¢5)) = 2(v(X, V7, 7,¢5)),
for all K-points of Ar. The lemma now follows since A is reduced and flat over A. O

From these, we deduce:
Lemma 4.2. Let V be the co-Whittaker module eth ®a, Arp. Then the Whittaker space
WV, ¥E, 4,) is invariant under the action of Gal(E/F).

Proof. Since V is co-Whittaker, we have the Ap-module isomorphism V(™ ~ Ap. Precomposing
this isomorphism with the quotient map ¥V — V(™ induces the Ap-linear map W :V — Ap with
W(n.v) = Vg a,(n)W(v),

for all v € V and n € N, (FE). Moreover, for any v € Gal(E/F'), we have
W(y(n).v) = Ve a,(7(n))W(0) = ¥g a, ()W (0).

Therefore, the Whittaker spaces of V and V7 with respect to the character g are induced by the
same linear map W. Let W, be an element of W(V, ¢ 4, ). Then

(v W) (g) = W(r(g)-v).

This shows that y~*.W, € WV, ¥g a,). But WOV, ¥g a,) = WO, ¥g a,), by Lemma 4.1.
This completes the proof. O

We now prove the following theorem.
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Theorem 4.3. Let V be the co-Whittaker Ap[G,(E)]-module e, WE @4, Ap, and let Vi be the
F[Gn(F)]-module esWE @A F. Let R be the F-algebra Ap @5 F. Then there is a G, (F)-stable

subspace M of the Tate cohomology group HO (WO, ¥E, 4,)) with Gy (F)-equivariant surjection
M — WV, ¢ ).
Proof. We prove the above theorem using induction on the integer n.

4.2.1. Let us consider the case n = 1. Recall that Z{ is the convolution A-algebra C°(K >, A).
Let Pk be the prime to [ part of 0. For any character n : Px — A*, we get an idempotent e, of
2K, and the A-algebra e, Z¥ is equal to H(K*, Px,n)-the endomorphism algebra of the A[E*]
representation indgKX 1. Local class field theory gives a character v of I}? assocaited with 7. The
ring RX is isomorphic to A[E* /Pk] and IL,I]( is the identity map. Let x : FF* — F be a character
and let X be the character x o Nrg,p. The characters x and x give rise to idempotents e; and e,
of ZF and ZF respectively. From local class field theory the map Bp /F is induced by the norm

map Nrg/p : E* — F*. The module e.ZF also has a natural E*-action and the identification
eZl @up,p €21 22T,
makes es 21 an e, Z{ [E*]-module. Thus, we have

HO(es Z2F) 25 (e, 2F @p F)D.

4.2.2.  So now, we assume that the result is true for n — 1. We denote by 7 (resp. 77) the action
of G,,(E) (resp. G,,(F)) on the space V (resp. Vp). Recall that W(V,¢g 4, ) is invariant under
T'-action. Let ®,, be the composite map

K(V’wE,AF) —)I d n((E)) (\PE,R) ml df] ((1;)) (\I/ )

where the map 6, is induced by the morphism Ar — R, sending x to x ® 1. Note that the map
®,, factorizes through the Tate cohomology space HY(K(V,¢g ,)). Let M(yr) be the inverse
image of the Kirillov space K(VI(,[), ¢%,R> under ®,,. Note that M(¢r) is non-zero, and it is stable

under the action of P, (F') with non-zero P, (F')-equivariant map
o M(Ur) — KV 0 n).
Let V' be an element of M(yr). We will show that
(e (wa)V) = 7 (wa) 8a(V), (42)

where 7 (wy,) is the induced action of 7z (wy,) on HO(K(V, VE Ap))-

4.2.3. Let ey be an arbitrary primitive idempotent of ZF | and let v/ be the l-inertial type
corresponding to es,. Then there exists a primitive idempotent e of Z¥ | which corresponds to
the same [-inertial type v/. If A% (resp. A%) denotes the Noetherian A-algebras e ZL | (resp.
e ZE 1), then we have the base change map 2 p A — A with

L. o 2g/p = Bi/p o L. (4.3)
We denote by V' the co-Whittaker A%[G,,—1(E)]-module e.W,Z ®a, A Let R be the F-algebra
Al@aF, and let V}, the co-Whittaker R'[G,,_1(F)]-module e W, | @5F. Using induction hypoth-
esis, there is a Gy,_; (F)-stable subspace M’ (¢x) of the Tate cohomology group H°(W()V", (0 A,F))
such that the non-zero P, (F)-equivariant map

_ 'n 1 E _ resPn7 (F) n 1 F
®p1 KOV gl ) %, ma? O (W) —— Ind (U5,

gives the G, (F)-equivariant surjection

M (Wp) — WV, dplp),



FAMILIES OVER THE INTEGRAL BERNSTEIN CENTER AND TATE COHOMOLOGY 11

which we also denote by ®,,_;. Here, the map 6} is induced by the morphism A% — R’, sending
a to a ®1. We denote by 77 (resp. 7f) the action of G,,—1(E) (resp. Gn—1(F)) on the space V'
(resp. Vi).

4.2.4. Let V' be an element of W(Vgl), F L-). Then there exists an element W’ in the Whittaker
space W(V', ’L/JE’A}:)F such that resp, ,(g)(W’) is mapped to resp, ,(p) (V') under ®,_;. Let W
be the element of W(V, ¢ 4,.)" such that resp, ) (W) = V. Then, using functional equation
over F/, we get

STEW WX =y (1) (X VYV 0p) Y e (W WX

kez keZ

where f is the residue degree of the extension E/F. Applying the morphism (6, ® ¢}), and using
the identity (3.1) and Remark 3.5, the above relation becomes

ZC ko (TE(wn 05( )s TE(wn 1)96( ))X_lk

keZ (4 4)
=@ ()" (0@ 0) (V(X, V.V 9r) Y ek (0:(W), V') X'F.
keZ
By induction hypothesis, we have
O 1 (Tp(wn )W) = 710 (w, 1)V,
Using this, it follows from (4. 4) that
Zc o (TE(w,)0,(W), T (wn V) Xk
kez (4.5)

= @y, (=100, ® ) (v(X, V.V, 6m)) Y ef (0:(W), V) X .

kEZ

4.2.5. Recall that ®,,(V) is an element of the Kirillov space K(Vg), wi",R)' Let U be the element
of W(Vg), MQR) such that resp, (7)(U) = ®,(V). By Theorem 3.2, the assertion (4.2) is equivalent
to the following identity:

> e (@u(Ta(wn) 0 (W), 7 (wa ) V) X

keZ (4.6)

—Zc & wn YU, TF()(wn,l)V')X_lk
keZ

From functional equation over F, we get
SO VIX T = wy (- 1)y (X, VOV k) Y e (U, V) X
kez kez
Using the relation (3. 1) and replacing the variable X by X! to the above equality, we have
Zc L (70 (w1, 71wy WX
keZ
=, (=)D V) VD k) 3 e (0 V)X

kEZ

4.2.6. Comparing the above equation with (4.5), the equality (4.6) is now equivalent to the
following identity of gamma factors

(60 ® 0) (1(X, V.,V 0m)) = v(X, V) Vi ).
First, note that the base change maps Bg,r and Bj /F together with the universal property of
the pairs (RE, pZ) and (RE, pt)) induces the isomorphisms

resya (o) = ¥ @pe RE and resw, () = pE @ps RE.
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Using these isomorphisms and the commutativity relations (4.1) and (4.3), we have
VXYV ) = (2m/p 0 (1)) @ (2 p 0 (L)) (v(X, ) @ p2 ¥m))
= (L) o Bryp) @ (L)~ 0 Bl p)(V(X, 0 @ pi), ¥E))
= (L)' @ (L) (v (X, (o) @re BY) @ (o) @ge, Ry)), V)
= (L))" @ L) H(v (X, 0 @ pyy @ indyyl (1), ¢r))
—Hv(X esWE e WE | @n,4r),

where 7 runs over the characters of Gal(E/F). Finally, applying the morphism (6, ® 6}) and using
the identity (3.2), we get

(0, ® 0,) (v(X, V, V' 00)) = v(XL, V0 VD ).

This shows that ®,, is a non-zero G, (F)-equivariant map. Since Vl(ml) is co-Whittaker R[G,,(F)]-
module, the map ®,, is infact a surjection. This completes the proof. O

5. TATE COHOMOLOGY OF GENERIC REPRESENTATIONS

In this section, we prove our main result (Theorem 1.1) using Theorem 4.3. We will continue
with the notations of the preceding section.

5.1. Let mp be an integral generic representation of G,,(F) over a K-vector space whose mod-
inertial supercuspidal support is s. Let mg be the base change lifting of mp with mod-I inertial
supercuspidal support t. Recall that we have the base change map

ZEJF : eth — 6525.

If fr. (resp. fr,) denotes the supercuspidal support of mr (resp. mg), then we have

fTrE = fﬂ'p OZE/F'

Let Jy(mr) be the unique generic sub-quotient of the mod-I reduction 7¢(7wr). The supercuspidal
support of the F-representation Jy(7r) is equal to s ([Hell6a, Proposition 4.13]). We denote by
Ap and Ap the Noetherian A-algebras e, ZF and e, Z" respectively.

Theorem 5.1. Let F' be a p-adic field and let E be a finite Galois extension of F' with [E:F]=1,
where | and p are distinct odd primes. Let g be an integral generic K-representation of Gy (F),
and let T be the base change lifting of mp to G, (E). Let WO(mg, 5 5) be the space of all O-

valued functions in W(r g, ). Then the F-representation Jo(mp) Y is a subquotient of the Tate
cohomology group HO(WO(rg, VYpx))

Proof. The proof relies on the completeness of Whittaker models (Theorem 3.2). Although the
proof follows from the same line of arguments as in Theorem 4.3, we provide it in detail for the
purpose of the completeness. We follow the same notations and terminologies as in Theorem 4.3.

5.1.1. Note that the lattice WO (7, ¥ i) is stable under the action of G,,(E) ([Vig04, Theorem]).
Let ®,, be the composite map

K(7g, wE,IC)F - In dN (E) (‘IIZE F)
where re denotes the pointwise mod-I reduction. It is clear that the map ®,, factorizes through the
space HO(K®(mp, v %)) Let N'(¢F) be the inverse image of the Kirillov space K(J¢(7r)"), 9k )

under ®,,. Then N (¢r) is a non-zero P, (F)-stable subspace of H?(K° (7, Y x)) with a non-zero
P, (F)-equivariant map

Y8 Py, (F) (F
2 Ind i () (W),

D, N(Ypp) — K(JZ(TFF)(Z)J/J%,F)-
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We will prove that N (¢ F) is G, (F)-stable and the map ®,, is G,,(F')-equivariant. To be precise,
let V be an element of N (¢)F). We will show that

(1 (w) V) = Je(mp) D (wn) @4 (V),

where 7 (wy,) is the linear operator on HO(K (7, Y i) induced by g (wy). Let W be an element

of WO(WE,wEK)F with resp, (g)(W) = V. By Theorem 3.2, the above assertion is equivalent to
the following identity:

ch w(me(wn)V ch Jo(rp) W (w,) @, (V), V') X*, (5.1)
keZ keZ
for all V! € W((es W, @5 F)V,4p3') and for all primitive idempotents ey of ZF . Here R’
denotes the ring e ZI | @, F.

5.1.2. Let ey be a primitive idempotent of ZX ;. Then there exists a primitive idempotent e,
of ZE | such that we have the base change map zE/F Ay — A with

F ’ _ /
Ly ozg/p = Bg/ro Ly,

where v/ is the l-inertial type, which corresponds to both ey and ey. As before, we denote by V'
and V} the co-Whittaker modules e, W,F | @ A, Ay and ey I @4 F respectively. The action
of G, (E) (resp. G,(F)) on the space V' (resp. V}) is denoted by 7% (resp. ).

5.1.3. Let V'’ be an element of W(V}El), ;)IR,). Following the arguments of Theorem 4.3, we get
an element W’ in W(V', wglA, )' such that W’ is mapped to V' under the composition
AR

FeSG,, 1 (F)

- Po_1(E e
Py 1W(V/>¢E}A/ )" _>I dy 1((E))(\IJE r) In d lgpg(‘l’le/)

with the following identity
Oy (g (wn_1)W') = 7 (w_ 1)V, (5.2)

Recall that the map 6} is induced by the morphism A% — R’, sending x to z ® 1. From functional
equation over F, we get

> Er(mulwa (W), wip(wa- ) 0(W)) X~ 7*
keZ

= @y (1) (re ® 0)) (V(X, 78,V 08)) > e (n(W), V') XT*.
keZ

Using Remark 3.5 and the relation (5.2), it follows from the above identity that

S e (me(wa)r (W), 7' (w,— ) V') X 1

kEZ (5.3)

= @, (1), @ 0) (V(X, 7E, V' PE)) D e (n(W), V) X'*.
kEZ

5.1.4. Let U be an element of W(Jy(7p)®, 1&;)%) such that resp, (r)(U) = ®, (V). The functional
equation over F' gives

> e (Jelre) D (w)U i (w1 V) X
keZ

= @y, (~ 1) Dy (X, Jo(mp) O,V k) Y el (U, V) X
keZ
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Replacing X by X! to the above equation, we get

Z . (Jg(ﬂ'F)(l) (wn)U, ng) (Wp—1)W') Xt

her (5.4)

(1) Dy (X! Jo(mp) D,V ) ST e (U, W) X,
kEZ

’
F

5.1.5. Comparing the relations (5.3) and (5.4), the assertion (5.1) is now equivalent to the fol-
lowing identity of gamma factors

(Te b 92) (7(X7 7TE7V/7’(/}E)) = ’V(Xl7 JE(WF)(l)7VIF(‘l)a ’lp%)

This follows from similar type of computation of gamma factors as we did in Theorem 4.3. First,
note that

’Y(Xa TE, Vl? ¢E) = (f‘fl'E ® Z/E/F)('V(X7 ethE7 et/WnE—lv d)E))
Using the relations (4.1) and (4.3) and the fact that fr, = fr. o zp/p, we get the following
equality:

V(X, TE, V/, ¢E) = H’Y(Xv TF, eE’Wf—l ® 1, T;Z)F),
n
where 1 runs over the characters of Gal(E/F). Applying the morphism (r; ® 6}) to the above
identity, we get
(re @ 0)(V(X, 78, V', ¥B)) = (X, Je(mp), Vi, o)
Finally, the identity (3.3) gives

(re @ 0) ((X, 7z, V', 0p)) = (X', o) O, VED, 0.
Thus, the space N (¢r) is stable under the action of G,,(F') and the map ®,, is surjective. Now, us-
ing [DN22, Proposition 6.3], we get that there is a unique generic subquotient of HO (W(rg, @ZJEK),
and this is necessarily equal to Jy (7). This completes the proof. O
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